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Abstract-  Hidden Markov models (HMMs) have been extensively used in biological sequence analysis.  
HMMs and their applications in a variety of problems in molecular biology. The difficulty of using 
computational approaches to discover genes in DNA sequences is yet unsolved. gene prediction from 
within genomic DNA are far from being powerful enough to elucidate the gene structure completely. We 
develop a hidden Markov model (HMM) to represent the degeneracy features of splicing junction donor 
sites in eucaryotic genes. he HMM system is fully trained using an expectation maximization algorithm 
and the system performance is evaluated using the 10-way cross-validation method. he HMM system is 
fully trained using an expectation maximization algorithm and the system performance is evaluated using 
the 10-way cross-validation method. 
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I. Hidden Markov Model

hidden Markov model (HMM) is a statistical 
model that can be used to describe the evolution 
of observable events that depend on internal 

factors, which are not directly observable. We call the 
observed event a `symbol' and the invisible factor 
underlying the observation a `state'. An HMM consists 
of two stochastic processes, namely, an invisible 
process of hidden states and a visible process of 
observable symbols. The hidden states form a Markov 
chain, and the probability distribution of the observed 
symbol depends on the underlying state. For this 
reason, an HMM is also called a doubly-embedded 
stochastic process.

Figure 2.1: A Markov chain with 6 ststes (labelled 1 to 6)

II. Block-HMM for Labelled Sequences

Block-HMM restricts its search to a subset of 
HMM topologies made up of blocks of states. Each 
block is assigned a label that corresponds to one of the 
three secondary structure classes. The states that make 
up the blocks emit amino acid symbols. Secondary 
structure prediction is done by inferring the values of the 
hidden states for a given amino acid sequence, and 
examining the secondary structure labels of the blocks 
these states belong to. Four types of blocks are used: 
linear, self-loop, forward-jump blocks and zero blocks 
(figure 1).

a) HMM blocks that compose the whole HMM structure

1. linear block 
2. self-loop block (tying is optional)

Author: e-mail: suneelpappala@gmail.com

3. forward-jump block (tying is optional)
4. zero block.

Linear blocks consist of N states (labelled from 
1 to N) where state n is only connected to state n + 1 
(with 1 ≤ n <N). Self-loop blocks are linear blocks in 
which each state has an additional loop to itself. A 

A

Keywords: hidden markov model (HMM), pair-hmm, 
profile-HMM, context-sensitive HMM (csHMM), profile-
csHMM, sequence analys.

Figure 1

Abstract- Hidden Markov models (HMMs) have been 
extensively used in biological sequence analysis. HMMs and 
their applications in a variety of problems in molecular biology.
The difficulty of using computational approaches to discover 
genes in DNA sequences is yet unsolved. gene prediction 
from within genomic DNA are far from being powerful enough 
to elucidate the gene structure completely. We develop a 
hidden Markov model (HMM) to represent the degeneracy 
features of splicing junction donor sites in eucaryotic genes. 
he HMM system is fully trained using an expectation 
maximization algorithm and the system performance is 
evaluated using the 10-way cross-validation method. he HMM 
system is fully trained using an expectation maximization 
algorithm and the system performance is evaluated using the 
10-way cross-validation method.

Dr. Suneel Pappala

https://bmcbioinformatics.biomedcentral.com/articles/10.1186/1471-2105-8-357#Fig1�
https://bmcbioinformatics.biomedcentral.com/articles/10.1186/1471-2105-8-357/figures/1�
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forward-jump block is a linear block where the first state 
is also connected to the last M states (with 1 
<= M <N). Zero blocks are empty blocks with no 
states: they can replace other block types during the GA 
procedure and thus allow the exploration of simpler 
topologies.

The self-loop and forward-jump blocks can be 
either tied (in the figures, tied blocks are shaded) or 
untied. When a block is tied all the emission and 
transition probabilities of states inside the block are 
equal. In the case of linear blocks we did not consider 
tying because tying a linear blocks is equivalent to a 
single-state self-loop block.

The various blocks can model different types of 
sequence fragments. A linear block can model a 
particular conserved sequence pattern. The self-loop 
block can model a sequence of any length, while the 

forward-jump block can be used to represent 
subsequences with varying length up to some fixed 
length. Initially, the blocks are fully linked to form HMM 
architectures. In this context, fully linked means that the 
end state of each block is connected to the starting 
states of all other blocks and itself. Each block is 
labelled with one of the three protein structure classes 
'H' (helix), 'E' (strand), or 'C' (coil). Figure 2 shows a 
simple example of HMM structure. The HMM structure is 
composed of 3 blocks. From the left it has blocks 
labelled with 'H','C' and 'E'. Each block also can be tied. 
After training, most of the transition probabilities are 
close to zero, resulting in a final structure that is typically 
much simpler than the fully connected HMM shown in 
the figure.

