
Global Journal of Computer Science and Technology Vol. 10 Issue 5 Ver. 1.0 July 2010 P a g e | 7

GJCST Computing Classification
H.2.m, K.6.4

Corporate Data Obesity: 50 Percent Redundant

Hae Kyung Rhee

Abstract-In this essay, we report what we have observed with

regard to status quo of corporate information systems in real

world from our experiences of twenty years of data

management practices. It is considered to be serious in that

data are too conveniently and frequently replicated to make

information systems improperly behave in terms of their

quality standards including response time. Average ratio of

data replication in a site is astonishingly judged to be more

than 50 percent of a whole corporate database. It is in reality

about 65 percent in average to our knowledge. Presenting this

paper to academia has been motivated by our strong belief and

evidence that most of the redundancy can effectively and

systemically be removed from the very start of information

system development. We also noted that field workers

including database administrators in corporate environment

tend to think data part of IS and program part of IS mixed

together from the start of IS design and popularity of this

tendency eventually caused a lot of entanglement that could

hardly be dealt with later by themselves. We therefore present

a couple of mandates that must be respected in order not to get

involved in such a perplexity

Keywords-Corporate Data Obesity, Data Redundancy,

Enterprise Data Map.

I. CONCEPT OF OBESITY

t is not unusual to think that if a person is weighed more

than about 20 percent of what needs to maintain for

fitness then he or she is considered to be over-weighted.

This is what we understand with regard to concept of

obesity. It is no different for data in corporate environment.

It will be astounding to recognize that the degree of data

obesity in corporate is far more than 20 percent. It is in fact

65 percent in average for some dozens of large enterprises

we have observed in depth for the past twenty years. To be

exact in terms of terminology, the unit of obesity we mean is

data attribute. For example, if there is a customer data and it

is comprised of c-name and c-address, c-name and c-address

are the data attributes. So, in case c-name appears more than

once in a corporate database, it is called redundant or

replicated. Although the reports on data abundance in

corporate environment have been made in the literature, as

far as we know, only the issue of data deluge [Cukier2010,

KaBoZe2010] has been dealt with a couple of times in order

to emphasize world-wide phenomenon of rapidity in

increase of data in terms of volume. The issue of data

obesity is new in the world-wide communities of database

About- Associate professor at Dept. of Computer Game & Information in
Yong-In Songdam college.

(telephone:82-31-330-9234 e-mail;leehk@ysc.ac.kr)

research and management information systems research. In

this sense, it is almost impossible to find any past work in

the literature made with regard to this issue. Note that the

concept of data obesity is essentially irrelevant to data

volume. Although introduction of some upper-level data

stores like data warehouses (DW) or data marts (DM) other

than the lower-level operational data stores (ODS) in

corporate environment certainly contributes to abundance of

data, DWs and DMs are out of scope in this essay. If we

stick only to ODSs, we could observe that a lot of obesity is

already there in corporate environment.

Note that, in a fairly large corporate such as General Electric

or Samsung Electronics, there are approximately 15,000-to-

20,000 data attributes in their database. Notice also that the

level of redundancy in data attribute is not exactly the same

as the level of redundancy in data volume. However, to

make it comparatively simple to have some idea about

redundancy in terms of data volume, since a lot of people in

field work prefer this way of understanding, when we

happen to hear that database size of some company is, for

instance, 100 terabytes, it is legitimate or reasonable to think

that the company in reality has a database of approximately

35-to-50 TBs. So, in case 50-to-65 TBs of data can be

totally eliminated from the corporate database and this

elimination does never affect harm the normal operation of

the database at all. Redundancy demands a huge cost in

terms of waste in storage and belatedness in response to

database queries. Note that even 1 TB of data amounts to

piling A4 size papers up about 100 kilometers high.

Redundancy or replication gives some illusion that it could

contribute to enhancement of response time, but on the other

hand things can get messy if we consider consistency of

data. The quality of answers to data queries could be always

in question, since making all the replica copies to have the

same value usually takes a substantial amount of time due to

non-automatic processes of such data value propagation.

Manual propagation by considerate programming

nevertheless unfortunately incurs unforced human errors and

there is no guarantee for data consistency at all across a

corporate database. Once an inconsistent value of data

happens to be used to reply the queries, trust of information

system would unbelievably collapse. Issue of mistrust would

then raise the question of integrity with regard to a whole

information system.

