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Abstract-This paper presents a new algorithm to find out 
whether a polygon exists around a reference point given within 
the graphical domain. The algorithm is based on creating 
discrete line segments and then searching them using the 
orientations formed at segments intersections. The 
computational complexity of the searching algorithm has been 
determined as O(  )   

I. INTRODUCTION 

ne of the most important problems that must be solved 
when developing graphical based system is the 

determination of simple graphical objects (such as line, 
circle, etc.) within the drawing area. Although polygons are 
known as simple graphical elements, they are composed of 
more simple graphical objects as line segments. In order to 
understand all the properties of a polygon, one must know 
the each line segment of that object [1]. There are widely 
used methods finding line segments of each of the polygon 
inside the whole structure [2]. Polygonal objects can be 
classified as convex or concave in shape according to the 
connection of the points inside of them. Most of the 
algorithms have been developed up to now especially deals 
with convex polygons [3]. So there are a number of 
algorithms to create convex polygons from concave ones 
[4]. Most of the polygon algorithms depend on shapes.  
Many studies on computer vision and robotics are used a ray 
of a single flash light to detect the edges of polygon regions. 
There have been such algorithms using the flash light 
approach [5,6,7].  The following studies deal with vector 
and/or raster graphics. They follow certain algorithms to 
detect polygon boundaries. Polygons created with vector 
graphics have been used on various applications of 
manufacturing industries to Geographical 
Information System (GIS) [8, 9, 10]. Raster based 
algorithms have been used in areas such as remote sensing 
to extract land cover data from satellite images and pattern 
recognition [11, 12].  The studies on polygons concentrate 
on the techniques such as computing the centre of a polygon 
region, calculation the area size and finding the centre of 
gravity of the polygon, whether a certain point is located 
within the polygon or not, intersection points of two 
polygons, area size (Hidden regions) of two overlapping 
polygons, defining the location of polygons and the 
triangulation of a simple polygon [13, 14, 15]. The proposed 
method in this study is based on an algorithm designed to 
determine the polygon region characteristics[16]. 
The initial stage of the algorithm has been inspired of the 
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well-known scan line filling algorithm [17]. The developed 
algorithm has already been applied for calculating the heat 
requirement of a building project.  

II.  THE PROBLEM DEFINITION AND PROPOSED SOLUTION 

Searching a polygon around a reference point within the 
drawing domain is an important issue in computer graphics. 
The problem may become more complex if the assumption 
about the type (convex or concave)  of the polygon is 
ignored. The following part of the study has been organized 
to construct the requirements of the proposed method first, 
and then algorithm itself. 
Polygon boundaries are constituted by line segments which 
are basic design elements. These line segments could be 
defined by a user at random, or the result of a straight line 
recognition algorithms on an image. 
One instinctively may think that it is a very trivial problem. 
If all the cases are considered, the problem becomes more 
complex to solve. Especially the polygons in the drawing 
area may be concave or convex in shape. So, the algorithm 
must  should solve for both of them.  
The method in this article consists of two steps. The first 
step is to create individual discrete line elements which are 
separated at the intersection points. The second step is to 
distinguish those line segments that construct the polygon 
region around a given reference point. 
In the process of creating discrete line segments, it would be 
necessary to use mathematical representation of line 
segments. Although there are two ways for the 
representation; analytical one and parametrical one. The first 
one suffers from the intersection testing [18]. In order to 
avoid this shortcoming, parametrical representation of line 
segments has been preferred. In this  representation, the start 
and end points of two line elements P1, P2 and P3, P4 can 
be defined as follow 
Pi= ( xi , yi )  ,  i=1,2,3,4; 

 
P(s)=P1+(P2-P1)s 0 1s                                        (3) 
 

P(t)=P3+(P4-P3)t  0 1t                                         (1) 
 
As a result of this representation, the intersection of the two 
line elements Z = (xz,yz) is found from the following 
equation: 
 
 P(s)=P(t)                                                                (2) 

 
 

O 
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In this method, the user can select any line element at 
random, and then, this line element is checked against all the 
others in the graphical database to test if it intersects any of 
them. If there are intersection points, then, the line elements 
at each intersection points are broken down as individual 
discrete line elements on the basis of this intersection point. 
Then the same process is repeated for the other intersection 
points. As a result of this process, all the line elements in the 

graphical database would be in the form of discrete line 
segments. Finally, the intersection points become vertices of 
the polygons in the system if there are any.  
Figure 1 illustrates the process of how to create  line 
segments. In case of a discrete line drawn at random 
intersects with other discrete lines in the graphical database.  
Figure 2 shows the possible segmentations.  

