
© 2022. Gihan S. Siriwardhana, Nishitha De Silva, Liyanage Sanjaya Jayasinghe, Lakshitha Vithanage & Dharshana Kasthurirathna.
This research/review article is distributed under the terms of the Attribution-NonCommercial-NoDerivatives 4.0 International (CC
BYNCND 4.0). You must give appropriate credit to authors and reference this article if parts of the article are reproduced in any
manner. Applicable licensing terms are at https://creativecommons.org/licenses/by-nc-nd/4.0/.

Global Journal of Computer Science and Technology: B
Cloud and Distributed
Volume 22 Issue 1 Version 1.0 Year 2022
Type: Double Blind Peer Reviewed International Research Journal
Publisher: Global Journals
Online ISSN: 0975-4172 | Print ISSN: 0975-4350 |

A Network Science-based Approach for an Optimal Microservice
Governance

By Gihan S. Siriwardhana, Nishitha De Silva, Liyanage Sanjaya Jayasinghe,
Lakshitha Vithanage & Dharshana Kasthurirathna

Sri Lanka Institute of Information Technology

Abstract- With the introduction of microservice architecture for the development of software
applications, a new breed of tools, platforms, and development technologies emerged that enabled
developers and system administrators to monitor, orchestrate and deploy their containerized
microservice applications more effectively and efficiently. Among these vast arrays of technologies,
Kubernetes has become one such prominent technology widely popular due to its ability to deploy
and orchestrate containerized microservices. Nevertheless, a common issue faced in such
orchestration technologies is the employment of vast arrays of disjoint monitoring solutions that fail to
portray a holistic perspective on the state of microservice deployments, which in turn, inhibit the
creation of more optimized deployment policies. In response to this issue, this publication proposes
the use of a network science-based approach to the creation of a microservice governance model
that incorporates the use of dependency analysis, load prediction, centrality analysis, and resilience
evaluation to effectively construct a more holistic perspective on a given microservice deployment.

Keywords: auto-scaling, chaos engineering, kubernetes, machine learning, microservices, NSGA-Ⅱ,
time series.

 C.2.0

ANetworkSciencebasedApproachforanOptimalMicroserviceGovernance

 Strictly as per the compliance and regulations of:

GJCST- B Classification:

Gihan S. Siriwardhana α, Nishitha De Silva σ, Liyanage Sanjaya Jayasinghe ρ, Lakshitha Vithanage Ѡ

& Dharshana Kasthurirathna¥

Abstract- With the introduction of microservice architecture for
the development of software applications, a new breed of tools,
platforms, and development technologies emerged that enabled
developers and system administrators to monitor, orchestrate
and deploy their containerized microservice applications more
effectively and efficiently. Among these vast arrays of
technologies, Kubernetes has become one such prominent
technology widely popular due to its ability to deploy and
orchestrate containerized microservices. Nevertheless, a
common issue faced in such orchestration technologies is the
employment of vast arrays of disjoint monitoring solutions that
fail to portray a holistic perspective on the state of microservice
deployments, which in turn, inhibit the creation of more
optimized deployment policies. In response to this issue, this
publication proposes the use of a network science-based
approach to the creation of a microservice governance model
that incorporates the use of dependency analysis, load
prediction, centrality analysis, and resilience evaluation to
effectively construct a more holistic perspective on a given
microservice deployment. Furthermore, through analysis of the
factors mentioned above, the research conducted, then
proceeds to create an optimized deployment strategy for the
deployment with the aid of a developed optimization algorithm.
Analysis of results revealed the developed governance model
aided through the utilization of the developed optimization
algorithm proposed in this publication, proved to be quite
effective in the generation of optimized microservice deployment
policies.

I. INTRODUCTION

he term “microservices” was first introduced in 2011
[1] and was considered as a specialized
implementation of Service-Oriented Architecture

(SOA), coined to denote the common architectural
approach of decomposing applications into smaller self-
contained, loosely coupled services. The microservice
architectural style was later widely adopted in place of the
traditional monolithic architecture by many leading
companies such as Amazon, Netflix, LinkedIn, and
SoundCloud due to the capability to develop loosely
coupled services possessing the ability to be
independently deployed, versioned, and scaled while

ensuring in benefits such as faster delivery, more excellent
performance, and greater autonomy [1].

