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Abstract- The purpose of this work is to apply techniques to estimate the Effective Bandwidth, 
from traffic traces, for the Generalized Markov Fluid Model in data networks. This model is 
assumed because it is versatile in describing traffic fluctuations. The concept of Effective 
Bandwidth proposed by Kelly is used to measure the channel occupancy of each source. Since 
the estimation techniques we will use require prior knowledge of the number of clustering 
clusters, the Silhouette algorithm is used as a first step to determine the number of classes of the 
modulating chain involved in the model. Using that optimal number of clusters, the Kernel 
Estimation and Gaussian Mixture Models techniques are used to estimate the model parameters. 
After that, the performance of the proposed methods is analyzed using simulated traffic traces 
generated by Markov Chain Monte Carlo algorithms.

Index Terms: 
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Comparison of Effective Bandwidth Estimation 
Methods for Data Networks

Abstract- The purpose of this work is to apply techniques to 
estimate the Effective Bandwidth, from traffic traces, for the 
Generalized Markov Fluid Model in data networks. This model 
is assumed because it is versatile in describing traffic 
fluctuations. The concept of Effective Bandwidth proposed by 
Kelly is used to measure the channel occupancy of each 
source. Since the estimation techniques we will use require 
prior knowledge of the number of clustering clusters, the 
Silhouette algorithm is used as a first step to determine the 
number of classes of the modulating chain involved in the 
model. Using that optimal number of clusters, the Kernel 
Estimation and Gaussian Mixture Models techniques are used 
to estimate the model parameters. After that, the performance 
of the proposed methods is analyzed using simulated traffic 
traces generated by Markov Chain Monte Carlo algorithms.
Index Terms: effective bandwidth; markov fluid model; 
parameter estimation; data networking.

I. Introduction

HEN working with several aggregated services 
in a telecommunications network, we must 
resort to a digital network of integrated 

services. Integration means that the network can carry 
many types of information, such as voice, video, and 
data, all in digital form, using a single infrastructure. The 
general problem in a multiplexing system is that 
resources are shared by a set of heterogeneous 
sources. Multiplexing poses a mathematical and 
statistical problem: estimating the resource 
requirements of a font or set of fonts and, as sources 
are variable, statistical gain is to be expected. The 
different requirements of each service during the 
connection can be explored by statistical multiplexing.
Since the notion of Effective Bandwidth (EB) introduced 
by Kelly in 1996 [4], the development of statistical tools 
that allow finding expressions to estimate the probability 
of loss in a link has emerged strongly.

The problem with multiplexing is that the 
probability of many sources deciding to dispatch the 
maximum rate, in which case there would be an 
overflow, is not zero. Admission control mechanisms 
must be in place to accept a new connection, which 
minimizes the effects of data loss while maintaining the
quality of service (QoS) for both current and future 
sources. Therefore, it will be essential to have 
mathematical models that describe the behavior of the 

sources. Traffic modelingin network services is 
necessary in order to dimension their components and 
evaluate their performance. Traffic models can be used 
both to find the appropriate descriptors that characterize 
the service, and facilitate management tasks, such as 
the establishing of control admission criteria (CAC). In
particular, we are interested in applying estimation 
techniques from the traffic traces of a data network to 
monitor and predict network performance so that more 
opportune and effective control decisions can be made. 
This paper is structured as follows: Section II introduces 
the Generalized Markov Fluid Model and provides an 
expression to determine the EB for this model. This tool 
is used to measure the channel occupancy of each 
source. Section III studies the kernel estimation
techniques and the Gaussian mixture model, to use 
these tools to estimate the EB for our model. Section IV 
presents the parameters of the simulated model and the 
estimation methods of the EB of the GMFM from traces. 
A comparison of the estimation methods is presented in 
section V, and conclusions are drawn in Section VI, 
along with some considerations for future work.

II. Traffic Description

a) The Model
Modulated Markovian models have been 

developed for more than two decades. They have been 
especially useful for modeling, with relative accuracy, 
many real data sources because they can capture the 
temporal correlation of the data. These processes are 
characterized by a set of states, which form a Markov 
chain, and the transition times. In this work, we use the 
Generalized Markov Fluid Model, introduced in [1], due 
to its properties.