Therefore, limiting the occasions of data replication to be

minimal is necessary whenever it is possible. Unless the rate

of data redundancy is substantially reduced, say to about 15

percent by means of wary design from the outset of IS

development, data normalization theories [YuJa2008] that

have been esteemed almost over the past thirty years turn

out to be ―useless‖ at all in real world. To our knowledge

I

P a g e | 8 Vol. 10 Issue 5 Ver. 1.0 July 2010 Global Journal of Computer Science and Technology

reduction comes quite before some tabular form of data

begins to emerge in the process of IS development and that

is just where we start to lay out job descriptions, in non-

technical term. We will get back to this later in this essay

after discussion with regard to how people in IT field are

insensitive to the issue of redundancy.

II. UNNECESSARY REDUNDANCY

an arena where data is represented in a form of table or

relation, in expertise terminology, the concept of keys like

primary key and foreign key is technically inevitable.

Basically, if a particular key of table, say A, dubbed its

primary key, is duplicated in another table, say B, as a part

or component of key of B, that key is denoted as a foreign

key in B, as it has been imported or borrowed from other

table, which is A. This clarifies that origin of the key is from

A, not B. This way of designating and incorporating such

externality of key will bring IS about 15 percent of data

redundancy contained intrinsically, which is technically

unavoidable if we stick to the tabular representation of data.

This portion of redundancy can be called redundancy of

necessity. So, if data obesity ratio is said to be 65 percent, it

is true that about 45 percent of the entire data is therefore

classified to be unnecessary or superfluous in their nature.

Whether to remove this much of unnecessary redundancy or

unwanted replication is up to decision of an individual data

manager, but unless removal of them is done the

information system would definitely be hampered or

suffered by lack of consistency and further by eventual

slowness in response time. Note that, normally in the

database queries of any corporate, about half of them are

update requests and the other half are retrieval requests. If

this reality of read-write ratio, i.e. 0.5, is ignored, we are

soon tempted to allow data duplication by assuming that

reads are much more frequent than writes, and subsequently

a fatal disaster would then be experienced sooner or later

due mainly to data inconsistency dilemma.

The payoff for burden of upholding this unnecessary

redundancy is really enormous. Usually, it would be about

five times more costly than the case where the level of

redundancy is minimally enforced. So, it is going to be 10

million dollars versus 50 million dollars when so called next

generation, i.e. enhanced version, of information system is

to be developed. As the degree of data redundancy

increases, data consistency tasks among operational

databases exponentially as well increase in proportion to the

amount of increase in data redundancy. Note that there is

inevitably redundancy between the lowest-level database

and its upper-level data warehouses, since data in database

are in principle shoveled upward to its data warehouses in

the process of generating data warehouses. It is also a

natural consequence that another layer of redundancy is

unavoidable between data warehouses and their upper-level

data marts.

In case data redundancy is existent, it is not difficult to find

many of duplication are intrinsically semantic. Syntactic

duplication is easy to find out, but it is almost impossible to

determine whether any data is a semantic derivative of some

other data. This semantic data duplicity is the major malice

to make corporate database incurably obese. So, it is

necessary to remove syntactic duplication, but it is

exceedingly more crucial not to forge any possibility of

semantic duplicity from the very outset of IS development.

It really is almost impossible to check semantic equivalence,

even periodically, once an information system is in

operation day to day.

III. DE-NORMALIZATION—PANACEA OR DEADLY

HOMEPATHY?

It is really unfortunate that we have never seen any data

table or relation that even follows the rule of well-known

first normal form (1NF) in real world corporate databases.

So, sometimes it is ridiculed that real world databases only

contain tables of non-normal form or zero normal form,

since they have properties significantly inferior than 1NF in

terms of data quality such as the degree of data redundancy

and dependability of non-key data attributes to key

attributes. The beauty of table normalization or table

standardization by applying 1NF, 2NF, 3NF or Boyce-Codd

NF is that whenever there is a data redundancy in a table

then it is possible to remove it by decomposing or splitting

the table into two.

In corporate IT field unfortunately a term ―de-

normalization‖ [JoJA2007] has gained so much popularity

in a sense that field managers usually do not have a time to

pay attention to and understand the theories behind

normalization. They at first pretend to understand and use

them, but in reality they sooner or later totally forget about

them. By far, we are very unfortunate that we have never

seen any database administrator who really does understand

the basic difference between 1NF and 2NF. The reality is

that they keep never trying or studying to grasp the meaning

and benefit of making tables normalized and keep feigning

to have started with 1NF initially for IS development and to

proceed forward to make tables in up to 3NF and all of

sudden for the sake of performance they inevitably and

eventually come to resort to 1NF again. But this could be a

sort of fictional story and hence never true at all, since they

always had failed to tell us what the intrinsic difference

between 1NF and 3NF is. A number of experiments

[KSLM2008] already have shown that having tables in 3NF

performs always better than 2NF or 1NF and that 3NF is

considered to be quite optimal even in cases where seven-

way table joins are conducted. Note that 7-way join means

that combining seven different tables, each fairly large in

our experiments, at the same time.

