
© 2022. Prabhdeep Singh, Rajbir Kaur & Diljot Singh. This research/review article is distributed under the terms of the Attribution-
NonCommercial-NoDerivatives 4.0 International (CC BYNCND 4.0). You must give appropriate credit to authors and reference this
article if parts of the article are reproduced in any manner. Applicable licensing terms are at https://creativecommons.org/licenses/by-
nc-nd/4.0/.

Global Journal of Computer Science and Technology: B
Cloud and Distributed
Volume 22 Issue 1 Version 1.0 Year 2022
Type: Double Blind Peer Reviewed International Research Journal
Publisher: Global Journals
Online ISSN: 0975-4172 | Print ISSN: 0975-4350 |

A Call Graph Reduction based Novel Storage Allocation Scheme
for Smart City Applications

ECE Punjabi University

Abstract- Today's world is going to be smart even smarter day by day. Smart cities play an important
role to make the world smart. Thousands of smart city applications are developing in every day.
Every second very huge amount of data is generated. The data need to be managed and stored
properly so that information can be extracted using various emerging technologies. The main aim of
this paper is to propose a storage scheme for data generated by smart city applications. A matrix is
used which store the information of each adjacency node of each level as well as the weight and
frequency of call graph. It has been experimentally depicted that the applied algorithm reduces the
size of the call graph without changing the basic structure without any loss of information. Once the
graph is generated from the source code, it is stored in the matrix and reduced appropriately using
the proposed algorithm. The proposed algorithm is also compared to another call graph reduction
techniques and it has been experimentally evaluated that the proposed algorithm significantly
reduces the graph and store the smart city application data efficiently.

ACallGraphReductionbasedNovelStorageAllocationSchemeforSmartCityApplications

 Strictly as per the compliance and regulations of:

GJCST- B Classification: D.4.2

By Prabhdeep Singh, Rajbir Kaur & Diljot Singh

Allocation Scheme for Smart City Applications

 Abstract- Today's world is going to be smart even smarter day
by day. Smart cities play an important role to make the world
smart. Thousands of smart city applications are developing in
every day. Every second very huge amount of data is
generated. The data need to be managed and stored properly
so that information can be extracted using various emerging
technologies. The main aim of this paper is to propose a
storage scheme for data generated by smart city applications.
A matrix is used which store the information of each adjacency
node of each level as well as the weight and frequency of call
graph. It has been experimentally depicted that the applied
algorithm reduces the size of the call graph without changing
the basic structure without any loss of information. Once the
graph is generated from the source code, it is stored in the
matrix and reduced appropriately using the proposed
algorithm. The proposed algorithm is also compared to
another call graph reduction techniques and it has been
experimentally evaluated that the proposed algorithm
significantly reduces the graph and store the smart city
application data efficiently.

I. Introduction

nternet of Things (IoT) is a new technology, which is
rapidly gaining momentum in the smart city
applications. This concept enables the ubiquitous

presence around us of a variety of objects or things
such as RFID tags, sensors, actuators, and cell phones.
The rise of IoT has affected many areas of smart city
applications, such as e-learning, e-health,
transportation, waste management, etc. By 2020, more
than 5 billion devices will be connected worldwide will
become the pioneer to provide information accessible
across the globe in milliseconds. Almost all smart city
applications are running using the internet and they
utilized the services to the cloud[1]. The IoT technology
is upgrading day by day with the rapid implementation
of a smart city[7]. Every smart city application requires
the processing speed to process data and storage
space to store the processed data for further use. The
main challenge of the smart city [8,9] applications are
to store the data and analysis it. Data is stored in a
memory in the form of the graph. In many applications
of graph mining, reduction plays an important role. No
doubt, several techniques as total reduction, total

reduction with edge weight, etc. are available to reduce
the call graph but there are drawbacks in some cases
while reducing call graph by these techniques,
sometimes information of the program is lost or
changed, loosing or changing of information affects the
accuracy of program that is unacceptable.

II. Call Graph

A call graph is a directed graph whose nodes
represent the functions of the program and directed
edges symbolize function calls [2,14]. Nodes can
represent either one of the following two types of
functions:
1. Local functions, implemented by the program

designer.
2. External functions: system and library calls. Call

graphs are formally defined as follows:

 Definition
A call graph is a directed graph G with vertex

set V=V (G), representing the functions, and edge set
E=E(G), where E(G) V(G)×V(G), in correspondence
with the function calls.

