
P a g e | 2 Vol. 10 Issue 7 Ver. 1.0 September 2010 Global Journal of Computer Science and Technology

GJCST Computing Classification
 I 5.1,I 5.4

A Novel Approach for Extraction of Polygon
Regions

Kemal Yüksek1 Metin Turan2

Abstract-This paper presents a new algorithm to find out
whether a polygon exists around a reference point given within
the graphical domain. The algorithm is based on creating
discrete line segments and then searching them using the
orientations formed at segments intersections. The
computational complexity of the searching algorithm has been
determined as O()

I. INTRODUCTION

ne of the most important problems that must be solved
when developing graphical based system is the

determination of simple graphical objects (such as line,
circle, etc.) within the drawing area. Although polygons are
known as simple graphical elements, they are composed of
more simple graphical objects as line segments. In order to
understand all the properties of a polygon, one must know
the each line segment of that object [1]. There are widely
used methods finding line segments of each of the polygon
inside the whole structure [2]. Polygonal objects can be
classified as convex or concave in shape according to the
connection of the points inside of them. Most of the
algorithms have been developed up to now especially deals
with convex polygons [3]. So there are a number of
algorithms to create convex polygons from concave ones
[4]. Most of the polygon algorithms depend on shapes.
Many studies on computer vision and robotics are used a ray
of a single flash light to detect the edges of polygon regions.
There have been such algorithms using the flash light
approach [5,6,7]. The following studies deal with vector
and/or raster graphics. They follow certain algorithms to
detect polygon boundaries. Polygons created with vector
graphics have been used on various applications of
manufacturing industries to Geographical
Information System (GIS) [8, 9, 10]. Raster based
algorithms have been used in areas such as remote sensing
to extract land cover data from satellite images and pattern
recognition [11, 12]. The studies on polygons concentrate
on the techniques such as computing the centre of a polygon
region, calculation the area size and finding the centre of
gravity of the polygon, whether a certain point is located
within the polygon or not, intersection points of two
polygons, area size (Hidden regions) of two overlapping
polygons, defining the location of polygons and the
triangulation of a simple polygon [13, 14, 15]. The proposed
method in this study is based on an algorithm designed to
determine the polygon region characteristics[16].
The initial stage of the algorithm has been inspired of the

About-1 İstanbul Kültür University, Istanbul, Turkey
(e-mail-k.yuksek@iku.edu.tr)

well-known scan line filling algorithm [17]. The developed
algorithm has already been applied for calculating the heat
requirement of a building project.

II. THE PROBLEM DEFINITION AND PROPOSED SOLUTION

Searching a polygon around a reference point within the
drawing domain is an important issue in computer graphics.
The problem may become more complex if the assumption
about the type (convex or concave) of the polygon is
ignored. The following part of the study has been organized
to construct the requirements of the proposed method first,
and then algorithm itself.
Polygon boundaries are constituted by line segments which
are basic design elements. These line segments could be
defined by a user at random, or the result of a straight line
recognition algorithms on an image.
One instinctively may think that it is a very trivial problem.
If all the cases are considered, the problem becomes more
complex to solve. Especially the polygons in the drawing
area may be concave or convex in shape. So, the algorithm
must should solve for both of them.
The method in this article consists of two steps. The first
step is to create individual discrete line elements which are
separated at the intersection points. The second step is to
distinguish those line segments that construct the polygon
region around a given reference point.
In the process of creating discrete line segments, it would be
necessary to use mathematical representation of line
segments. Although there are two ways for the
representation; analytical one and parametrical one. The first
one suffers from the intersection testing [18]. In order to
avoid this shortcoming, parametrical representation of line
segments has been preferred. In this representation, the start
and end points of two line elements P1, P2 and P3, P4 can
be defined as follow
Pi= (xi , yi) , i=1,2,3,4;

P(s)=P1+(P2-P1)s 0 1s (3)

P(t)=P3+(P4-P3)t 0 1t (1)

As a result of this representation, the intersection of the two
line elements Z = (xz,yz) is found from the following
equation:

 P(s)=P(t) (2)

O

Global Journal of Computer Science and Technology Vol. 10 Issue 7 Ver. 1.0 September 2010 P a g e | 3

In this method, the user can select any line element at
random, and then, this line element is checked against all the
others in the graphical database to test if it intersects any of
them. If there are intersection points, then, the line elements
at each intersection points are broken down as individual
discrete line elements on the basis of this intersection point.
Then the same process is repeated for the other intersection
points. As a result of this process, all the line elements in the

graphical database would be in the form of discrete line
segments. Finally, the intersection points become vertices of
the polygons in the system if there are any.
Figure 1 illustrates the process of how to create line
segments. In case of a discrete line drawn at random
intersects with other discrete lines in the graphical database.
Figure 2 shows the possible segmentations.