The shift in architectural style from the traditional
monolithic architecture to microservice architecture also
brought forth the creation of a set of new methodologies
and approaches that established the policies, standards,
and best practices for the adoption of microservices,
designed for the agile IT environment, known as
“Microservices Governance” [2]. This approach to
governance was entirely dissimilar to the traditional
governance policies followed in monolithic applications
primarily since governance in microservices followed a
decentralized approach, whereas governance in
monoliths followed a centralized approach where
decisions were made “top-down” [2]. Although the
decentralized approach of governance of microservice
provided advantages such as the freedom to develop
applications utilizing diverse technology stacks, a
downside of this approach was that more steps should be
taken to ensure effective governance is maintained, since
typical applications required interconnections between a
vast number of microservices where business process
workflows were continuously introduced. Consequently,
organizations required the service of a variety of tools,
ranging from monitoring and autoscaling to others such
as configuration management, service discovery, and fault
tolerance, that facilitated the multitude of tasks required to
ensure effective microservice governance was in effect.

In addition to the tools mentioned above, new
deployment strategies that facilitated the newly developing
microservice infrastructure were introduced. Amongst
them, containerization of microservices became one of the
most effective ways to deploy microservice applications
due to its ability to efficiently package microservices by
encompassing all the required libraries and dependencies
needed during runtime. This procedure separated the
application from the underlying infrastructure and enabled
developers to run the application in an isolated
environment, ensuring performance and functionality. As a
result, propelled by services such as Docker,
containerization became the preferred approach for
effectively deploying microservices, in contrast to the
traditional virtualization-based approach previously
adopted. However, in the case when the number of
microservices of a particular application increased, it

T
G
lo
ba

l
Jo

ur
na

l
of
 C

om
pu

te
r
Sc

ie
nc

e
an

d
Te

ch
no

lo
gy

 V

ol
um

e
X
X
II

Is
su

e
I
V
er
sio

n
I

23

 (

)
B

Y
e
a
r

20
22

© 2022 Global Journals

A Network Science-based Approach for an
Optimal Microservice Governance

Author α σ ρ Ѡ ¥: Department of Software Engineering, Sri Lanka
Institute of Information Technology, Malabe, SriLanka.
emails: it17016230@my.sliit.lk, it17006880@my.sliit.lk,
it17012966@my.sliit.lk, it17410250@my.sliit.lk, dharshana.k@sliit.lk

Keywords: auto-scaling, chaos engineering, kubernetes,
machine learning, microservices, NSGA-Ⅱ, time series.

became increasingly difficult to coordinate, schedule,
monitor, and maintain the required containerized
microservices, especially in times where utmost
application performance was required. In response to this
issue, the Kubernetes framework was introduced in 2014
[3] to allow organizations to run distributed systems more
resiliently by providing effective solutions for load
balancing, storage, orchestration, automated rollouts, and
self-healing mechanisms [4]. The unique characteristics
offered by Kubernetes in this regard, thereby transformed
it into one of the most prominent microservice-based
technologies available for organizations to deploy their
vast arrays of microservice applications in production-
grade environments.

The introduction of Kubernetes ushered in a new
era of microservice governance through the introduction
of container orchestration. Nevertheless, as evident
throughout this publication, despite its immense use in
orchestrating microservice applications, Kubernetes is still
not able to provide a perfect governance solution to most
modern microservice applications, as there are still
prevalent issues that need to be addressed in Kubernetes
particularly concerning the policies followed in the
deployment of interdependent microservices.

