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Abstract- Recent advances in digital imaging, e.g., increased number of pixels captured, have 
meant that the volume of data to be processed and analyzed from these images has also 
increased. Deep learning algorithms are state-of-the-art for analyzing such images, given their 
high accuracy when trained with a large data volume of data. Nevertheless, such analysis 
requires considerable computational power, making such algorithms time- and resource-
demanding. Such high demands can be met by using third-party cloud service providers. 
However, analyzing medical images using such services raises several legal and privacy 
challenges and do not necessarily provide real-time results. This paper provides a computing 
architecture that locally and in parallel can analyze medical images in real-time using deep 
learning thus avoiding the legal and privacy challenges stemming from uploading data to a third-
party cloud provider. To make local image processing efficient on modern multi-core processors, 
we utilize parallel execution to offset the resourceintensive demands of deep neural networks. We 
focus on a specific medical-industrial case study, namely the quantifying of blood vessels in 
microcirculation images for which we have developed a working system.  
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Abstract- Recent advances in digital imaging, e.g., increased 
number of pixels captured, have meant that the volume of data 
to be processed and analyzed from these images has also 
increased. Deep learning algorithms are state-of-the-art for 
analyzing such images, given their high accuracy when trained 
with a large data volume of data. Nevertheless, such analysis 
requires considerable computational power, making such 
algorithms time- and resource-demanding. Such high 
demands can be met by using third-party cloud service 
providers. However, analyzing medical images using such 
services raises several legal and privacy challenges and do 
not necessarily provide real-time results. This paper provides a 
computing architecture that locally and in parallel can analyze 
medical images in real-time using deep learning thus avoiding 
the legal and privacy challenges stemming from uploading 
data to a third-party cloud provider. To make local image 
processing efficient on modern multi-core processors, we 
utilize parallel execution to offset the resourceintensive 
demands of deep neural networks. We focus on a specific 
medical-industrial case study, namely the quantifying of blood 
vessels in microcirculation images for which we have 
developed a working system. It is currently used in an 
industrial, clinical research setting as part of an e-health 
application. Our results show that our system is approximately 
78% faster than its serial system counterpart and 12% faster 
than a master-slave parallel system architecture. 

I. Introduction 

arly attempts to address the problem of running 
demanding computational algorithms in tightly 
constrained environments emerged in the 1980s 

[1]. Performance limitations became apparent with the 
rise of processing big data using deep learning (DL) 
techniques because DL requires large amounts of 
computational  power [2], [3]. Such  limitations  included 
the under-utilization of the available computing 
resources to execute processes introducing undesirable 
delays [4]. These limitations are still prominent when 
real-time results are desired in tightly constrained 
environments (i.e., clinical environments). Furthermore, 
using third-party cloud services to rent computing 
resources is risky due to General Data Protection 
Regulation (GDPR) [5]. These regulations effectively limit 
clinicians to local computing resources, such as laptops 
and PCs approved for use at hospitals. 
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This paper aims to design, implement, and 
evaluate a software package that can analyze medical 
images using deep learning in a local environment as to 
mitigate the risk of breaching GDPR rules while still 
getting results in real-time. We focus on a specific 
industrial, medical case study: the quantification of 
blood vessels in microcirculation images captured by 
using in-clinic, hand-held cameras with microscope 
lenses. The quantified value is called capillary density or 
blood vessel density. This value is of high clinical 
relevance because the fluctuation of this value can be 
used as an early marker to indicate an organ failure, and 
the severity of the change might predict the chances of 
the patient surviving [6]–[12]. 

The requirements of our system were 
established by interviewing a set of medical doctors and 
surgeons who spent several years in the 
microcirculation analysis field (associated with ODI 
Medical AS, a MedTech company responsible for the e-
health industrial application). The main requirements for 
a production-grade system for the quantification of 
blood vessels analysis captured by a real-time camera 
are: 

1. The system must be able to analyze a 
microcirculation image (1920x1080) in real-time 
(one second or less); 

2. The system must have low power consumption so 
that it can be used in battery-powered devices in 
hospitals; and 

3. The system must be built on top of a popular, widely 
used programming language and framework (e.g., 
Python and Tensorflow) running on standard 
hardware. 