 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 1. The process of creating discrete line elements 

 
 
 
 
 
 
 
 
 
 
 

Fig. 2. The cases of intersection of two discrete lines in the graphical database 

A new entry is inserted in adjacent matrix for each new line 
segment created by intersection. Adjacent line segments are 
stored in this bit matrix.  Figure 3 shows an example of 

adjacent matrix. It is used to search the possible candidates 
for the next coming line segment on the polygon which 
accelerates the SearchPoly algorithm 

 
 

 

 
 

 

Fig. 3.   A simple polygonal region and related adjacent matrix 
  

 1 2 3 4 5 6 7 8 
1 0 1 0 0 1 0 1 1 
2 1 0 1 0 1 0 0 0 
3 0 1 0 1 0 1 0 1 
4 0 0 1 0 0 1 0 1 
5 1 1 0 0 0 1 1 0 
6 0 0 1 1 1 0 1 1 
7 1 0 0 0 1 1 0 1 
8 1 0 1 1 0 1 1 0 
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The pseudo-code for creating line segments is 

given below: 
n : the number of the line segments in the graphical database 
A[i]: the set of the line segments in the system (i=1,2,...n) 
A[i].first :one end of the line segment A[i] 
A[i].second :the other  end of the line segment A[i] 
K: current line which is just drawn by the user (selected 
line) 
K.first: one end of the K 
K.second: the other end of the K 
Z: intersection point 
Procedure createSegments( K ) 
{ 
   For each line segment A[i], i=1,..,n  
   { 
         If A[i] line segment intersects with discrete K line at a 
point Z 
                  If Z is start or end point of A[i] {  
                        If Z is start or end point of K then save K as 
line segment 
                        Else {divide K into two separate line 
segments  
                                   A[n+1]=(K.first,Z), 
A[n+2]=(Z,K.second) 
                                   update adjacent matrix} 
                  } 
                  Else {  
                        If Z is start or end point of K then  
                        {divide A[i] into two separate line segments  
                          A[i]=(A[i].first,Z), A[n+1]=(Z,A[i].second) 
                          update adjacent matrix} 

                        Else {divide K and A[i] into two separate line 
segments  
                                A[i]=(A[i].first,Z), 
A[n+1]=(Z,A[i].second)     
                                A[n+2]=(K.first,Z), 
A[n+3]=(Z,K.second) 
                                update adjacent matrix} 

 
Finally, the model is ready to check a given reference point 
if there is a polygon region around it or not. The second step 
is to take a reference point. Once the reference point has 
been selected, a vertical virtual line from the reference point 
is drawn to the right boundary of the drawing plane. The 
virtual line intersects some line segments and results a set of 
intersection points along the same line. The line segment, 
which has an intersection point that has the minimum 
distance to the reference point, has been selected. This is the 
first line segment of the polygon region. 
Figure 3 illustrates the selection of the reference point, the 
virtual line and determining the first line segment of the 
polygon region. One end of the first line segment is taken as 
a basis (in other words base point) for executing the 
algorithm further. As there are two ends of the first line 
segment, obviously there are two alternative directions to go 
forward. Selection of the end point also defines the direction 
of the algorithm. Figure 4 shows decision of one end of the 
first line segment (in other words the direction of 
algorithm).  

 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 

Fig. 3. Determining the first element of the polygon region 
 
 
 
 
 
 
 

 

 
 
 
 
 
 
 
 

Once the algorithm direction has been defined, it remains 
same through the whole algorithm. After deciding the base 
point of line segment, the other line segments starting from 
or ending at the same point are selected from the graphical 
database. The angles created between the based line segment 

and the other selected line segments are calculated using 
opposite direction of the algorithm direction. For example, if 
the algorithm direction is clock-wise, the angles are 
evaluated in anti-clock-wise direction. 

 
 

B First line segment 
intersected by the virtual 
line (pivot)  

Virtual line 

Reference point 
Drawing plane 
boundary 

A 



Global Journal of Computer Science and Technology Vol. 10 Issue 7 Ver. 1.0 September  2010  P a g e | 5 

 

 

 
 
 
 
 
 

 
 
 
 
 

Fig. 4. Selection of  algorithm direction 
Figure 5 shows the direction of computation and  the angles 
created by the line segments joining together at a base point.  
The line segment which gives the smallest angle at a base 

point is the new base line segment of this polygon region. 
And the same operations are performed repeatedly. 