A primary reason for the existence of inefficient
optimization policies in Kubernetes based microservice
deployments is the lack of the tools and services to obtain
a holistic view of Kubernetes deployments and thereby
optimize cluster performance. The current tools and
services offered by Kubernetes often have to be pre-
configured to the existing pre-conceived knowledge of the
developers in contrast to the actual real-time utilization.
Although implementing such solutions may be of use in
the short term, it maybe it may be difficult to further
improve upon the performance of the microservice cluster
in the long term due to the lack of a holistic perspective on
the interaction of the interdependent microservices in real-
time use. Hence, it should be realized that if a particular
microservice deployment is to be optimized for
performance, a clear understanding regarding the
relationships among the interdependent microservices
during runtime is required. However, if a microservice
deployment is to be truly optimized for optimal
performance, it may also be necessary to take into
account factors such as the resilience among the
interdependent microservices, the effect of autoscaling
policies, in addition to a clear understanding on the
interactions of interdependent microservices. Regardless,
even though there are several monitoring solutions
available for such purposes, such as Prometheus, Istio,
and Chaos Toolkit, their disjoint nature prevents them from
allowing users to obtain a holistic perspective on the state
of their deployed microservices. Furthermore, in cases
such as fault management, error handling, and
performance monitoring, due to the disjoint nature of
these monitoring solutions, users are often unable to gain
insight into possible solutions as to why a particular

problem or bottleneck has occurred even though they are
often made aware of the presence of a particular problem
by these monitoring solutions.

In addition to the above-mentioned issues, these
monitoring solutions are also often and plagued with other
challenges such as the difficultly in successfully
configuring and integrating these monitoring tools with the
existing tools used by organizations [5]. The issues
mentioned above may also further complicate the already
complicated management and configuration process
prevalent in Kubernetes and, in turn, may confuse
inexperienced developers and system administrators,
ultimately leading towards misallocation of cluster
resources and degradation of cluster performance.

In response to the issues stated above, this
publication proposes a novel approach to the creation of
a unified governance model that can be used by
developers and system administrators to effectively
oversee the performance of their microservice
deployments factoring in dependency analysis, load
prediction, centrality analysis, and residency evaluation in
order to determine the optimal placement of microservices
and thereby create an optimized deployment plan for a
given microservice deployment. Thus, through the
application of the proposed governance model, users
would be able to obtain a more holistic view of their
deployment, resulting in a greater understanding of the
runtime behavior of the deployed microservices, thereby
enabling greater optimization possibilities. Through
application of the approach proposed in this publication,
the authors wish to provide key insight to the contribution
of a new set of microservice deployment optimization
methodologies, which factor in the impact of key factors
such as dependency among deployed microservices,
autoscaling policies as well as resilience measures in
microservice deployments.

The governance model proposed in this
publication is comprised of four main components, each
aimed at capturing a particular dimension of the
microservice deployment with the ultimate goal of
achieving a more holistic view of a given microservice
deployment. Accordingly, the key components of the
proposed model are as follows.

1.

A generated microservice co-dependency map which
is aimed at obtaining a clear perspective about the
dependencies between each microservice and the
importance of the deployment plan.

2.

A load prediction and centrality analysis component
for the prediction of the level of interdependency
among co-dependent microservices, the resource
utilization of pods in the cluster as well as performing
the task of the calculation of centrality measures of
microservices in the co-dependency network.

3.

A resilience evaluation component to evaluate the
resilience of microservices in the cluster.

G
lo
ba

l
Jo

ur
na

l
of
 C

om
pu

te
r
Sc

ie
nc

e
an

d
Te

ch
no

lo
gy

 V

ol
um

e
X
X
II

Is
su

e
I
V
er
sio

n
I

24

 (

)
B

Y
e
a
r

20
22

© 2022 Global Journals

A Network Science-Based Approach for an Optimal Microservice Governance

4. An optimal placement algorithm to determine the
optimum placement of microservices in the
Kubernetes cluster based on the above-stated
measures.

The remainder of this publication is organized as
follows. Section Ⅱ discusses the background and the
related work literature referenced in the development of
this optimization model. Section Ⅲ discusses the
methodology followed in the development of the
proposed model along with an overview of its key
components. Section Ⅳ discusses the results obtained
through the application of the developed model and,
finally, the conclusion of this publication, along with
directions for future work, is outlined in Section Ⅴ.