 Types of Call Graph

The call graph can be classified as static and
dynamic call graph.

A static call graph can be obtained from the

source code. It represents all methods of a program as
nodes and all possible method invocations as edges.
Discovering the static call graph from the source text
requires two steps: finding the source text for the
program, and scanning and parsing that text[15,19].

ii.
A dynamic call graph is the invocation relation

that represents a specific set of run-time executions of a
program. Dynamic call graph extraction is a typical
application of dynamic analysis to aid compiler
optimization, program understanding, performance
analysis etc[3,4].

c) Call Graph Reduction

The call graph is representations of program
executions [11]. Raw call graphs typically become much
too large. The program might be executed for a long
period. Therefore, it is essential to compress the graphs
by a process called reduction. It is usually done by a

I

G
lo
ba

l
Jo

ur
na

l
of
 C

om
pu

te
r
Sc

ie
nc

e
an

d
Te

ch
no

lo
gy

 V

ol
um

e
X
X
II

Is
su

e
I
V
er
sio

n
I

7

 (

)
B

Y
e
a
r

20
22

© 2022 Global Journals

A Call Graph Reduction based Novel Storage

�

a)

b)

Prabhdeep Singh α, Rajbir Kaur σ & Diljot Singh ρ

Dynamic Call Graph

Author α: Department of CSE Punjabi University, Patiala, Punjab, India.
e-mail: ssingh.prabhdeep@gmail.com
Author σ: Department of ECE Punjabi University, Patiala, Punjab, India.
e-mail: rajbir277@yahoo.co.in
Author ρ: Department of CSE KCET, Amritsar
e-mail: diljot.asr@gmail.com

.

i. Static Call Graph

Lossy compression technique[5]. This involves the
trade-off between keeping as much information as
possible and a strong compression. When call graph is
being reduced it is essential that no function call is
missed[16]. The specifications of all the
functions/methods must be clear. It is also noticeable
that no information is lost when the label is changed[6].
Call frequency must be clearly specified. Two
approaches are center of the focus to reduce the call
graph

1. Total Reduction

2. Zero-one-many reduction

In total reduction, a node represents every
function. A direct edge is connected with the
corresponding nodes when one function has called
another function. Total reduction technique shortens the
size of the source call graph. In this technique, every
method occurs just once within the graph. The major
shortcoming of this technique is that it changes the
structure of the graph. On the other side, much
information about the program execution is lost, e.g.,
frequencies of the execution of methods and information
on different structural patterns within the graphs. So it is
very difficult to retrieve the required information from this
reduced graph[17,18].

The other approach is Zero-one-many reduction
which covers the drawback of Total Reduction as it does
not change the structure but the reduction is not
properly done. The improper reduction increases its
complexity and it is difficult to find frequent substructure
from the graph. The reduced graph can provide near
information about call frequency but exact information is
not known.

III.

Problem

Statement

Smart city applications generated the very high
amount of data every millisecond, which required a very
high amount of storage space[10]. Various existing
techniques reduce the size of data but the originality
and quality of data may also suffer. Surely, the size of
data is reduced but the complete information of that
data is also changed[13]. Researchers have proposed a
number of techniques to reduce the graph but most of
the techniques suffer from one or more shortcomings.
Majority of techniques are not able to store the graph
with all information in computer memory[12]. So, some
new techniques or algorithms are needed to store the
information of the graph in computer memory and
reduce the graph in such a manner that its information is
not lost and the graph is easily mined. Major objectives
of this paper are:

•

To find an efficient method to store the graph in
computer memory with information about all the
nodes and its parents.

• Once the storage is done efficiently, the reduction of
the graph is required. The graph must be reduced in
such a manner that its information is not lost and it
should have minimum edges and nodes.

• Structure of the graph should not be changed after
reduction.

IV. Proposed Approach

Researchers proposed many approaches for
reduction of call graph but they could not propose any
approach to saving the call graph in computer memory.
The main task is to save the node into computer
memory with its parent’s information, which is not
possible with adjacency list or adjacency matrix.
Therefore the parent of each child is stored in the matrix.

Figure 1: Structure for Node Storage

Rows represent the levels of call graph as 1st
row represent 1st level’s nodes, 2nd row represent 2nd
level’s nodes and so on. Every node also contains the
information about its parent. The basic structure for
saving the node with its parent information is shown in
fig.