Fig. 1. The process of creating discrete line elements

Fig. 2. The cases of intersection of two discrete lines in the graphical database

A new entry is inserted in adjacent matrix for each new line
segment created by intersection. Adjacent line segments are
stored in this bit matrix. Figure 3 shows an example of

adjacent matrix. It is used to search the possible candidates
for the next coming line segment on the polygon which
accelerates the SearchPoly algorithm

Fig. 3. A simple polygonal region and related adjacent matrix

 1 2 3 4 5 6 7 8
1 0 1 0 0 1 0 1 1
2 1 0 1 0 1 0 0 0
3 0 1 0 1 0 1 0 1
4 0 0 1 0 0 1 0 1
5 1 1 0 0 0 1 1 0
6 0 0 1 1 1 0 1 1
7 1 0 0 0 1 1 0 1
8 1 0 1 1 0 1 1 0

2

1

3

5

6
7

8
4

Newlinesegmen
tscreatedby
intersection

A line segment in the
graphical database : A[i]

Another discrete line
created at random: K

K

Z
A[i]

(a)

K

Z A[i]

(b)

K

Z A[i]

(c)

K

Z
A[i]

(d)

P a g e | 4 Vol. 10 Issue 7 Ver. 1.0 September 2010 Global Journal of Computer Science and Technology

The pseudo-code for creating line segments is

given below:
n : the number of the line segments in the graphical database
A[i]: the set of the line segments in the system (i=1,2,...n)
A[i].first :one end of the line segment A[i]
A[i].second :the other end of the line segment A[i]
K: current line which is just drawn by the user (selected
line)
K.first: one end of the K
K.second: the other end of the K
Z: intersection point
Procedure createSegments(K)
{
 For each line segment A[i], i=1,..,n
 {
 If A[i] line segment intersects with discrete K line at a
point Z
 If Z is start or end point of A[i] {
 If Z is start or end point of K then save K as
line segment
 Else {divide K into two separate line
segments
 A[n+1]=(K.first,Z),
A[n+2]=(Z,K.second)
 update adjacent matrix}
 }
 Else {
 If Z is start or end point of K then
 {divide A[i] into two separate line segments
 A[i]=(A[i].first,Z), A[n+1]=(Z,A[i].second)
 update adjacent matrix}

 Else {divide K and A[i] into two separate line
segments
 A[i]=(A[i].first,Z),
A[n+1]=(Z,A[i].second)
 A[n+2]=(K.first,Z),
A[n+3]=(Z,K.second)
 update adjacent matrix}

Finally, the model is ready to check a given reference point
if there is a polygon region around it or not. The second step
is to take a reference point. Once the reference point has
been selected, a vertical virtual line from the reference point
is drawn to the right boundary of the drawing plane. The
virtual line intersects some line segments and results a set of
intersection points along the same line. The line segment,
which has an intersection point that has the minimum
distance to the reference point, has been selected. This is the
first line segment of the polygon region.
Figure 3 illustrates the selection of the reference point, the
virtual line and determining the first line segment of the
polygon region. One end of the first line segment is taken as
a basis (in other words base point) for executing the
algorithm further. As there are two ends of the first line
segment, obviously there are two alternative directions to go
forward. Selection of the end point also defines the direction
of the algorithm. Figure 4 shows decision of one end of the
first line segment (in other words the direction of
algorithm).

Fig. 3. Determining the first element of the polygon region

Once the algorithm direction has been defined, it remains
same through the whole algorithm. After deciding the base
point of line segment, the other line segments starting from
or ending at the same point are selected from the graphical
database. The angles created between the based line segment

and the other selected line segments are calculated using
opposite direction of the algorithm direction. For example, if
the algorithm direction is clock-wise, the angles are
evaluated in anti-clock-wise direction.