II. BACKGROUND AND LITERATURE

The apparent need for improved microservice
governance modeling strategies, along with some of the
prevalent issues in current microservice governance
methodologies, have been highlighted in several
publications throughout the years. The authors of [6]
highlight the need for new modeling strategies that
capture the recent advances in deployment technology
such as Kubernetes. The publication [7] states the inability
of monitoring frameworks to measure microservice
performance level metrics would lead to the creation of
several new research topics, which include the
development of holistic techniques for collecting and
integrating monitoring data from microservices and
datacenter resources. In contrast, publications such as [1]
highlight the use of past actions and events to better
inform resource management decisions in microservice
environments along with the challenges such as the
overloading of monitoring events faced in resource
monitoring and management processes.

In addition, several publications have also
proposed performance modeling strategies for
Kubernetes deployments. In this regard, [8] proposes an
architectural approach that federates Kubernetes clusters
using a TOSCA-based cloud orchestration tool. In
contrast, research publications such as [9] proposed a
tool named Terminus to solve the problem of finding the
best-suited resources for the microservice to be deployed
so that the whole application achieves the best
performance while minimizing the resource consumption.
Other researches include the reference net-based model
for pod & container lifecycle in Kubernetes proposed by
the authors of [10] and the generative platform for
benchmarking performance and resilience engineering
approaches in microservice architectures as proposed in
[11].

The approaches suggested in the publications
stated above are all approaches that aim at performance
optimization of Kubernetes deployments. However, a key
aspect to note in this regard is the fact that the
methodologies stated in the publications mentioned

above, fail to capture critical dimensions such as the
dependent relationships between microservices, the effect
of autoscaling policies, as well as resilience measures in
the determination of the optimal placement of a particular
microservice with regard to its global significance.
Therefore, to our knowledge, there is no current solution
proposed, that takes into consideration an integrated
modeling strategy, factoring key elements essential to the
optimization of microservice deployments such as co-
dependencies present as well resilience and centrality
measures among microservices when developing a
holistic governance policy for Kubernetes based
microservice deployments, as proposed in this research.

III. METHODOLOGY

The proposed governance model consists of four
principal components each interlinked as depicted in Fig.1
below. The following sub-sections provide an in-depth
analysis regarding the methodology followed in the
development of the proposed governance model along
with an overview of the respective functionalities of its
components.

Fig 1: High-level diagram of the proposed governance
model

a) Microservice Co-dependency Network
The microservice co-dependency network

consists of three sub-components which can be listed as
follows.
1. An Istio service mesh platform that incorporates Kiali

and Prometheus monitoring solutions.
2. A backend NodeJS “K8Advisor” server for integration

with metric APIs provided by monitoring solutions.
3. A database solution for the storage of gathered metric

data.

The Istio service mesh provides the core metric
servers such as Kiali and Prometheus, configured to
retrieve data from the app, pod, and node levels in the
cluster. In this regard, the microservice dependency map
utilizes quantified measurements derived from request
and response times obtained primarily from the Kiali
metric server to facilitate the development of the
microservice co-dependency map.

G
lo
ba

l
Jo

ur
na

l
of
 C

om
pu

te
r
Sc

ie
nc

e
an

d
Te

ch
no

lo
gy

 V

ol
um

e
X
X
II

Is
su

e
I
V
er
sio

n
I

25

 (

)
B

Y
e
a
r

20
22

© 2022 Global Journals

A Network Science-Based Approach for an Optimal Microservice Governance

.