G
lo
ba

l
Jo

ur
na

l
of
 C

om
pu

te
r
Sc

ie
nc

e
an

d
Te

ch
no

lo
gy

 V

ol
um

e
X
X
II

Is
su

e
I
V
er
sio

n
I

8

 (

)
B

Y
e
a
r

20
22

© 2022 Global Journals

A Call Graph Reduction Based Novel Storage Allocation Scheme for Smart City Applications

structfeild

{

char label; int parent;} ;
structfeild b[n][n]; ////where n is the

number of nodes

Call graph has n number of nodes to store all
the nodes in the matrix. It is shown as figure 2.

Once the call graph is saved in memory, it is
reduced using the proposed algorithm. In this approach,
the reduced call graph shows the call frequency of each
node without changing the structure of the source call
graph. First, all functions of source code are labeled so
that it can easily be interpreted. Then a call graph is
made using these labeled functions. To understand the

G
lo
ba

l
Jo

ur
na

l
of
 C

om
pu

te
r
Sc

ie
nc

e
an

d
Te

ch
no

lo
gy

 V

ol
um

e
X
X
II

Is
su

e
I
V
er
sio

n
I

9

 (

)
B

Y
e
a
r

20
22

© 2022 Global Journals

A Call Graph Reduction Based Novel Storage Allocation Scheme for Smart City Applications

Algorithm: Reducing Call Graph Input: children, label, parent Output: Reduced Call Graph

1. Set j=Getstr[100][]
2. foreach aa←1 to 10 do
3. Set j[aa-1] = Getstr[200]
4. end for
5. Set count= GetArray(level)
6. foreach i←0 to levels-1 do
7. print “Enter no. of children at level 0”
8. Input(children)
9. count[i]=children
10. foreach x←0 to children -1 do
11. print "Enter the label of (x) children"
12. j[i][x].label = Input(label)
13. print "Enter the parent of (x) children"
14. j[i][x].parent = Input(parent)
15. end for
16. end for
17. foreach k←levels down to 0 do
18. foreach l←count[levels-1] down to 0 do
19. foreach m←l-1 down to 0 do
20. if j[k-1] [m-1]. label=j [l-1] [m-1]. label AND j[l-1] [m-1].parent=j[k-1] [m-1]. parent AND j [k-1] [m-1].
label ≠ '\0' then
21. j[k][l].parent = -1
22. end if
23. end for
24. end for
25. end for

algorithm call graphs is constructed from any code and
apply the algorithm step by step. Figure 3 shows the call
graph which is generated by a code

Figure 2: Structure for Call Graph Storage

G
lo
ba

l
Jo

ur
na

l
of
 C

om
pu

te
r
Sc

ie
nc

e
an

d
Te

ch
no

lo
gy

 V

ol
um

e
X
X
II

Is
su

e
I
V
er
sio

n
I

10

 (

)
B

Y
e
a
r

20
22

© 2022 Global Journals

A Call Graph Reduction Based Novel Storage Allocation Scheme for Smart City Applications

Source Call Graph

V. Implementation and Results

The first part of the algorithm is used for call
graph storage. The call graph will be saved in the
computer memory by using matrix. There are 5 levels in
the call graph and so matrix will have 5 rows. 1st row
represent the proposed algorithm the same level nodes
with the same parent are merged resulting in a single
node with the same label.

Figure 4: Reduction at 5th Level

Figure 5: Reduction at 4th Level

In the graph same level is level 5, the same
label is F and the same parent is D. so after applying the
algorithm 3 F’s are merged to single F with call
frequency. The result is as shown in figure 4.1st level the
second row represent 2nd level and so on.
Corresponding nodes with parent’s information will be
saved. 1st-row stores the information about a node
which is in 1st level and hasn’t any parent as it is root
node so store the information as -1.at 2nd level b and c
stored in 2nd row with its parent information which is a
and so on.

Figure: 6: Reduction at 3rd Level

Figure 3:

G
lo
ba

l
Jo

ur
na

l
of
 C

om
pu

te
r
Sc

ie
nc

e
an

d
Te

ch
no

lo
gy

 V

ol
um

e
X
X
II

Is
su

e
I
V
er
sio

n
I

11

 (

)
B

Y
e
a
r

20
22

© 2022 Global Journals

A Call Graph Reduction Based Novel Storage Allocation Scheme for Smart City Applications

Figure 7: Reduction at 2nd Level

According to the algorithm, the next step is to
reduce the call graph. This approach is bottom-up
approach so the 5th level is considered first and then
move to 4th, 3rd, and 4th Fig. 3: Source Call Graph so
on.5 level has 6 nodes labeled as f. according to the

The same process is applied in level 4 resulting
in figure 5.