The real problem with IT field managers and even database

administrators is that they hardly understand even what the

1NF is. Note that in any data-related literature for the past

forty years of history, notion of ―de-normalization‖ has

never been introduced, but they pretty much fond of taking

that jargon just in order to forget about normalization stuff

and to wish to let themselves totally unaware of any

impending issues related to data consistency. They seem to

be soon relieved to hear by someone else that normalization

Global Journal of Computer Science and Technology Vol. 10 Issue 5 Ver. 1.0 July 2010 P a g e | 9

could always be compromised for the reason of

performance. To our knowledge, they are misled by mainly

outside IT consultants who have never been trained enough

in basic knowledge in database. So, it is actually a very

demanding burden to make them understand what the

normalization theories are all about.

However, this is not too bad if we know that having tables

even in 3NF could contribute to reduce the degree of data

redundancy by at most about 5 percent, which is not too

much. Consequently, the contribution of normalization

would be only minor. But then, where is the majority of

contribution come from? It comes much prior to the

formulation of tables. In order to realize this, we have to

know what and where the origin of data essentially is in

corporate environment. Where is the place where

redundancy really starts to build? It is at the very beginning

of business processes, not where the normalization theories

are just about to be applied. Wouldn‘t it be curious that

where are all the data that are to be appeared eventually in

tables come from?

IV. NECESSITY OF BUSINESS PROCESSES DESCRIPTION

Let us turn our attention to how business processes are

described so that field workers can communicate each other

later on. They will certainly be in a form of business

processes description or job description. So, the

transformation of job descriptions into data tables might

take a couple of interim stages, since descriptions

themselves have a format different from table and there is

no direct, straightforward method that can map the

descriptions into tables. Then, how is job description

comprised of? In it, there could appear data entity like

employee or department which has fixed values for data

attributes it is comprised of.

For example, a data entity ‗employee‘ might consist of data

attributes ‗address‘ and ‗social security number‘ and their

values are normally fixed, i.e., not changed over time. In

case in job description there is a description statement like

―An employee sells a machine.‖, data entities ‗employee‘

and ‗machine‘ will have such fixed values, while on the

other hand data entity ‗sell‘ is different in that the values

that data attributes of ‗sell‘ like selling date or selling

volume vary, i.e., changed each time the action or behavior

‗sell‘ is performed. So, action entities are at the focal point

in terms of creating different data values in the database. It

can be considered that the source entity of action ‗sell‘ is

‗employee‘ and its destination entity is ‗machine‘. This way

of writing job descriptions by taking action-oriented

approach or behavior-oriented approach [KDLM2007] is

straightforward. It could be fairly easy to understand for

employees who have a mission of writing a description for

jobs they actually perform.

Efforts to make job descriptions to be free from data

redundancy are essential and valuable to check whether

there is redundancy of any sort for each particular action.

This means the action ‗sell‘ above appears at most only once

in job descriptions of whole business processes of a

corporate. It is judged to be improper or abnormal if the

action ‗sell‘ appears more than once in entire job

descriptions of the corporate. This kind of effort in reducing

or removing actions redundancy has no relationship in what

is known to be crucial like 1NF, 2NF or 3NF, as emphasized

in the literature. But removal effort with regard to

redundancy in data attributes directly associated with actions

is far more important than the removal of redundancy in

tables at a later stage of database creation. If the removal

effort is not sufficiently done, redundancy thus retained

intentionally or unintentionally would then automatically be

transferred intact to tables at the instance of table creation.

From the perspective of who or what is in charge of

dynamically creating data in corporate environment, it is fair

to admit that behaviors, rather than fixed entities, play the

major role of such creation. Fixed entities that are always

expressed as nouns in description statements like

‗employee‘ and ‗department‘ normally generate only static

data attributes and thus said to be only at the outskirt in

data-creating activities. In this sense, it is meaningful if we

preferably write job descriptions in a way of behavior-by-

behavior. Each behavior then has a responsibility for

creating only meaningful data attributes. In case a behavior

does not contribute to generate certain attributes, it has no

value of existence to be independent or stand alone. This

means that in that case it is reasonable to place that behavior

to be subsumed by some other behavior that is directly

relevant and superior to it.