To the best of our knowledge, no previous work 
on microcirculation analysis reported using parallel 
frameworks to calculate the capillary density in under 1 
second for a frame with a resolution of 1920x1080 on a 
CPU using deep learning with an accuracy of 85%. The 
medical doctors proposed this accuracy value to 
outperform the accuracy achievable by a trained 
clinician. Previous systems in the literature that achieve 

a comparable or higher accuracy needed a GPU that is 
not available in typical low-power computers approved 
for use in hospitals. The developed system runs in an 
industrial, clinical environment on a standard low cost 
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computer utilizing all the available resources and meets 
the requirements listed above. This paper does not 
focus on developing the deep learning algorithm but 
rather the deployment of the deep learning algorithm. 
The algorithm used in this paper achieves an accuracy 
of 85%, and is described in a previous paper [13]. 

In Section II, we present the work related to our 
paper including a literature survey on the relevant 
parallel frameworks and existing systems that were built 
to analyze micro-1 circulation images. In Section III, we 
present the proposed architecture for our package 
along with two baseline systems that we used to 
benchmark our proposed architecture against. In 
Section IV, we present how we implemented our system. 
In Section V, we present the evaluation criteria that have 
been used to evaluate our system and benchmark our 
proposed system against a baseline serial system and a 
baseline parallel system with the presented criteria and 
discuss our results. In Section VI, we present our 
conclusion. 

II. Related Work 

This section presents the literature review on 
current parallel frameworks and existing systems built to 
calculate capillary density. 

a) Parallel Frameworks 
Hadoop [14] gained recognition in 2004 and 

provides a framework for distributed storage and the 
processing of big data. It splits large blocks of data into 
a Hadoop Distributed File System (HDFS) which is 
based on Google’s file system (GFS) and stores data 
across clusters [15], [16]. HDFS uses data locality, 
allowing clusters and nodes to manipulate data, making 
it faster than conventional high-performance computing 
[17]. 

MapReduce then processes the data stored on 
HDFS [18]. MapReduce has a master job tracker and 
one per cluster to schedule jobs, manage resources, 
and re-execute processes when a node fails [17]. HDFS 
and MapReduce are two modules built to store and 
process big data reliably. However, the main drawback 
of Hadoop is that it cannot deal with big data real-time 
stream processing; therefore, Apache Spark was 
introduced [19] was introduced in 2010. 

Some benchmarks show that Spark is three 
times faster than Hadoop [20]. This increase is because 
Spark can load and process data using RAM instead of 
the two-stage access paradigm introduced by 
MapReduce [19]. Spark outshines MapReduce when it 
comes to real-time processing [21], [22]. Furthermore, 
the ease of programming on Spark with Scala [23], Java 
[24] and Python [22] makes it relatively easy to adapt 
instead of MapReduce, which can be programmed only 
in Java. Spark provides a unified processing system 
instead of several isolated applications that do not share 
the state amongst each other [25]. Although Spark was 

designed to outperform MapReduce processing, its the 
fundamental limitation is the complexity involving 
asynchronous execution and the compatibility issues 
introduced when integrating it into the deep learning 
lifecycle [26]. 

Dask [27] was introduced in 2014 and is a 
parallel computing library that uses dynamic task 
scheduling to leverage multi-core processors and High-
Performance Computing (HPC) clusters. Instead of 
loading all data into RAM, Dask pulls data into RAM in 
chunks and throws away intermediate values as soon as 
possible, freeing more memory to process more data 
[27]. While Spark can be seen as an extension to the 
MapReduce paradigm, Dask is a generic task 
scheduling system that handles complex dimensional 
arrays [28]–[30]. Both Dask and Spark leverage acyclic 
graphs, but the map stage of Dask can represent more 
complex algorithms than Spark [31]. Thus, Dask can 
parallelize sophisticated algorithms without excess 
memory usage [29]. Moreover, Spark does not natively 
support multi-dimensional arrays as Dask does [30], 
[32]. This advantage makes Dask lightweight and 
smaller than Spark, and Dask integrates natively with the 
numeric Python ecosystem. However, Dask is not fully 
compatible with TensorFlow, and deep learning 
algorithms as the framework focuses on Data science 
libraries like Pandas and Numpy. 