B First line segment
intersected by the virtual
line (pivot)

Virtual line

Reference point
Drawing plane
boundary

A

Global Journal of Computer Science and Technology Vol. 10 Issue 7 Ver. 1.0 September 2010 P a g e | 5

Fig. 4. Selection of algorithm direction
Figure 5 shows the direction of computation and the angles
created by the line segments joining together at a base point.
The line segment which gives the smallest angle at a base

point is the new base line segment of this polygon region.
And the same operations are performed repeatedly.

Fig. 5. Angular calculations at the base point (opposite to the algorithm direction)

The algorithm ends when the repeated operation reaches the
first line segment or there isn‘t any line segment to go
forward (selection of new base line segment).. If it reaches
the first line segment, it means that all the line segments
traced up to now construct the desired polygon. If it fails to
find a next line segments, ,it shows that there is no closed
polygon containing the starting point or there is an open
door in the selected area. Both of these cases might have
significant meanings depending on the application.
The pseudo-code for searching polygon region is given
below. Moreover, Figure 6 illustrate execution of
searchPoly(B) algorithm

BLS: base line segment
ALS: adjacent line segment
CLS: current line segment
BP : base point
boolean Function searchPoly(BLS , BP)

{
 Set BLS to CLS
 while (TRUE)
 {
 If (bit sum of the CLS row in the adjacent matrix is
zero) return false
 /* One may eliminate (put zero) the columns in the
adjacent matrix whose line segments searched before */
 Calculate the angles between the CLS and its adjacent
line segments (use adjacent matrix)
 Choose the smallest ALS measured in the opposite
direction to the algorithm direction
 Find new BP for selected ALS
 Save selected ALS into the line segments list of
possible polygon
 If selected ALS joins with other end of BLS return true
 Set ALS to CLS
 }

Fig. 6. Execution of the searchPoly() function

The base line segment

The line segment to
be selected next

P a g e | 6 Vol. 10 Issue 7 Ver. 1.0 September 2010 Global Journal of Computer Science and Technology

III. ANALYSIS OF THE ALGORITHMS

The total cost of constructing line segments must be

examined for worst and best cases. For each case, It is

assumed that there n line segments are drawn. In best case, it

is assumed that there isn’t any intersection causes

fragmentation of discrete lines. The size of the Line segment

database determines the complexity as O(n). For the scan

operation on the Adjacent matrix causes O(n2). As a result

of this, the complexity of the searchpoly method is O(n2). In

worst case, it is assumed that each line drawn i, i=2,3,..n

intersects all previously drawn lines. Then the new line i

will cause to generate at most 2i-1 new line segments

(where (i-1) of them generated by segmenting previous

lines, and i due to new line drawn). Therefore the total

number of line segments is

1+ (4)

which is O(n
2
). By adding adjacency matrix calculation the

total complexity will be O(n
2
).

 Composing algorithm must be applied during the drawing

or defining the discrete lines. So, complexity of composing

algorithm does not have any effect on performance of

searching polygon region.

The complexity of searchPoly(BLS,BP) algorithm can be

decreased to n*n by using the adjacency matrix. It is clear

that, if search space can be limited to some line segments,

the algorithm works faster. However, the cost of the search

algorithm is still acceptable for the application to the

complex cases.

IV. IMPLEMENTATION

The algorithm has been implemented within a CAD based

heat requirement calculation of a building project. It has

been developed using Visual Basic programming language

and its graphics tools. Figure 7.a and Figure 7.b show

examples of composing segments while Figure 8

demonstrates how to select a specific polygonal region.

Fig. 7.a. Composing segments within the CAD based Heat

Evaluation Program (before the intersection)

Figure 7.b. Composing segments within the CAD based

Heat Evaluation Program (after the intersection)

V. CONCLUSION

In the light of the literature review has been made in this

particular field, this method and algorithms seem to be a

unique solution for the definition of the polygon region

characteristics. The analysis of the algorithms indicates that

they have got a fast and robust structure. This method can be

used a wide variety of application areas. These applications

may spread to the region definition, finding orientations and

graphical object recognition. Such applications may be

implemented in the Computer Graphics Industries,

particularly, Computer Aided Design (CAD), Computer

Aided Manufacturing (CAM), Robotics and Geographical

Information System (GIS).