V. BEHAVIOR-ORIENTED JOB DESCRIPTIONS

As we have observed over the past 20 years, the unit of

resources that is assigned to an employee is normally a job.

Definition of jobs has been in a sense pretty much well

established in corporate. For example, we could count the

number of jobs in a corporate without much difficulty. To

our experience, a mid-size corporate has about 500 to 1,000

jobs and to perform those jobs it normally requires to

maintain the number of employees of about twice as much

as the number of jobs, since it is a usual practice to assign

two persons to a single job in order to prepare for

emergencies of just-in-case. So far, we have seen a number

of corporate that have about 500 jobs and 1,000 employees

in real world. This might be a kind of standard for mi-size

corporate.

We were able to observe from our experience that each job

in average could be comprised of some 20-to-30 actions or

behaviors in case data-creating actions are only taken into

account in job descriptions. So, if there are 500 different

jobs in a corporate, then it means that there are about

10,000-to-15,000 behaviors altogether in that company.

With no redundancy in actions, those some 10,000

behaviors must be unique in that they do not incur

redundancy of any types so that each of them must appear

once and at most once throughout the entire corporate

database.

VI. ENTERPRISE DATA MAP

These behaviors are in a sense interconnected each other in

a way that each data-creating action has one fixed entity on

its left and one more fixed entity on its right. If we denote a

interconnection would look like a type of ‗E—B—E‘. So,

P a g e | 10 Vol. 10 Issue 5 Ver. 1.0 July 2010 Global Journal of Computer Science and Technology

behavior by B and a fixed entity by E, then the web of those

the whole picture would look something like a rectangular

type that would allow data accesses or data retrievals in

either direction, clockwise or counter-clockwise, as depicted

in arrows in Fig.1.

Fig. 1. Rectangular Path Formed in Enterprise Data Map,

where B Denotes Behavior and E Denotes Entity

Rectangularity guarantees balance in response time in either

direction of access, while if otherwise skewed case to one

particular direction could induce degradation in response

time. Although there are only seven actions in this picture,

we could get a whole diagram that contains some 10,000

behaviors if we keep extending the picture by adding more

behaviors to it. The entire picture of connection without

allowing isolation of any picture fragment could be called an

enterprise data map [Moon2004].

With this EDM, we are able to judge or realize where the

origin of a particular data attribute is and how it flows

throughout the entire data access paths already obtained and

depicted in EDM. With EDM, it is very easy to find out

visually where are data redundancies if there are any. As a

diagram, one EDM can depict about 20 pages of A3-size in

case font size of 5 is used. Drawing would be automatic if

we use a software drawing tool such as ERwin [JoJB2007].

The EDM of such many pages would then easily fit into the

wall of CEO‘s or CIO‘s office. Or it could also be displayed

on CFO‘s office in case he is interested in figuring out how

is the flow of all the data directly related to financial status

quo of his company. Unfortunately, at the moment only a

few corporate experienced the value of obtaining and

maintaining the EDM, but we advocate that its use would

significantly benefit many aspects of information system.

We advocate that utilization of EDM would thereafter be

plentiful according to your perspectives of looking at it.

VII. SEPARATION OF DATA FROM PROGRAM

It is needless to say that EDM is the must to be secured and

kept as an asset prior to the programming of information

system. We emphasize that any programming effort must be

deferred until the finalization of EDM. EDM in this sense is

the blueprint for any design like, for instance, building or

road. To our knowledge, EDM is definitely the blueprint for

information system prior to any programming effort. What

we emphasize is that data itself is essentially data in that

programming must begin to take place only after the data

formulation has been made to sure to be completely

wrapped up. Data-first programming-later approach is

crucial for the success of information system. If data stuff

and programming stuff are mixed together from the start of

information system development, chaotic situations would

duly be encountered in determining that whether an

impending problem at issue is originally from data part or

programming part. We emphasize that any data cannot be

represented or expressed or substituted in a way of any

programming means.