Orleans [33] is an actor system that provides 
highly available concurrent distributed systems. The 
main drawback is how the system reacts to a data 
failure event. Developers must manually create 
checkpoint actor states and intermediate responses to 
restore stateful actors [34]. While this does not affect the 
performance, it can bring some overhead when 
developing a system to handle failure events. 

Tensorflow [35] is an ecosystem of machine 
learning and deep learning tools that leverage CPUs 
and GPUs while training. However, it provides limited 
support when deploying it to serve users because it 
does not fully support responses when a task is 
completed or when a fault is detected. One way to 
perform this activity is to wrap the Tensorflow Model in a 
flask service and serve the model [36]. However, this 
becomes unmanageable when scaling with different 
models. Tensorflow serving [37] was introduced to 
deploy models in production environments but has to be 
used in conjunction with traditional web servers, which 
introduces additional latency. 

With the introduction of deep learning 
techniques [38], which consists of several millions of 
parameters to compute, wrapping deep learning models 
with traditional servers is no longer sufficient. Compared 
to traditional models, deep learning models are 
computationally intensive and have a response time of 
tens of a millisecond or greater [39]; thus, there is a 
need for efficient parallelizing to reduce the response 
time. 
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Frameworks such as MapReduce [17] and 
Spark [40] are not suitable for models serving in real-
time because they were designed and built for batch 
processing. Furthermore, they are not suitable for large 
numbers of small transactions because of the 
considerable time overhead that they require for 
instantiation. Dask [27] and Tensorflow [35] provide a 
complex and very little support for model serving [26]. 

It is possible to set up different parts of different 
frameworks together to have a system that can serve a 
deep learning model. However, the compatibility and 
maintenance of these different frameworks increase the 
technical complexity. Unfortunately, deploying deep 

learning models into production is still not a 
straightforward endeavor. 

b) Existing Microcirculation Analysis Systems 
This section presents the current work on 

systems that calculate capillary density from 
microcirculation images. 

As briefly mentioned at the end of the 
introduction, none of the existing works mentioned on 
microcirculation analysis reported using parallel 
frameworks to calculate the capillary 
 

 

Fig. 1: The diagram shows the code encapsulated in a core on a computer. This code is replicated across each core 
to achieve parallelism. This code calculates the capillary density from a microcirculation image. The architecture 
consists of two parts: i) first determining the RoI using traditional computer vision algorithms and ii) then using deep 
learning to classify if the RoI contains a capillary 

density in under 1 second for a frame with a resolution 
of 1920x1080 on a CPU using deep learning with an 
accuracy of 85%. Those who exceeded this accuracy 
used a GPU which is not readily available in a clinical 
environment. 

Cynthia Cheng et al. [41] takes a three-step 
approach to quantify capillary density. First, they apply 
an image enhancement process to darken the 
capillaries and lighten the background. They then flatten 
the image using 2D filters and raise the image’s 
contrast. The image is then despeckled using a 7x7 
filter. They then adjust the histogram of the image to a 
best-fit model The second step involves manually 
selecting the capillary as a target object. They then 
select the background as a reference. The algorithm 
then selects the rest of the capillaries and excludes the 
images. A macro is then created from this process, 
which can be applied to other images with similar 
characteristics. As described, this involves several 
steps, including the manual user intervention; therefore 
cannot provide results in less than 1 second. 

A. Tama et al. [42] uses binarization followed by 
skeleton extraction and segmentation to quantify the 
capillaries. The first step involves extracting a reference 

image. The image has to be then manually cropped by 
the user. The green channel is then extracted from the 
image to have the highest probability of vessels in it. 
They then apply a top-hat transform to remove 
unevenness in the background. They then apply the 
Wiener filtering, a lowpass filter followed by Gaussian 
smoothing. They then apply Otsu thresholding to 
segment the image from the background and apply a 
skeleton extraction method to quantify the capillary. The 
authors do not report the speed needed to perform 
these steps. 

Sherry G.Clendenon et al. [43] uses a manual 
method to segment the microvascular structure. The 
authors do not report the speed or accuracy of their 
method. 

Pavle Prentǎ sic et al. [44] used a custom 
neural network to segment the foveal microvasculature. 
Their neural network consists of three Convolutional 
Neural Network (CNN) blocks coupled with max-pooling 
and a dropout layer followed by two dense layers. They 
reported accuracy of 82.4% at 2 minutes. 