 
 
 
 

 
 
 
 

 
 
 
 

Fig. 5. Angular calculations at the base point (opposite to the algorithm direction) 
 

The algorithm ends when the repeated operation reaches the 
first line segment or there isn‘t any line segment to go 
forward (selection of new base line segment).. If it reaches 
the first line segment, it means that all the line segments 
traced up to now construct the desired polygon. If it fails  to 
find a next line segments, ,it shows that there is no closed 
polygon containing the starting point or there is an open 
door in the selected area. Both of these cases might have 
significant meanings depending on the application. 
The pseudo-code for searching polygon region is given 
below. Moreover, Figure 6 illustrate execution of 
searchPoly(B) algorithm 
 
BLS: base line segment  
ALS: adjacent line segment 
CLS: current line segment 
BP  : base point  
boolean  Function searchPoly( BLS , BP ) 
 

{ 
    Set BLS to CLS   
    while (TRUE) 
   { 
          If (bit sum of the CLS row in the adjacent matrix is 
zero) return false     
         /* One may eliminate (put zero) the columns in the 
adjacent matrix whose line segments searched before */      
         Calculate the angles between the CLS and its adjacent 
line segments (use adjacent matrix)         
         Choose the smallest ALS measured in the opposite 
direction to the algorithm direction 
         Find new BP for selected ALS  
         Save selected ALS into the line segments list of 
possible polygon 
         If selected ALS joins with other end of BLS return true 
         Set ALS to CLS 
    }

 

 
 
 
 
 
 
 
 
 
 

 
Fig. 6. Execution of the searchPoly() function 

The base line segment 

The line segment to 
be selected next 
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III.  ANALYSIS OF THE ALGORITHMS 

The total cost of constructing line segments must be 

examined for worst and best cases. For each case, It is 

assumed that there n line segments are drawn. In best case, it 

is assumed that there isn’t any intersection causes 

fragmentation of discrete lines. The size of the Line segment 

database determines the complexity as O(n). For the scan 

operation on the Adjacent matrix causes O(n2). As a result 

of this, the complexity of the searchpoly method is O(n2). In 

worst case, it is assumed that each line drawn i, i=2,3,..n 

intersects all previously drawn lines. Then the new line i 

will cause to generate at most 2i-1 new line segments 

(where (i-1) of them generated by segmenting previous 

lines, and i due to new line drawn). Therefore the total 

number of line segments is  

 

1+                                                                 (4) 

 

which is O(n
2
). By adding adjacency matrix calculation the 

total complexity will be O(n
2
).  

 Composing algorithm must be applied during the drawing 

or defining the discrete lines. So, complexity of composing 

algorithm does not have any effect on performance of 

searching polygon region.   

The complexity of  searchPoly(BLS,BP)  algorithm can be 

decreased to n*n by using the adjacency matrix. It is clear 

that, if search space can be limited to some line segments, 

the algorithm works faster. However, the cost of the search 

algorithm is still acceptable for the application to the 

complex cases.  

IV. IMPLEMENTATION 

The algorithm has been implemented within a CAD based 

heat requirement calculation of a building project. It has 

been developed using Visual Basic programming language 

and its graphics tools. Figure 7.a and Figure 7.b show 

examples of composing segments while Figure 8 

demonstrates how to select a specific polygonal region.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 7.a. Composing segments within the CAD based Heat 

Evaluation Program (before the intersection) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7.b. Composing segments within the CAD based 

Heat Evaluation Program (after the intersection) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

V. CONCLUSION 

In the light of the literature review has been made in this 

particular field, this method and algorithms seem to be a 

unique solution for the definition of the polygon region 

characteristics. The analysis of the algorithms indicates that 

they have got a fast and robust structure. This method can be 

used a wide variety of application areas. These applications 

may spread to the region definition, finding orientations and 

graphical object recognition. Such applications may be 

implemented in the Computer Graphics Industries, 

particularly, Computer Aided Design (CAD), Computer 

Aided Manufacturing (CAM), Robotics and Geographical 

Information System (GIS). 

For the future studies, this approach can be extended for the 

3D model in order to obtain the edges or surfaces of a 

polyhedral structure. 
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