This model is modulated by a continuous-time,
homogeneous and irreducible Markov chain. In each
state of the chain, the generation rate is a random 
variable, distributed according to a probability law, 
depending on the state, that does not change during the 
time interval in which the Markov chain is in that state.

The interpretation of the model is that each 
state in the chain is identified as the activity performed 
by a user, such as chatting or videoconferencing. 
Hence, a sudden change in transfer rate reports a 
change of state in the chain. Within a state, the data 
transfer rate assumes values that depend specifically on 
that activity, according to some probability distribution.

W
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b) The Effective Bandwidth
Multiplexing variable rate sources on a link 

result in reserving for each source a capacity more 
significant than the average transmission rate, which 
would be a very optimistic measure, but less than the 
maximum transmission rate, which would be a 
pessimistic measure and lead to a waste of resources. 
For this purpose, the EB defined by F. Kelly in [4] is a 
valuable and realistic measure of channel occupancy.

To estimate EB for a given GMFM from traffic 
traces, formulas of the type obtained by Kesidis, 
Walrand, and Chang [5] were obtained.

(1)

where 1 is a column vector with all entries equal to 1, π
and Q are the invariant distribution and the infinitesimal 
generator for the modulating chain, respectively. H is a 
diagonal matrix whose dimension is equal to the number 
of states of the chain and whose non-zero elements are 
the first moments, , of the law governing the 
generation rate in state i.

This expression provides a way to estimate the 
EB from traffic traces. Estimators of the infinitesimal 
generator of the modulator chain, its invariant 
distribution, and the average transfer rate, and their 
properties can be found in [1].

III. Estimation Methods

In this section, the estimators ˆ Q, Ĥ , and π̂ 
of the parameters involved in (1) are calculated using 
different techniques.

a) Kernel Density Estimation

(2)

where h > 0 is a smoothing parameter, and K is the
kernel function which is non-negative, bounded, real-
valued, unimodal, symmetric around 0, and its 
integration is 1.

It is possible to choose different types of 
functions for the K-kernel. We choose to work with 
Gaussian kernels. The smoothing parameter h must 
tends slowly to zero; this means that h →0, nh → ∞  to 
ensure that ˆ tends to the true density f. The window 
size parameter h is an essential aspect of these 
techniques, as seen in [3]. Density estimation will be 
smoother the larger the window. The peaks are 
associated with the states of the chain, if they are close 

together, a “large” h could lead to merging close peaks 
and drawing incorrect conclusions, but a “small” h could 
show too many peaks leading to spurious maxima.

The invariant distribution of the modulate chain 
was calculated using a suitable window size in (2). With 
the number of peaks, we estimate the number of states 
of the chain, because it is a multimodal density. The 
values where the maxima are reached represent the 
average sending rate in each state. We estimate the 
range of dispatch values associated with each state, 
with the values of the minima adjacent to each 
maximum. Next, with the area under the density, within 
each range, we estimate the probability of each state 

.
Thus, π can be reconstructed because both 

spatial and temporal behavior converge at the GMFM, 
as seen in [3].

b) Gaussian Mixture Model
In the statistical context, we can define a 

mixture model as a probabilistic model to represent the 
incidence of subpopulations within the same population. 
For this reason, they are helpful for estimating the 
invariant probability of the modulate chain and the 
average dispatch rates in each state.

As the Gaussian distribution is fitted to model 
the distribution of the dispatch rate in each case, we will 
use Gaussian Mixture Models (GMM). These models are 
an example of a parametric probability density function 
which can be represented as a weighted sum of all 
Gaussian component densities.

Let us assume that there are k clusters. 
Equation that defines a Gaussian Mixture is

Each Gaussian explains the data contained in 
every single cluster, and the mixing coefficients are 
themselves probabilities and must satisfy the following 
condition

To determine the optimal values for these, we 
need to establish the maximum likelihood of the model. 
A general technique for finding maximum likelihood 
estimators in these models is the Expectation-
Maximization, or simply the EM algorithm. This is widely 
used for optimization problems where the objective 
function has complexities, such as the one we have just 
found for the GMM case.