The K8Advisor server aggregates all APIs
exposed from the Istio service mesh and exposes a single
endpoint such that required metrics could be queried
more effectively. The server is configured to query metrics
and trigger required processes as per a configured
scheduler. The metrics collected in this regard, are then
stored in the No-SQL database along with additional
information such as timestamps to facilitate the creation of
time series datasets utilized in the training of machine
learning models. The K8Advisor server is also capable of
generating CSV (Comma Separated Values) files on
demand by reading the No-SQL database. The server will
also expose an endpoint that can be accessed via an
HTTP request in order to trigger required functions on
demand. All the data stored in the database is maintained
within the same Kubernetes cluster without exposing it to
the public in order to maintain the privacy of user data.
Lastly, in addition to the above, the K8Advisor server is
also responsible for the creation of a node latency map
through the evaluation of latency measures between the
nodes in the cluster. Here, the Round-Trip Time (RTT) of
network calls between nodes in the cluster is evaluated
and, through the use of a developed shell script, the
average latency measures between cluster nodes are
obtained and forwarded to the optimization algorithm.

b) Load prediction and Centrality Analysis
The key objective of the load prediction

component and centrality analysis component is the
utilization of historical data and centrality measures to aid
in the optimization of microservice deployments and the
creation of holistic autoscaling policies. In this regard, the
component performs the following key tasks.
• Prediction of future resource utilization values

(primarily CPU and memory) based on historical pod
resource utilization data.

• Prediction of inter-microservice link weight
(dependency measures), based on historical link
weight data derived from the load-based metrics in
the co-dependency network.

• Calculation of centrality measures of microservices in
the co-dependency network.

The resource utilization prediction process is
performed through performing a time series-based
prediction on pod utilization metrics, in which predicted
CPU and memory utilization values for a particular period
are forecasted. The prediction process for resource
utilization is performed through the application of a Long
Short-Term Memory (LSTM) network in which a particular
number of time steps of utilization metrics are used to
predict future utilization values. Once predictions are
made, the predicted utilization values for a particular
period (e.g. - 24 hours in advance) are passed through to
the optimization algorithm to infer optimal autoscaling
decisions.

The process of inter-microservice link weight
prediction is primarily a network-based time-series

prediction process in which the inter microservice link
weights derived through load-based metrics are
forecasted such that the next predicted weights for the
links in the co-dependency map are determined. The
forecasted weights determined through the use of an
LSTM prediction model could then be used to provide an
accurate estimation of the load that is expected to be
received by microservices in the cluster, enabling the
identification of key potential microservices which may in
turn, highly manipulate microservice placement decisions
and the realization of optimal cluster performance

The calculation of microservice centrality
measures is also performed within the load prediction
component. Here, the microservices in the co-
dependency network are evaluated on several centrality
measures to facilitate the identification of influential
microservices in the cluster. These calculated centrality
measures are then forwarded to the optimization algorithm
as inputs, to infer autoscaling decision through
determination of required service instance levels. In this
regard, the proposed governance model is expected to
make use of the key centrality measures such as degree,
betweenness, closeness as well as eigenvector centrality
measures to facilitate the identification process of
influential microservices.

c) Resilience Evaluation
The resilience evaluation component is

particularly based on chaos engineering principles and
utilizes the dependency measures derived from the co-
dependency network to effectively target the most
prominent services in the cluster for the evaluation of
resilience measures. This process is performed through
the use of Chaos Toolkit and the resulting resilience
measures thus obtained, are then utilized to derive a
holistic perspective on the resilience and health of
interdependent services in the cluster.

d) Optimization Algorithm

Fig 2:

Overview of the optimization algorithm

G
lo
ba

l
Jo

ur
na

l
of
 C

om
pu

te
r
Sc

ie
nc

e
an

d
Te

ch
no

lo
gy

 V

ol
um

e
X
X
II

Is
su

e
I
V
er
sio

n
I

26

 (

)
B

Y
e
a
r

20
22

© 2022 Global Journals

A Network Science-Based Approach for an Optimal Microservice Governance

..

The optimization algorithm utilized in the
proposed governance model is predominantly based on
the NSGA-Ⅱ (Non-Dominant Sorting Genetic Algorithm)
algorithm. The algorithm generates a multitude of
optimized solutions that enables the user to infer
optimization decisions predicated on three key
optimization categories, which are as follows.

• Solutions optimized for best performance and
availability, thereby maintaining a balance between
reduced latency and number of instances.

• Solutions optimized for optimal performance based
on the reduction of latency.

• Solutions optimized for highest availability based on
the maximization of the number of instances.