R Nivedha et al. [45] used a non-linear Support 
Vector Machine [46] to classify images. They first started 
by extracting the green channel since it contains the 
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relevant information to detect blood vessels. They then 
performed manual cropping and used adaptive 
histogram equalization to improve the image’s contrast. 
They then used image enhancement to segment the 
image using a Gaussian filter followed by OTSU 
thresholding. They then used PrincipalComponent 
Analysis(PCA) to extract the features. A Support Vector 
Machine then performed the classification. They 
reported accuracy of 83.3% but not the time needed for 
automated analysis. 

 

 
 

 

ending with results. They reported an overall accuracy of 
83.3% but not the time needed for automated analysis. 
In their next paper [48], they experimented with different 
types of machine learning techniques, including 
Random Forests Classifier, Multinomial Logistic 
Regression, and CNNs. However, they do not report the 
timing needed for classifying the blood vessels. 

Perikumar Java et al. [49] used a custom form 
of ResNet18 [50] to quantify capillaries. They used a 10-
layer architecture and resized the images to input 
224x224x3. They 
 

(a)                                                                                (b)  

 

                                

(c)

                                                                                     

(d)
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KV Suma et al. [47] used Fuzzy Logic Kernels to 
classify the images. They started by Fuzzification of the 
input, followed by the Application of the Fuzzy operator, 
then aggregating the consequents across the rules, 



 

                                     (e)                                                                                        (f) 

Fig. 2: (a) This presents a sample of a microcirculation image that is taken as an input to the system (b) The 
background image calculated using a Gaussian Segmentation Algorithm (c) The segmented area formed by 
calculating the difference between the original image and the background (d) The Structural Similarity Index 
calculated from the original frame and the background image (e) The modified image with the capillary area 
highlighted in black encapsulated within the green bounding box (f) The original image with the capillary area 
highlighted in black encapsulated within the a bounding box 

applied the Adam optimizer and cross-entropy as loss 
metrics. They trained the NVIDIA GeForce GTX Titan X 
algorithm and used the PyTorch library. They reported 
accuracy of 88%. However, such an algorithm is not 
suitable for a clinical environment due to the high-end 
GPU required to run it. 

F Ye et al. [51] utilized the concept of transfer 
learning and used the Inception Single Shot Multibox 
Detector (SSD) [52] to build their neural network. They 
build their system using Python and Tensorflow with an 
image resolution of 744 × 482 pixels. They applied data 
augmentation to the image to increase the number of 
datasets. The SSD architecture requires GPU to 
produce results in real-time, making it unsuitable to be 
used in a clinical requirement with only CPUs available. 

YS Hariyani et al. [53] used U-net architecture 
combined with a dual attention module. They introduced 
a new method called DA-CapNet, which can analyze 
microcirculation images. It consists of the encoder and 
decoder parts. The encoder downsamples the 
dimension of the information in an image while 
increasing the number of channels. This step increases 
the spatial information dimension. They then combine it 
with a dual attention module which increases the 
accuracy. The dual attention uses the squeeze and 
excitation process to extract the blood vessels in the 
image. The authors resized the image to 256×256 to 
reduce the processing time and used a Gaussian 
threshold method with a median blurring filter of kernel 
size five. The authors reported accuracy of 64% but not 
the time taken for analyses. 

G Dai et al. [54] used a custom neural network 
similar to Pavle Prentǎsic et al. for segmentation. 
However, G Dai et al. used five CNN blocks instead of 
three. Hang-Chan Jo et al. [55] used a Attention-UNet 
architecture [56]. Their method starts by using the 

CLAHE method and computes several histograms. They 
then apply the Gamma correction and pass it to the 
deep neural network. The reported accuracy was 
73.20%, but not the time is taken for analysis. 

III. Proposed System 

This section presents the system’s architecture 
to analyze medical images in parallel, specifically, to 
calculate the capillary density in a microcirculation 
image. We start by presenting the DL part (which is 
based on OpenCV [57] and Tensorflow [35]) and the 
architecture of our system’s parallel part (which is based 
on Ray [58]). 

a) The Deep Learning Algorithm part of the Proposed 
System 

The outline of the deep learning architecture is 
shown in Figure 1. It consists of two main parts: i) 
determining the regions of interest (RoIs) where 
capillaries might exist, and ii) using a CNN for predicting 
whether these RoIs contain a capillary or not. 