To apply this iterative process, we must initialize 
the parameters of our model θ = {π, , Σ}, with some 
value. In our case, we use the results obtained by a 
previous K-Means algorithm as a good starting point for 
our algorithm. EM algorithm consists of two steps; the 
first one finds an expression for the expected value of 

α(s, t) =
1

st
log {π exp [(Q+ sH) t]1} ,

f̂(x) =
1

nh

n∑
i=1

K

(
x−Xi

h

)
,

π(x) =

k∑
i=1

πiN(x|µi,Σi).

k∑
i=1

πi = 1.

Let us consider {𝑋𝑋𝑡𝑡}, 𝑡𝑡 ≥ 0  a GMFM. Then the 
effective bandwidth has the following expression

µi

πi

i

µ

One of the most common methods for 
nonparametric estimation of a density is the well-known 
kernel estimator. Given a simple random sample X1, 
...,Xn of the random variable of interest X with density f, 
the expression of the estimator is

f

,
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maximizes that expectation over the parameter space. 
More details about these algorithms are discussed in [2] 
and [6].

IV. Simulation and Numerical Results

In this section, we will perform the analysis 
using simulated traffic traces generated by simulations 
to estimate with both methods. Simulations were 
performed in Python 3.7 using sklearn.neighborslibrary, 
[7] and codes can be provided by asking the authors. 
Several traffic simulations were performed according to 
the presented model presented in (II-A), where the 
modulating Markov chain has k = 9 states, and each 
state is associated with a data transfer rate interval 
shown in the table below.

To design the infinitesimal chain generator, we 
consider that the chain can pass from one state to 
another, with the same probability. Even it is not a very 
realistic model, we believe that it is the most adequate 
for comparing different estimation methods, so

Within each of these intervals, the amount 
actually dispatched comes from a Gaussian probability 
distribution.

The simulated trace is a succession of pairs 
 with from 0 to 20000, where is the transfer speed, 

 is themoment when the chain jumps to another state, 
and 20000 is the number of jumps in the chain, so the 
link transfers at the speed while 

a) Determining the optimal number of clusters: 
Silhouette method

Many clustering techniques are based on a first 
estimation as a starting point, which requires prior 
knowledge of the number of clusters.

The Silhouette coefficient, a popular method of 
measuring the clustering quality, which combines both 

cohesion and separation [8], is rather independent of 
the number of clusters, k. For object , the silhouette 
coefficient is expressed as follows:

where axi is the average distance of object to all other 
objects in its cluster; for object and any cluster not 
containing it, calculate the average distance of the 
object to all the objects in the given cluster, and is the 
minimum of such values for all clusters. It is possible to 
obtain an overall measure of the goodness of clustering 
by calculating the average silhouette coefficient of all 
objects. For one clustering with k categories, the 
average silhouette coefficient of the cluster is taking the
average of the silhouette coefficients of objects 
belonging to the clusters; that is:

where n is the total number of objects in the data set. 
Value of the silhouette coefficient can vary between –1 
and 1. Higher value indicates better clustering quality.

Data objects in the same cluster are similar, and 
objects from distinct clusters are different from each 
other. This distribution minimizes the SSE of each data 
object from its cluster center. SSE is a commonly used 
criterion in measuring the quality of clustering; lower 
SSE indicates better partition quality for partitions with 
the same k. This criterion is defined as follows:

where is the j-th object in cluster Ci, and ci is the 
center of cluster Ci.To determine the optimal clustering 
number, we introduce the silhouette coefficient to work 
in conjunction with the SSE criterion because the SSE 
criterion is sensitive to the number of clusters, k.

In this paper, we conduct a k-means clustering 
analysis of the dispatch rates under different k values. 
We plot the curves of the SSE and average silhouette 
coefficient against the number of clusters to analyze the 
two curves and identify the optimal number of clusters, 
kopt. Below we show comparative results on the k-data 
clustering configuration from 7 to 11.

sxi
=

bxi
− axi

max(axi
, bxi

)
,

s̄k =

n∑
i=1

sxi
,

SSE =

k∑
i=1

∑
xj∈Ci

∥xj − ci∥2 ,

State Transfer speed (Mbps)
1 (0,1024]
2 (1024,2048]
3 (2048,3072]
4 (3072,4096]
5 (4096,5120]
6 (5120,6144]
7 (6144,7168]
8 (7168,8292]
9 (8292,10240]