Note that if somebody happened to introduce a data

‗whether-a-student-is-registered-or-not‘, then it is in fact a

disguise as a data in that it essentially has a sort of

algorithmic logic in that data. Presuming that a data like

‗registration date‘ could reside somewhere else in the

database already, ‗whether-or-not‘ type of decision could

then be definitely dealt with some conditional statements

like ‗if‘ in programming. Separation of data from

programming must be strictly obeyed in a sense that,

without separation, a bunch of semantic redundancy like this

sort of disguise could later be insidiously come into the

information system. If it seems that this way of algorithmic

logic is certainly in a data, then it is not real data, since only

the raw data is privileged to be called as data. Anything

impure in a way of generating artifacts is not called the real

data. For example, if data C is from the result of addition of

raw data A and raw data B, then C is not in principle treated

as data. Note that in the lowest infrastructural level database

of corporate only such raw data are entitled to reside.

Anything else must be deported to reside somewhere else

like data warehouses.

VIII. CONCLUSION

In sum, there are two major mandates that have to obey to

make information systems free from data obesity. The first

one is that efforts for removing data redundancy should be

enforced from the start of information system development,

which is from the starting point of securing job descriptions.

The latter one is the strict separation of data arena and

programming arena in developing information systems.

Questions like whether this belongs to data or programs are

better to be raised as frequently as possible in order not to

bring any chance of confusion about which comes before

and which comes after or later. To our knowledge, the

degree of data obesity is guaranteed to be tolerated within at

most 20 percent if these two mandates are strictly obeyed.

Removal of another 5 percent of data redundancy is later

possible if we conduct a certain set of technical details. The

well-known data table normalization or data table

decomposition theories come into play for this further

removal. So, the benefit accrued from the data redundancy

removal efforts by application of normalization theories is

considered to be far less than we get from the efforts made

at the stage of job description, which is about 30-to-45

percent of removal in data redundancy in an entire corporate

database. It is adding one more flower to a beauty itself

already seized if the normalization theories are applied to

E BB

A

A

EE

BB

A

B

A

A

A

EE B

A

A

A

EE

B

A

A

A

B

A

A EE B

A

A

EE

EE

E

Global Journal of Computer Science and Technology Vol. 10 Issue 5 Ver. 1.0 July 2010 P a g e | 11

make tables best fit with minimal redundancy in them, but

we certainly might have no regret at all when they happen to

be not applied for some reason under the premise that data

redundancy of all sort has already been sorted out and

managed to be ruled out prior to table formulation.

The adage ―Trying to start with guarantees almost half-way

done already‖ still prevails in the world of information

system development and making IS fit or well-being in any

situation or environment comes true when we immersed to

think in this manner. Consequently, the earlier we

preoccupied with the trial of data redundancy removal, the

better the outcome of information systems in terms of

performance, clarity, transparency and promptness in

response time.

IX. REFERENCES

1) [Cukier2010] Cukier, K. (2010, Feb. 25). Data,

Data Everywhere. A Special Report on Managing

Information, The Economist. Retrieved May 1,

2010,from

http://www.economist.com/specialreports/displayst

ory.cfm?story_id=15557443.html

2) [KaBoZe2010] D. Katz, M. Bommarito, & J.

Zelner (2010, March 1). The Data Deluge. The

Economist print edition.

3) [JoJB2007] J. Jones & E. Johnson (2007).

Building and Maintaining A Database from An ER

Model. White Papers : Computer Associates.

4) [Moon2004] S. Moon (2004). Data

Architecture, Hyung-Seol Publishing Company.

5) [KDLM2007] N. Kim, D. Lee and S. Moon

(2007). Behavior-Inductive Data Modeling for

Enterprise Information Systems. Journal of

Computer Information Systems, Vol. 48, No. 1,

105-116.

6) [KSLM2008] N. Kim, S. Lee & S. Moon

(2008). Formalized Entity Extraction Methodology

for Changeable Business Requirements. Journal of

Information Science and Engineering, Vol. 24, No.

3, 649-671.

7) [YuJa2008] C. Yu & H. V. Jagadish (2008).

XML Schema Refinement through Redundancy

Detection and Normalization. VLDB Journal, Vol.

17, 203-223.

	Corporate Data Obesity: 50 Percent Redundant
	Untitled
	Keywords
	I. CONCEPT OF OBESITY
	II. UNNECESSARY REDUNDANCY
	III. DE-NORMALIZATION—PANACEA OR DEADLY HOMEPATHY?
	IV. NECESSITY OF BUSINESS PROCESSES DESCRIPTION
	V. BEHAVIOR-ORIENTED JOB DESCRIPTIONS
	VI. ENTERPRISE DATA MAP
	VII. SEPARATION OF DATA FROM PROGRAM
	VIII. CONCLUSION
	IX. REFERENCES