The original frame is shown in Figure 2a. The 
position of the capillaries is determined by first removing 
the background from the original frame using a 
Gaussian Mixture-based Background/Foreground 
Segmentation Algorithm [59]. The background removed 
is shown in Figure 2b. The structural similarity index 
measure (SSIM) [60], [61] is applied between the 
original frame shown in Figure 2a and background 
image shown in Figure 2b resulting in Figure 2c and 
Figure 2d. Bounding boxes are formed around the red 
areas using OpenCV contour method [62]. These 
bounding boxes are then passed to the CNN for 
prediction. The RoIs that have been predicted as 
capillaries have a green bounding box around each one 
of them along with a black line to highlight the shape of 
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the capillary. This is shown in Figure 2e and the original 
image in Figure 2f. The number of pixels within the 
encapsulated black contour line is summed up and 
divided by the total number of pixels resulting in the 
value of the capillary density. 

Bounding boxes are formed around the 
predicted bounding boxes using the OpenCV contour 
method [62]. These bounding boxes are then passed to 
the CNN for prediction. The RoIs predicted as capillaries 
have a green bounding box around them and a black 
line to highlight the capillary shape. This is shown in 
Figure 2c and Figure 2d. The number of pixels within the 
encapsulated black contour line is summed 

 
Fig. 3: A Breakdown of the Building Blocks Used to Built 

the Proposed System 
 

 

Fig. 4: The data flow view of how the driver process 
coordinates with the driver process and the workers 

up and divided by the total number of pixels resulting in 
the value of the capillary density. 

The CNN consisted of three blocks of Conv2D. 
The first Conv2D consisted of 32 filters, the second 
Conv2D consisted of 64 filters, and the third Conv2D 
consisted of 128 filters with a block of Maxpooling2D. All 
the Conv2D blocks have a filter of 3x3 shape. Two 
dense layers of 128 neurons follow the Conv2D blocks, 
64 neurons, and two neurons. The Rectified Linear Unit 
(ReLu) [63] activation function is used for the whole 
network except the last neuron layer, which used a 
softmax activation function [64]. This network has been 

trained on 11,000 images of capillaries captured by 
trained professionals in a clinical setting1

b) The Parallel System part of the Proposed System 

1. The details 
and the specificity of the algorithms and data used to 
train the algorithm can be found in a previous paper by 
the same authors [13]. 

This architecture has two types of nodes: the 
worker nodes and a head node. A worker node consists 
of the worker process(es), the scheduler, and the 
object-store. A worker node and a head node anatomy 
are shown in Figure 3 and the data flow within the 
components is shown in Figure 4. 

A worker process encapsulates the code to be 
executed and is responsible for task submission and 
execution of tasks. In our system, the worker node 
encapsulates the deep learning algorithms. It receives 
the image to be analyzed and replies whether this image 
contains a capillary (blood vessel) or not. The scheduler 
is the resource manager of the worker node. The object 
store stores and transfers object larger than 100KB. The 
head node has a Global Control Store (GCS) and a 
driver process. The GCS is a key-value server that 
contains objects, actors, and tasks. The driver process 
submits tasks to the scheduler and keeps track of the 
objects created with all the nodes. When the code is 
initiated, an instance of a head node is created. The 
maximum number of worker processes within this head 
node is based on the number of parallel modules in the 
architecture instantiated and the maximum number of 
cores. Each worker performs both stages: suggesting 
RoIs and detecting capillaries using the CNN loaded. 
Each worker returns a single object that contains the 
frame’s density value and is stored in the object-store. 
The code execution of this architecture is scheduled 
using the scheduler, and the tasks are performed over a 
general-purpose Remote Procedure call to the worker 
processes on top of the Python interpreter. The 
scheduler then communicates the results via an object 
transfer protocol. For error handling and fault tolerance, 
the scheduler retries executing it on the worker 
processor, if a task fails due to a worker process ending 
unexpectedly. 

Thus, one of the main differences between the 
proposed system and the baseline parallel system is 
that the former uses a driver process to manage the 
workers while the latter uses a controller and a router to 
manage the worker’s tasks. A baseline parallel system 
uses some controller and router to prevent the worker’s 
potential overloading with tasks, which can cause it to 
fail. However, these two components (controller and 
router) can occupy up to two cores for the management 
of the workers without performing any code execution. 
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While the proposed system does not reserve any cores 
to manage the drivers but rather re-executes the code if 
a worker fails [65]. 