Q=



−8 1 1 1 1 1 1 1 1
1 −8 1 1 1 1 1 1 1
1 1 −8 1 1 1 1 1 1
1 1 1 −8 1 1 1 1 1
1 1 1 1 −8 1 1 1 1
1 1 1 1 1 −8 1 1 1
1 1 1 1 1 1 −8 1 1
1 1 1 1 1 1 1 −8 1
1 1 1 1 1 1 1 1 −8


.

the log-likelihood, given the initial valuesor the prior 
estimation of the parameters, and the second step

(vi
ti) 𝑖𝑖 vi
ti

vi ti−1 < t < ti.

xj

The sum of squared errors (SSE) and the 
silhouette coefficient are combined to measure the 
quality of clustering and determine the optimal 
clustering number, kopt.

xi

xi

xi

bxi
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Fig. 1: Silhouette analysis for k = 7 and k = 8.

Figure 1 and Figure 3 show that choices of k equal to 7, 8, 10 or 11 would not be appropriate due to the 
presence of groups with below-average silhouette scores and wide fluctuations in the size of the silhouette plots. 
The value of k = 9 looks to be optimal one, as shown in Figure 2. The silhouette score for each cluster is above 
average

Fig. 2: Silhouette analysis for k = 9.

Fig. 3: Silhouette analysis for k = 10 and k = 11.

silhouette scores. In addition, the thickness of the silhouette, plot representing each cluster is similar.

Finally, we plotted the curves of the SSE and average silhouette coefficient against the number of clusters to 
analyze the two curves to determine the optimal number of clusters, kopt.
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Fig. 4: SSE and average silhouette coefficient versus the
number of clusters.

Figure 4 draws a curve of scores, one score, 
Silhouette coefficient, for each alternative number of 
clusters. Elbow marks the point where the line exhibits 
its maximum curvature. Let us note that, before reaching 
this point, an increase in the number of clusters helps to 
reduce the sum of squared errors SSE. It is to be 
expected that behind the elbow, we find diminishing 
returns: incremental reductions of the SSE, by adding 
more clusters, would become more negligible the farther 
we go beyond the elbow and would do so relatively
faster after having passed the inflection point of the 
curve: its elbow. This value is reached when the data are 
grouped into 9 clusters, so we conclude from this 
analysis that the optimal number of clusters is kopt = 9.

b) Estimations from Traces
We categorize the dispatch rates according to 

the clustering result with kopt = 9 as the clustering 

number. We consider that within each interval, the 
dispatched comes from a Gaussian distribution 
centered to its midpoint and deviation equal to one sixth 
of the length of the interval.

i. Kernel Estimation Method
For the simulated trace, we estimated the EB 

through the following steps:

We chose the window width of 200 as it 
provides a reasonable estimate at a low computational 
cost.
Figure 5 shows the theoretical and estimated density.

Fig. 5: Theoretical and estimated density, using Kernel Estimation techniques.

The estimation of the infinitesimal generator is as follows.

1. Apply a Gaussian kernel to all 𝑣𝑣𝑖𝑖, 0 ≤ 𝑣𝑣𝑖𝑖 ≤ 20000, 
with ℎ = 200, to obtain 𝜋𝜋�(𝑥𝑥) for 0 < 𝑥𝑥 < 10240. This 

2. Find minima for 𝜋𝜋�(𝑥𝑥). These minima are an estimate 
for the extremes of the dispatch ranges, which in 
turn allow us to determine the state of the 
modulating chain. As Gaussian distribution is 
symmetric, we determine rate averages using the 
estimated rank middle points. Finally, area 
under𝜋𝜋�(𝑥𝑥) between two consecutive minima 
estimates𝜋𝜋�𝑖𝑖 .

3. Go through the trace comparing each 𝑣𝑣𝑖𝑖 with the 
rank estimated to assign the corresponding state, to 
obtain theestimated chain (𝑐̂𝑐𝑖𝑖 , 𝑡𝑡𝑖𝑖), 0 ≤ 𝑖𝑖 ≤ 20000.