Figure 8: Completely Reduced Graph

The 3rd level will be worked at C appears 3
times D and E appear singly. Hence, C is concentrated
on. 3 Cs will be merged resulting in single C with
frequency 3. This will also affect its children. Therefore,
they will also be reduced according to the same
procedure as shown in figure 5. Finally reduced call
graph is shown above is created. In this graph, every
node has the information about call frequency.

 Figure 9: Reduced with Total Reduction
Technique

The graph obtained from the same source code
is also reduced with both techniques.

As shown in the figure the graph generated
from the Liu et al technique has reduced the graph with
lesser edges and nodes but it could not able to retain
the basic structure of the call graph wherein the other
hand as shown in figure Zero-one-many reduction could
not reduce the same and lost the information of nodes.
In contrast to both of them, the call graph generated
from the proposed algorithm is able to reduce the graph
and retain the information of nodes as well. The
comparison of results obtained from each technique of
call graph reduction is shown in table no.1

Reduction

algorithm

No Of

Nodes

No of

Edges

Effects on

Structure

Source

code
22 21

Total

Reduction

Lost information

and Changed

structure

Zero-one-

many

reduction

15 14
Lost information

but remain same

structure

Proposed

Algorithm
10

No loss in

information and

Remain Same

structure

9

6 6

Table 1: Comparison Among Various Call Graph
Reduction Techniques

G
lo
ba

l
Jo

ur
na

l
of
 C

om
pu

te
r
Sc

ie
nc

e
an

d
Te

ch
no

lo
gy

 V

ol
um

e
X
X
II

Is
su

e
I
V
er
sio

n
I

12

 (

)
B

Y
e
a
r

20
22

© 2022 Global Journals

A Call Graph Reduction Based Novel Storage Allocation Scheme for Smart City Applications

Both techniques Total Reduction and Zero-one-
many reductions lost the information of the nodes and
reduce the graph from 22 to 6 and 15 nodes along with
edges from 21 to 6 and 14 respectively. The result
obtained from the proposed algorithm have positive
results with reducing graph without losing information
and basic structure i.e. from 22 nodes to 10 nodes and
21 edges to 9 edges

VI. Conclusion & Future Scope

Every year the government to their tradition city
to update it to the smart city spends a very huge
amount. Smart city applications generate the high
amount of data at every second. In this paper, the data
storage scheme is proposed. The main benefit of this
algorithm is to develop a technique to stores the parent
information in the matrix and reduced at each level
drastically. Information about each node is retained by
using the call frequency by annotating each edge with a
numerical weight. Similarly, the algorithm used to
reduced call graph has various advantages over
traditional techniques. It takes various parameters for
consideration such as information of nodes, basic
structure of graphs and call frequency. Here the detailed
study of call graph reduction in graph mining made the
study of various other techniques in bug localization very
easy. The proposed algorithm works only when there
are same types of nodes at a particular level in a call
graph. In future this work can be extended to multiple
levels of call graph will make the graph mining algorithm
efficiently. Secondly the storage of graph can be
upgraded with any new storage technique where it
would require lesser storage space as well as lesser
access time leading to further optimize reduction of call
graph.

References Références Referencias

1. Zhou, L., Wu, D., Chen, J., & Dong, Z. (2018).
Greening the smart cities: Energy-efficient massive
content delivery via D2D communications. IEEE
Transactions on Industrial Informatics, 14(4), 1626-
1634.

2. Lin, C. C., Deng, D. J., Kuo, C. C., & Liang, Y. L.
(2018). Optimal charging control of energy storage
and electric vehicle of an individual in the internet of
energy with energy trading. IEEE Transactions on
Industrial Informatics, 14(6), 2570-2578.

3. Darivianakis, G., Eichler, A., Smith, R. S., & Lygeros,
J. (2017). A Data-Driven Stochastic Optimization
Approach to the Seasonal Storage Energy
Management. IEEE control systems letters, 1(2),
394-399.

4. Lee, C. C., Chen, C. T., Wu, P. H., & Chen, T. Y.
(2013). Three-factor control protocol based on
elliptic curve cryptosystem for universal serial bus

mass storage devices. IET Computers & Digital
Techniques, 7(1), 48-56.