These optimized solutions are generated
following four main input parameters utilized by the
optimization algorithm as depicted in Fig. 2 above and
can be listed as follows.

1. Predicted microservice dependency measures from
the load prediction and centrality analysis component.

2. Node latency map generated from the Node Server.
3. Required number of microservice instances derived

from centrality measures and predicted resource
utilization metrics from the load prediction and
centrality analysis component.

4. General cluster infrastructure information gathered
from monitoring solutions.

The sub-sections below provide an in-depth
insight into the manner these input parameters are utilized
in the developed algorithm as well as their impact on the
creation of holistic optimization policies.

i. Predicted Microservice Dependency Measures
In microservice deployments, although factors

such as latency cannot be completely eliminated,
dependent microservices can be deployed in nearby
nodes or the same node in order to reduce the overall
latency of an application. Therefore, making use of this
approach while intending to solve low availability and sub-
optimal performance issues, as well as to aid in the
creation of autoscaling policies, the developed
optimization algorithm makes use of the predicted load-
based link weights obtained from the load prediction
component. This is done such that optimal placement and
scaling decisions could be performed ahead of time,
establishing a future deployment strategy such that users
such as DevOps engineers would be able to make use of
the gathered information to create an optimized
microservice deployment plan. In addition, making use of
the predicted dependency measures (load-based link
weight), optimal placement decisions are determined
through the application of (1) and (2), as defined below,
which calculates the average latency among the
microservice instances, based on the dependency
measures and as the node latency map obtained from the
Node sever.

Table 1: Average Latency Calculation

Number of dependencies in pod-level

Number of dependency links in app-level

W

Dependency request weight in app-level

L

The latency of dependency in pod-level

D
Dependency average latency in app-level

TL

Total latency

Dj=
∑ Li

i=m
j=1

n
(1)

 Minimize TL= ∑ Wj× Dj
j=m
j=1 (2)

ii. Node Latency Measures
The main objective of the optimization algorithm is

the maximization of performance through the minimization
of latency among microservices. Therefore, the developed
optimization algorithm also utilizes a developed node
latency map obtained from the Node Server, to evaluate
the fitness of generated solutions.

iii. Required Microservice Instances
In the process of fitness calculation, the first step

is the calculation of the required number of instances per
microservices. Here, the calculation of the required
number of microservices instances is performed by
utilizing the predicted resource utilization values derived
from the load prediction component, applied on the
Horizontal Pod Autoscaling algorithm. Also, the centrality
measures derived from the co-dependency network will
be utilized to infer the optimum microservice instance
levels, particularly in cases where historical information of
the cluster is unknown. The required microservice
instance levels are also utilized in availability fitness
calculation measures, aided through the use of a
generalized logistic function [12] to avoid giving high
scoring fitness values from resources that require low
resource consumption and are of low instance levels,
thereby establishing a fairer scoring method. In this
regard, the fitness is calculated as defined through (3)
given below.

R Required instances for each service

S The current number of instances in each service

TA Total availability

N Number of microservices

G
lo
ba

l
Jo

ur
na

l
of
 C

om
pu

te
r
Sc

ie
nc

e
an

d
Te

ch
no

lo
gy

 V

ol
um

e
X
X
II

Is
su

e
I
V
er
sio

n
I

27

 (

)
B

Y
e
a
r

20
22

© 2022 Global Journals

A Network Science-Based Approach for an Optimal Microservice Governance

Fitness CucalationTable 2:

M

N

Maximize TA=

∑ Ri×generalizedLogisticFunction�Si

Ri
�i=n

i=1 (3)

The fitness function also makes use of a scoring
system based on the distribution of the number of
instances deployed on cluster node resources known as
the scale value. In this regard, a higher number of
instances distributed among cluster nodes throughout the
deployment are given a higher score than localized
instances deployed within a single node. This task is
performed to avoid convergence of dependent services
into one node and affecting availability. These scale
values are then utilized to infer performance and
availability decisions.

iv. General Cluster Information
The optimization algorithm also makes use of the

general cluster infrastructure information such as the
resource power consumption of nodes and node labels
names. The information gathered in this regard is primarily
utilized in the definition of constraints utilized by the
optimization algorithm.