4. Estimate infinitesimal generator from (𝑐̂𝑐𝑖𝑖 , 𝑡𝑡𝑖𝑖)where 𝑡𝑡𝑖𝑖
are cumulative so first order difference of 
𝑡𝑡𝑖𝑖 gives permanence time in state 𝑐𝑐𝑖𝑖.

5. Calculate the estimated EB with𝑠𝑠�, 𝜋𝜋� , and𝑄𝑄�, as in 
(1).

is possible because GMFM is ergodic, and time 
and spaces averages converge. See Figure 5.
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.
The heat map in Figure 6 shows the percentage estimation error of the infinitesimal generator, obtained as 

the difference between each element with its estimate.
Negative values in the heat map indicate an underestimation, and positive values an overestimating the 

infinitesimal generator elements.

Fig. 6: Heat map for infinitesimal generator estimation errors.

We use the confusion matrix M to evaluate the performance in state estimation.

Q̂ =



−8.2507 0.9618 1.0355 1.0650 1.0355 1.0723 0.8991 1.0355 1.1350
0.9603 −7.9626 0.8585 1.0331 0.9385 1.0403 1.1204 1.0585 0.9458
1.0164 0.8857 −7.8808 1.0527 1.0999 0.9184 0.9983 0.8785 1.0309
1.0265 1.1078 1.0302 −8.3599 0.9601 1.0782 1.0339 1.0154 1.1078
1.0004 0.9279 1.0185 1.0149 −7.9377 1.0620 1.0366 0.9786 0.8989
1.0654 1.0474 1.0403 1.0259 0.9506 −8.0746 0.9649 1.0726 0.8860
0.9801 1.0532 0.9654 1.0569 1.0642 1.0459 −8.2244 1.0678 0.9874
1.0078 1.0448 1.0078 1.0411 1.0115 1.0226 1.1518 −8.3248 1.0115
1.1135 0.9761 0.9947 0.9761 0.9576 0.9910 1.0170 1.1060 −8.1320


.

M =



2235 3 0 0 0 0 0 0 0
4 2182 4 0 0 0 0 0 0
0 4 2167 4 0 0 0 0 0
0 0 1 2257 3 0 0 0 0
0 0 0 4 2184 8 0 0 0
0 0 0 0 2 2240 3 0 0
0 0 0 0 0 3 2243 6 0
0 0 0 0 0 0 2 2236 0
0 0 0 0 0 0 0 5 2200


.

.
Rows are the actual states, and columns are the 

predicted or estimated states. For example, the 4 in 
matrix M at row 3, column 2 indicates that four times the 
chain was in state 3 but was estimated to be in state 2.

ii. Gaussian Mixture Model
Through the following steps, we estimate the EB 

for the simulated trace.
Figure 7 shows the theoretical and estimated density.

In this case, the estimation of the infinitesimal 
generator is as follows.1. Apply GMM to all 𝑣𝑣𝑖𝑖, 0≤ 𝑣𝑣𝑖𝑖 ≤ 20000 and obtain the 

means 𝜇𝜇𝑗𝑗, which will be the centers of each of the 9
clusters, the variances 𝜎𝜎𝑗𝑗 2, and the weights of the 
mixture, 𝜋𝜋𝑗𝑗 , 1 ≤ 𝑗𝑗 ≤ 9.

2. Reconstruct the dispatch rate intervals, using 99% 
of the area of each Gaussian distribution, centered 
at 𝜇𝜇𝑗𝑗 and with 𝜎𝜎𝑗𝑗 2 variance, 1 ≤ 𝑗𝑗 ≤ 9. The value 0 is 
token as the lower limit of the first interval.

3. Go through the trace comparing each 𝑣𝑣𝑖𝑖 with the 
rank estimated to assign the corresponding state, to 
obtain the estimated chain (𝑐̂𝑐𝑖𝑖 , 𝑡𝑡𝑖𝑖), 0 ≤ 𝑖𝑖 ≤ 20000.

4. Estimate infinitesimal generator from (𝑐̂𝑐𝑖𝑖 , 𝑡𝑡𝑖𝑖) where 𝑡𝑡𝑖𝑖
are cumulative so first order difference of 𝑡𝑡𝑖𝑖 gives 
permanence time in state 𝑐𝑐𝑖𝑖 .