When the code is instantiated in our proposed 
system, the worker node loads the CNN as a Tensorflow 
model. Each worker occupies a logical processor, 
thread, or core, depending on the CPU architecture; we 
assume it is a core and instantiate a worker per core. As 
the number of cores increased, the number of images 
processed in parallel increased with the number of 
cores. 

We have shown that by combining the deep 
neural network part with the parallel part, we can 
process several images at the same time, suggest RoIs 
and predict whether the bounding boxes have a 
capillary or not. Furthermore, the number of frames 
processed in parallel is determined by the maximum 
number of cores available or the pre-defined the value 
inserted by the user (assuming it does exceed the 
number of cores available). 

IV. Implementation 

Many programming languages can implement a 
parallel processing framework. Python is the fastest-
growing programming language [66], [67] and the 
preferred programming language for deep learning with 
Tensorflow [68], [69]. This popularity stems from its 
design philosophy, where it emphasizes readability and 
simplicity [66]. Moreover, the number of libraries, 
various tools, and speedily expanding the industrial 
community supporting Python made the language 
attractive [70]. 

Thus, the proposed package was built on top of 
Python 3.7 [22], OpenCV 4.5.2[57], Scikit-learn 0.18[71], 
Ray 1.2[26] and Tensorflow 2.3[35]. The coding and 
evaluation were done in Pycharm Professional 2021.1 
on a Windows 10 operating system. The system can be 
installed, modified, and used by following the 
instructions in the readme file on the Github repository 
(www.github.com/magedhelmy1/CCGRID 2022 parallel 
system for image analysis). 

To use the system, the user can clone the 
package from the Github repository and import it in their 
Python environment. 

V. Evaluation and Discussion 

In this section, we compare the baseline serial 
architecture, the baseline parallel architecture, and the 
proposed system with each other using the following 
three metrics: execution time, speedup, and CPU 
usage. We show that the proposed Python system is 
78% faster than the serial system and 12% faster than 
the baseline parallel architecture. These three metrics 
are standardized markers to quantify a system 
performance [72]. We use these three metrics to 
compare our proposed approach to a serial and parallel 

system with the same deep neural network. We show 
that the proposed system meets the requirements 
mentioned in Section I and supersedes both the 
baseline serial system and the baseline parallel system 
in execution time, speedup, and CPU usage. The 
proposed system, serial counterpart, and parallel 
counterpart had the same CNN model and 
microcirculation images. We evaluated the three 
systems by taking the average time to calculate capillary 
density per image for a set of 100 images, which is an 
arbitrary number we chose to reduce the margin of error 
and ensure our calculations’ accuracy. 

a) Execution Time 
To calculate how much one architecture was 

faster compared to the other, we used Equation 1, 
where ET denotes execution time. 
 

  (1) 

 
 

 

  

1.
 

Baseline serial architecture — one second per 
frame;

 

2.
 

Baseline parallel architecture — 0.25s per frame; 
and 

 

3.
 

The proposed system — 0.22s per frame. The 
average

 

 

 
 

 

SlowerET − FasterET

SlowerET
= %Faster
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Fig. 5: The execution time of the proposed system 
against the baseline serial system and the baseline 
parallel system

The execution time metric measures the 
average time needed to calculate a single image’s 
capillary density. We used 100 images in each 
architecture to reduce the measurement error margin. 
The execution time of each architecture is the following:



 

 
 

 

values were calculated by measuring the time to 
process a frame in a set of 100 microcirculation images. 
The execution time of the three architectures is 
presented in Figure 5. 

In short, our results show that our proposed 
system is 12% faster than the baseline parallel 
architecture and 78% faster than its baseline serial 
architecture. 

b) Speedup 
This metric calculates the speed gain by the 

system as the number of cores increases. For the 
baseline serial architecture, the execution time is one 
second regardless of the number of cores available 
(indicating that the system is not scalable). The average 
execution time of processing one frame for the baseline 
parallel system and the proposed system is shown in 
Figure 6. 