IV. RESULTS AND DISCUSSION

The developed optimization model was evaluated
on a sample microservice cluster dataset containing 3
nodes and 6 microservices. For evaluation purposes, the
JSON (JavaScript Object Notation) representation of this
cluster dataset, along with the additional information
required by the optimization algorithm which includes the
node latency map, predicted inter-microservice
dependency measures as well as the required number of
microservice instances, is provided to the developed
optimization algorithm in order to compute the optimized
solutions. Fig. 3 below depicts the structure of the sample
input JSON provided to the optimization algorithm.

Once the optimization algorithm is executed, a set
of optimized solutions are obtained. In this regard, two
optimized solutions are obtained once the algorithm is
executed; one solution represents the cluster orientation
with the highest cluster performance as depicted in Fig. 4,
whereas the second solution obtained depicts the solution
that represents the cluster orientation with the highest
cluster availability as depicted in Fig. 5. For added

clarification, the tabular format of the representation is
given alongside the resulting solutions.

Fig.4: Resulting solution representing cluster orientation
with the highest performance

Fig. 5: Resulting solution representing cluster orientation
with the highest availability

Note the fact that in the tabular format depicted in
Fig. 4 and Fig. 5, each cell in the table represents the
optimal number of instances of a given microservice that
should be present in order to achieve the required
optimization goal (highest performance or highest
availability).

With regard to the resulting solution obtained that
represents the cluster orientation with the highest
performance, the fact that the optimization algorithm has
successfully managed to determine the cluster orientation
with the highest performance is evident primarily due to
the fact that the highest dependent services as provided
in the input JSON have been determined to be placed on

G
lo
ba

l
Jo

ur
na

l
of
 C

om
pu

te
r
Sc

ie
nc

e
an

d
Te

ch
no

lo
gy

 V

ol
um

e
X
X
II

Is
su

e
I
V
er
sio

n
I

28

 (

)
B

Y
e
a
r

20
22

© 2022 Global Journals

A Network Science-Based Approach for an Optimal Microservice Governance

Fig. 3: Structure of sample JSON provided as input to the
developed optimization algorithm

the same node by the optimization algorithm. This fact is
determined through comparing the keys of the key-value
pair sets in the “pod_dependency_map” feature of the
input JSON which represents inter-dependent sets of
microservices with the tabular representation of the
resulting optimal performance solution, that also depicts
the inter-dependent microservices as described in the
input JSON (such as M0 and M2) placed on the same
node. (For example: - “[0, 2]: 1000” in the input JSON
represents microservice M0 and microservice M2 are
interdependent microservices with a dependency level of
1000)

Similarly, through comparing the
“microservices_instances_requirement” feature of input
JSON which represents the required number of instances
required for each of the six microservices respectively,
with the resulting instance levels obtained from resulting
highest availability solution, it is evident that the
optimization algorithm has also ensured highest
availability of microservices through the allocation of a
higher number of microservice instances than the required
instances. (For example- Microservice M0 requires the
presence 4 instances and the optimization algorithm has
allocated 8 instances of M0 as determined through its
optimization process)

V. CONCLUSION

This publication suggests the application of a
network-science based microservice governance model in
an attempt to aid in the creation of optimized microservice
deployment policies currently hindered due to the
employment of disjoint monitoring solutions prevalent in
microservice-based governance methodologies. In this
regard, the proposed model seeks the creation of a
holistic perspective of microservice deployments, through
the incorporation of dependency analysis, load prediction
measures, centrality measures as well as resilience
measures. Furthermore, through the incorporation of the
above measures, the research conducted utilizes the
application of an optimization algorithm to determine an
optimal deployment strategy for a given microservice
deployment.

The publication also discusses the core
architecture along with the methodologies followed in the
development of the proposed governance model as well
as the results obtained through the application of the
proposed governance model. Analysis of the results
suggests the developed governance model proved to be
effective in determining the optimized cluster
representations pertaining to the highest performance and
availability. Future work will include considering the inner
workings of applications deployed in a Kubernetes cluster
so as to further increase the accuracy of existing
prediction models and resilience analysis components.