For the future studies, this approach can be extended for the

3D model in order to obtain the edges or surfaces of a

polyhedral structure.

Global Journal of Computer Science and Technology Vol. 10 Issue 7 Ver. 1.0 September 2010 P a g e | 7

VI. REFERENCES

1) J. Pach, E. R. Campo, On circumscribing polygons

for line segments, Computational Geometry 10

(1998) 121-124

2) [X.Li, T.W.Woon, T.S.Tan, Zhuang, Decomposing

Polygon Meshes For interactive Applications,

Proceedings of the 2001 symposium on Interactive

3D graphics,2001,35-42

3) M.A. Lopez, S. Reisner, Efficient approximation of

convex polygons, International Journal of

Computational Geometry & Applications Vol. 10,

No. 5, (2000), pp 445-452

4) J. Fernandez, L. Canovas, B. Pelegrin, Algorithms

for the decomposition of a polygon into convex

polygons, European Journal of Operational

Research 121 (2000) 330-342

5) [5] S. Y. Shin, T. J. Woo, An Optimal Algorithm

for Finding all Visible Edges in a Simple Polygon,

IEEE Transactions on robotics and automation. Vol

5. Num. 2, April ,1989

6) S. M. Lavalle,B.H.Simov, G.Slutzki, An algorithm

for searching a polygonal region with a flashlight,

International Journal of Computational Geometry

& Applications Vol. 12, Nos. 1 & 2 (2002) 87-113.

7) M.Keil, J. Snoeying, On the time bound for convex

decomposition of simple polygons Int. Journal of

Computational Geometry & Applications Vol. 12,

No:3. (2002).

8) P. K. Agarwal,N. Amenta, M. Sharir, Placement of

one convex polygon inside another, Discrete

Computational Geometry, Vol 19, 1999,pp 95-104

9) [9] Y. Ishigami, How Many Diagonal Rectangles

Are Needed to Cover an Orthogonal Polygon?,

Discrete Computational Geometry, Vol

24,2000,pp117-140

10) K.Jha Manoj, C. McCall, P. Schonfeld, Using GIS,

Generic Algorithms, and Visualization in Highway

Development, Computer-Aided Civil and

Infrastructure Engineering 16(6), (2001), 399-414.

11) V.Sridhar,M.A. Nascimento, ,Xiaobo Li, Region-

based image retrival using multiple-features, in “5
th

International Conference VISUAL 2002”, Vol

2314, pp 61-75.

12) C. Huggel, A. Kääb, W. Haeberli, B.

Krummenacher, Regional-scale GIS- models for

assessment of hazards from glacier lake outbursts:

evaluation and application in the Swiss Alps,

Natural Hazards and Earth Sciences (2003), 647-

662.

13) J. L. A reliable test for inclusion of a point in a

polygon, ACM SIGCSE Bulletin Volume 34 ,

Issue 4 (December 2002),81 - 84

14) D. M. Mount, Intersection Detection and

Seperators for simple polygons, Annual

Symposium on Computational Geometry

Proceedings of the eighth annual symposium on

Computational geometry Berlin, Germany,

(1992), 303 - 311

15) W. Lenhart, R. Pollackt, J. Sack, R. Seide1, M.

Sharir, S. Suri ,G. Toussaint, S. Whitesides, C.

Yap, Computing the Link Center of a Simple

Polygon, Annual Symposium on Computational

Geometry Proceedings of the eighth annual

symposium on Computational geometry, Waterloo,

Ontario, Canada,(1987),1-10

16) D. P. Luebke, A Developer's Survey of Polygonal

Simplification Algorithms, IEEE Computer

Graphics and Applications, May 2001, pp. 24-35

17) T. Whitted, A scan line algorithm for computer

display of curved surfaces, ACM SIGGRAPH

Computer Graphics,vol. 12,issue 3, 1978,pp. 26-31

18) D.F.Rogers, Lines intersections Algorithms,

Procedural Elements for Computer Graphics, 3
rd

printing,1988,pp 172-183

	A Novel Approach for Extraction of PolygonRegions
	Authors
	Abstract
	I. INTRODUCTION
	II. THE PROBLEM DEFINITION AND PROPOSED SOLUTION
	III. ANALYSIS OF THE ALGORITHMS
	IV. IMPLEMENTATION
	V. CONCLUSION
	VI. REFERENCES