Three blocks are used in this model and all the 
blocks are fully connected to each other. The blocks are 
divided by dotted lines. The states in tied blocks are 
shaded in grey.

III. Genetic Operators for Block-HMM

Genetic algorithms evolve a population of 
solutions with genetic operators. Inside the genetic 
cycle, genetic operators select members of the 
population (called parents) and evolve them to produce 
new members (called children). New children after the 
genetic operators along with the remaining old members 
in a population are evaluated to calculate fitness. 
According to the fitness selection procedure select a 
number of members in a population for the next genetic 
cycle.

We used three genetic operators in Block-HMM: 
crossover, mutation and type-mutation. The number of 
blocks is kept fixed but the number of the states of an 
HMM can be changed by the genetic operators. 
Crossover swaps a number of blocks in two parents to 
create two children. The crossover points and the 
number of blocks are chosen randomly. Figure 3 shows 
an example of the crossover scheme. The last block of 
the first child crosses with the first block of the second 

child. To simplify the diagram, transitions between 
blocks are not shown here. The crossover operator 
enables HMMs to exchange states without breaking 
basic blocks. Several blocks can be chosen to be 
crossed, which allows GA to search broad area of 
solution space. Mutations can take place inside any 
block of the HMM. A forward-jump block can have 6 
different types of mutation, which are illustrated in 
figure 4. It can delete or insert.

b) An Example if an HMM Composed of Blocks 
Resulting from the Block-HMM Procedure

https://bmcbioinformatics.biomedcentral.com/articles/10.1186/1471-2105-8-357#Fig2�
https://bmcbioinformatics.biomedcentral.com/articles/10.1186/1471-2105-8-357#Fig3�
https://bmcbioinformatics.biomedcentral.com/articles/10.1186/1471-2105-8-357#Fig4�
https://bmcbioinformatics.biomedcentral.com/articles/10.1186/1471-2105-8-357/figures/2�
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a) Crossover in Block-HMM
Crossover swaps the HMM states without 

changing the properties of an individual HMM block. 

Here, the last block of the first child crosses with the first 
block of the second child. To simplify the diagram, 
transitions between blocks are not shown.

b) Mutation in Block-HMM
Six possible types of mutations from a 5-state 

forward-jump block: (a) a transition from the first to the 
fourth state is deleted (b) a transition from the first to the 
third state is added (c) the second or the third state is 
deleted (d) the fourth state is deleted (e) a state is 
added between the fourth and the fifth state (f) a state is 
added between the first and the fourth state.

In addition to changing the length of a block 
and its transitions, we also allow another form of 

mutation, called type-mutation, that changes the type or 
label of a block. Type-mutation to a zero block is also 
allowed (figure 5). When a type mutation transforms the 
type of a block, new transition probabilities are 
generated randomly. Self-loop and forward-jump blocks 
can type-mutate between tied and untied versions. Zero-
blocks can be type-mutated to any of the other block 
forms.

A forward jump block is type mutated (a) to a 
tied block (b) to a block with a different label (c) to a 
zero block (d) to a self loop block or a linear block.

E ran the GA that hybridize the parameter 
learning method with these genetic operators that train 

the structure of HMMs. The detailed description of the 
whole procedure is on Methods.

Figure 6 illustrates the structure of the best 
result of Block-HMMs. The simulation used 30 blocks, 

IV. Analysis of the Evolved HMM

Figure 3

Figure 4

Figure 5

Type-Mutation in Block-HMM

The Evolved Modela)

c)

https://bmcbioinformatics.biomedcentral.com/articles/10.1186/1471-2105-8-357#Fig5�
https://bmcbioinformatics.biomedcentral.com/articles/10.1186/1471-2105-8-357/figures/3�
https://bmcbioinformatics.biomedcentral.com/articles/10.1186/1471-2105-8-357/figures/4�
https://bmcbioinformatics.biomedcentral.com/articles/10.1186/1471-2105-8-357/figures/5�
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but the result shows only 26 blocks: the remaining 4 are 
zero blocks. Figure 7 shows the full HMM structure. 
Assigned with each state is one of the label of 3 states 
of secondary structure l ∈ {H, E, x}. It is composed of 22 
states for helix (H), 15 for β-strand (E), and 15 for coil (x) 

region. Each state emits a set of symbols of 20 amino 
acids according to the given probability. The full HMM 
structure is trained using 1662 sequences (see 
Methods).

The best HMM topology evolved using Block-
HMM. It is composed of 26 non-zero blocks and 52 
states. Transitions between blocks are not shown here 
(including the transition from a block to itself). On each 
state a label is assigned ('H' for helices, 'E' for β-strands 
and 'x' for coils). Helix states are red colored and β-
strand states are blue colored.
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