G
lo
ba

l
Jo

ur
na

l
of
 C

om
pu

te
r
Sc

ie
nc

e
an

d
Te

ch
no

lo
gy

 V

ol
um

e
X
X
II

Is
su

e
I
V
er
sio

n
I

29

 (

)
B

Y
e
a
r

20
22

© 2022 Global Journals

A Network Science-Based Approach for an Optimal Microservice Governance

References Références Referencias

1. P. Jamshidi, C. Pahl, N. C. Mendonca, J. Lewis, and
S. Tilkov, “Microservices: The journey so far and
challenges ahead,” IEEE Software, vol. 35, no. 3, pp.
24–35, 2018, doi: 10.1109/MS.2018.2141039.

2. “Microservices Governance: A Detailed Guide.”
https://www.leanix.net/en/blog/microservices-gover-
nance (accessed Jun. 16, 2020).

3. “Kubernetes. – Wikipedia.” https://en. Wiki-
pedia.org/wiki/Kubernetes. (accessed Jun. 16, 2020).

4. “What is Kubernetes? | Kubernetes.” https://
kubernetes.io/docs/concepts/overview/what-is-kuber-
netes/ (accessed Jun. 16, 2020).

5. “Kubernetes: The Challenge of Deploying &
Maintaining.” https://techolution.com/kubernetes-
challenges/ (accessed Jun. 16, 2020).

6. R. Heinrich et al., “Performance engineering for
microservices: Research challenges & directions,”
ICPE 2017 – Companion of the 2017 ACM/SPEC
International Conference on Performance
Engineering, pp. 223–226, 2017, doi: 10.1145/305
3600.3053653.

7. M. Fazio, A. Celesti, R. Ranjan, C. Liu, L. Chen, and
M. Villari, “Open Issues in Scheduling Microservices in
the Cloud,” IEEE Cloud Computing, vol. 3, no. 5, pp.
81–88, 2016, doi: 10.1109/MCC.2016.112.

8. D. Kim, H. Muhammad, E. Kim, S. Helal, and C. Lee,
“TOSCA-based and federation-aware cloud
orchestration for Kubernetes container platform,”
Applied Sciences (Switzerland), vol. 9, no. 1, 2019,
doi: 10.3390/app9010191.

9. A. Jindal, V. Podolskiy, and M. Gerndt, “Performance
modeling for cloud microservice applications,” ICPE
2019 – Proceedings of the 2019 ACM/SPEC
International Conference on Performance
Engineering, pp. 25–32, 2019, doi: 10.1145/329
7663.3310309.

10. V. Medel, O. Rana, J. Á. Bañares, and U. Arronategui,
“Modelling performance & resource management in
Kubernetes,” Proceedings – 9th IEEE/ACM
International Conference on Utility and Cloud
Computing, UCC 2016, pp. 257–262, 2016, doi: 10.11
45/2996890.3007869.

11. T. F. Düllmann and A. van Hoorn, “Model-driven
generation of microservice architectures for
benchmarking performance & resilience engineering
approaches,” ICPE 2017 – Companion of the 2017
ACM/SPEC International Conference on Performance
Engineering, pp. 171–172, 2017, doi: 10.11
45/3053600.3053627.

12. “Generalised logistic function – Wikipedia.” https://
en.wikipedia.org/wiki/Generalised_logistic_function
(accessed Jul. 14, 2020).

	A Network Science-based Approach for an Optimal Microservice Governance
	Author
	Keywords
	I. Introductin
	II. Background and Literature
	III. Methodology
	a) Microservice Co-dependency Network
	b) Load prediction and Centrality Analysis
	c) Resilience Evaluation
	d) Optimization Algorithm
	i. Predicted Microservice Dependency Measures
	ii. Node Latency Measures
	iii. Required Microservice Instances
	iv. General Cluster Information
	IV. Results and Discussion

	V. Conclusion
	References Références Referencias