 

Fig. 7: This graph shows the number of cores used by 
each architecture to process a frame. The more used at 
any instance the better since this shows how efficient 
the system is at utilizing all the resources available to it. 

The baseline parallel system processed a frame 
on average in 0.56 seconds with four cores, while the 
proposed system processed a frame in 0.32 seconds. 
The proposed system processes a frame 68% faster 
than the baseline serial architecture and 43% faster 
than the baseline parallel architecture. As the number of 
cores doubles, the proposed system gains an additional 

31% during the baseline parallel architecture gains an 

additional 55%. In both cases, the proposed system 
outperforms the baseline parallel architecture. One of 
the main reasons the proposed system outperformed a 
baseline parallel system with a master-slave architecture 
is that a masterslave architecture can reserve up to two 
cores to manage the other parallel cores. In contrast, 
the proposed system does not reserve any cores 
beforehand. In this way, we free up the computer cores 
to focus on processing images rather than purely 
handling requests. Thus, the proposed system gains 
more speedup than the baseline parallel system. We 
can conclude that the proposed system has the 
recommended architecture for running deep neural 
networks on a single machine. 

c) System Resource Utilization - CPU Usage 
This metric measures the number of cores used 

to process the medical images using deep learning. 
With the baseline serial architecture, only one 

cores is utilized per frame due to the Python Global 
Interpreter Lock’s limitation. With the baseline parallel 
architecture, it is always two less than the available 
number of cores because it always reserves these two 
for the management of the parallel workers. Each cores 
in the proposed system is allocated a task where each 
task processes a frame. Thus, the proposed system is 
most efficient on a single machine with a multi-core. A 
graph showing the number of cores used by each 
architecture is shown in Figure 7. 

d) System Generalization 
Our system functions and classes were built 

using modular design patterns. This design philosophy 
means that the user can replace the DL part of our 
system with their algorithm by simply pointing the 
function in our code to their algorithm. The details of this 
are highlighted in the README file in the GitHub 
repository. Thus, our package can be generalized to 
analyze images using a DL model of the user’s choice in 
parallel. The system will automatically scale to the 
number of cores available without the user having to 
worry about experiencing issues with dependency, 
integration, resource utilization, and speedup. 

VI. Conclusion 
This paper presented a software package that 

can analyze medical images using DL locally. Our 
proposed system can efficiently use all local resources 
because it utilizes parallel execution to offset the 
resource-intensive demands of using a deep neural 
network. The proposed system is of high clinical 
relevance because monitoring changes in capillary 
density can be used to locate early markers indicating 
organ failure. The severity of the change in capillary 
density might predict whether or not the patient survives. 
Furthermore, clinical researchers do not risk uploading 
patient data to a third-party cloud provider to use a deep 
neural network to automatically analyze their images. 

∼

∼

∼
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Fig. 6: This graph shows the speedup of the baseline 
parallel system and the proposed system as the number 
of cores increases



Our experiments show that our system provides 
an optimal design for using deep learning models 
running on a multicore single machine for image 
analysis. We benchmarked our system with a baseline 
serial architecture and a baseline parallel architecture 
using standardized evaluation metrics: execution time, 
speedup, and CPU usage. These metrics are used to 
calculate the performance of a system. Our results 
indicate that the proposed system is approximately 78% 
faster than its baseline serial system counterpart and 
12% faster than a baseline parallel system. 

As demonstrated by our evaluation criteria, our 
system exhibits an acceptable industrial performance 
compared to the other two presented baseline systems. 
This argument is further strengthened because our 
system is currently used as a product in an industrial 
setting to calculate and track capillary changes in 
patients with pancreatitis, COVID-19, and acute heart 
diseases. The clinical researchers welcomed using this 
system to analyze their medical images locally. This 
acceptance was mainly due to the system reducing 
analysis time and removing the risks of uploading the 
data to a thirdparty cloud provider. 

Our code has been made public as an open-
source project in a GitHub repository for testing and 
usage by other clinical users. The users can import the 
package into their Python environment and immediately 
start using it. Moreover, users who can clone the code 
from GitHub can swap our algorithm with theirs, 
showing that our architecture can be generalized and 
utilized in the context of other use cases that require 
image analysis running on a CPU in near real-time. 
Thus, the generality of our approach can be justified by 
several other use cases that require image analysis. 
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