5. Tang, Z., Liu, A., & Huang, C. (2016). Social-Aware
Data Collection Scheme Through Opportunistic
Communication in Vehicular Mobile Networks. IEEE
Access, 4, 6480-6502.

6. Colmenar-Santos, A., Luis-Molina, E., Rosales-
Asensio, E., & Lopez-Rey, Á. (2018). Technical
approach for the inclusion of superconducting
magnetic energy storage in a smart city. Energy.

7. Cebe, M., & Akkaya, K. (2018). Efficient Certificate
Revocation Management Schemes for IoT-based
Advanced Metering Infrastructures in Smart Cities.
Ad Hoc Networks.

8. Han, J., Li, Y., & Chen, W. (2018). A Lightweight And
privacy-preserving public cloud auditing scheme
without bilinear pairings in smart cities. Computer
Standards & Interfaces.

9. Kumar, H., Singh, M. K., Gupta, M. P., & Madaan, J.
(2018). Moving towards smart cities: Solutions that
lead to the Smart City Transformation Framework.
Technological Forecasting and Social Change.

10. Osman, A. M. S. (2019). A novel big data analytics
framework for smart cities. Future Generation
Computer Systems, 91, 620-633.

11. Wang, Y. F., & Ding, D. W. (2015, April). Topology
characters of the linux call graph. In 2015 2nd
International Conference on Information Science and
Control Engineering (ICISCE) (pp. 517-518). IEEE.

12. Blokhin, K., Saxe, J., & Mentis, D. (2013, July).
Malware similarity identification using call graph
based system call subsequence features. In 2013
IEEE 33rd International Conference on Distributed
Computing Systems Workshops (pp. 6-10). IEEE.

13. Kato, T., Hayashi, S., & Saeki, M. (2012, October).
Cutting a method call graph for supporting feature
location. In 2012 Fourth International Workshop on
Empirical Software Engineering in Practice (pp. 55-
57). IEEE.

14. Agrawal, G. (1999). Simultaneous demand-driven
data-flow and call graph analysis. In Software
Maintenance, 1999.(ICSM'99) Proceedings. IEEE
International Conference on(pp. 453-462). IEEE.

15. Yousefi, A., & Wassyng, A. (2013, March). A call
graph mining and matching based defect
localization technique. In 2013 IEEE Sixth
International Conference on Software Testing,
Verification and Validation Workshops (pp. 86-95).
IEEE.

16. Xue, J., Hu, C., Wang, K., Ma, R., & Leng, B. (2009,
December). Constructing a Knowledge Base for
Software Security Detection Based on Similar Call
Graph. In Computer and Electrical Engineering,
2009. ICCEE'09. Second International Conference on
(Vol. 1, pp. 593-597). IEEE.

17. Chroni, M., & Nikolopoulos, S. D. (2012, July). An
embedding graph-based model for software

A Call Graph Reduction Based Novel Storage Allocation Scheme for Smart City Applications

G
lo
ba

l
Jo

ur
na

l
of
 C

om
pu

te
r
Sc

ie
nc

e
an

d
Te

ch
no

lo
gy

 V

ol
um

e
X
X
II

Is
su

e
I
V
er
sio

n
I

13

 (

)
B

Y
e
a
r

20
22

© 2022 Global Journals

watermarking. In Intelligent Information Hiding and
Multimedia Signal Processing (IIH-MSP), 2012 Eighth
International Conference on (pp. 261-264). IEEE.

18. Wang, L., Gong, J., & Shi, L. (2015, November).
OLAP Visual Analytics on Large Software Call
Graphs with Hierarchical ChordMap. In Data Mining
Workshop (ICDMW), 2015 IEEE International
Conference on (pp. 675-679). IEEE.

19. Gurukar, S., & Ravindran, B. (2014, January).
Temporal analysis of telecom call graphs. In
Communication Systems and Networks
(COMSNETS), 2014 Sixth International Conference
on (pp. 1-6). IEEE.

	A Call Graph Reduction based Novel Storage Allocation Scheme for Smart City Applications
	Author
	I. Introduction
	II. Call Graph
	a) Definition
	b) Types of Call Graph
	i. Static Call Graph
	ii. Dynamic Call Graph

	c) Call Graph Reduction

	III.ProblemStatement
	IV. Proposed Approach
	V. Implementation and Results
	VI. Conclusion & Future Scope
	References Références Referencias