5. Calculate the estimated EB with𝑠𝑠�, 𝜋𝜋� , and 𝑄𝑄�, as in 
(1).
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Fig. 7: Theoretical and estimated density, using Kernel Estimation techniques

To evaluate the performance of the estimator, we show in Figure 8 the heat map for the estimation error of 
the infinitesimal generator.

Fig. 8: Heat map for infinitesimal generator estimation errors.

Q̂ =



−8.2397 0.9618 1.0392 1.0613 1.0355 1.0723 0.8991 1.0318 1.1387
0.9603 −7.9553 0.8585 1.0294 0.9421 1.0403 1.1131 1.0622 0.9494
1.0155 0.8849 −7.8699 1.0481 1.0989 0.9176 0.9973 0.8668 1.0409
1.0275 1.1088 1.0238 −8.3568 0.9610 1.0792 1.0312 1.0164 1.1088
1.0004 0.9279 1.0185 1.0149 −7.9412 1.0620 1.0402 0.9750 0.9025
1.0654 1.0474 1.0403 1.0259 0.9506 −8.0531 0.9649 1.0690 0.8896
0.9788 1.0557 0.9678 1.0594 1.0667 1.0448 −8.2297 1.0631 0.9934
1.0109 1.0479 1.0035 1.0331 1.0109 1.0257 1.1442 −8.3057 1.0294
1.1111 0.9708 0.9966 0.9819 0.9560 0.9893 1.0188 1.1074 −8.1318


.

The confusion matrix M that we show below allows us to evaluate the performance in the estimation of the states.

M =



2235 3 0 0 0 0 0 0 0
4 2182 4 0 0 0 0 0 0
0 4 2167 4 0 0 0 0 0
0 0 3 2254 4 0 0 0 0
0 0 0 3 2185 8 0 0 0
0 0 0 0 2 2240 3 0 0
0 0 0 0 0 3 2241 8 0
0 0 0 0 0 0 2 2236 0
0 0 0 0 0 0 0 2 2203


.

V. Comparison of the Results Obtained

To compare both methods, in this section, we 
present the theoretical parameters and their respective 
estimates.

Table I shows the estimated values of the 
average dispatch rates in each method and the value 

with which the traces were simulated, and the same is 
done for the class ranges of dispatch in Table II.

Both methods allow for to reconstruct of the 
modulate chain very well, and this can be seen in their 
confusion matrices. However, in the EB estimation, the 
Gaussian Mixture Model is more efficient, as can be 
seen in Figure 9 and zoom of it in Figure 10.
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Table II: Theoretical and estimated average dispatch 
rates.

Fig. 9: Theoretical bandwidth (blue), bandwidth 
estimation using KDE (red) and mixed Gaussian

(green).

Fig. 10: Figure 9 zoom.

VI. Conclusion

In this paper we have proposed two methods to 
estimate effective bandwidths from traffic traces of a 
GMFM source.

Numerical examples of simulated traces were 
presented showing the results obtained. Estimation 
process worked much better in the Gaussian Mixture 
model, as seen in the graphics presented.

It is expected to extend the statistical calculation 
using an infinitesimal generator that models a more 
realistic behavior of the source and also in which the 
supports of each probability law have a greater 
intersection to develop the estimation to real data 
scenarios.
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Theoretical range Estimated range
KDE GMM

512 513.8042 513.2390
1536 1535.7202 1535.4954
2560 2561.3389 2559.7032
3584 3585.6112 3585.3959
4608 4609.2103 4611.1025
5632 5633.8191 5634.6542
6656 6654.0522 6653.1858
7680 7676.3049 7676.4876
9216 9209.5156 9223.2794

Table I: Theoretical and estimated ranges of dispatch.
Theoretical range Estimated range

Theoretical range Estimated range
KDE GMM

0 0 0
1024 1026.1086 1024.1057
2048 2047.0149 2044.5478
3072 3069.9408 3078.4938
4096 4099.5986 4098.4828
5120 5121.1781 5124.6486
6144 6143.7674 6140.8196
7168 7163.6639 7156.2757
8192 8360.9483 8189.6392

10240 10240.0000 10240.0000
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