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Abstract– This article considers the problem of determining 
critical points and areas in a system that is exposed to external 
forces. As a result, the system can lose its stability and go into 
a non-equilibrium state, and then collapse and cause various 
kinds of catastrophes. The study of the problem of 
identification and prediction of disasters is relevant, because 
allows you to take preventive measures to prevent them and 
reduce the risks of various negative scenarios. The 
mathematical theory of catastrophes and methods of the 
theory of stability find practical applications in various fields of 
applied mathematics, physics, mechanics, biology, as well as 
in economics and other sciences. The control of the 
bifurcation parameters of the system, under which the loss of 
its stability occurs, makes it possible to maintain its equilibrium 
state and avoid a catastrophe. As an example, the problem of 
determining the system deformations that arise under the 
action of the potential function of classical and couple stresses 
is given. Analytical and numerical methods for solving this 
problem and performing calculations using the high-level 
programming language Fortran, which is widely used for 
scientific and engineering calculations, contribute to obtaining 
an adequate result. 
Keywords: catastrophe, deformation, collapse, 
bifurcation, deformations, system stability. 

I. Introduction 

n analysis of the stability of a certain system is an 
urgent practical problem, since its reaction even 
to a small perturbation of the parameters can be 

so strong that it will lead the system to a catastrophic 
state of destruction. Natural disasters and other 
emergencies of a natural and man-made nature are 
threats to the national security of the country, since their 
onset leads to significant material damage to the 
economy and loss of human lives [1]. 

A catastrophe is the transition of a system from 
a stable state with small fluctuations and damped 
oscillations to a state in which the amplitude of these 
oscillations grows and transfers the system to a new 
non-equilibrium state. 

 
   

 
 

  
   

 
  

Methods of catastrophe theory offer tools for 
studying abrupt and abrupt transitions to a non-
equilibrium state of a system as a result of changes in 
its parameters, i.e. bifurcations. The identification of the 
main types of bifurcations and the construction of 
bifurcation diagrams will make it possible to control the 
parameters of a dynamic system in order to increase its 
stability. 

The mathematical theory of catastrophes arose 
thanks to the efforts of many scientists, is based on the 
theory of stability and bifurcations of dynamical systems 
and analyzes the critical points of a potential function. 

The works of the American mathematician G. 
Whitney laid the foundations for the theory of 
singularities or singularities at points where the 
mathematical function is not defined or has irregular 
behavior [2]. 

The terms "catastrophe" and "catastrophe 
theory" were coined by the British mathematician 
Christopher Zieman and René Thom in the late 1960s 
and early 1970 s. E.K. Zieman proposed to use the term 
"catastrophe theory" to combine the theory of 
singularities, the theory of bifurcations and their 
applications. Singularity theory provides information 
about critical points for studying the onset of a 
"catastrophe", that is, a jump-like transition of a system 
from one state to another when its parameters change 
[3]. 

In his works, R. Tom gives a deep classification 
of seven fundamental types of catastrophes and 
analyzes the critical points at which the potential 
function loses its stable equilibrium [4]. 

V. I. Arnold expands the "ADE-classification" of 
catastrophe models, using deep connections with the 
theory of Lie algebra [5]. 

The works of the American scientist Gilmore R. 
(Gilmore R.) is devoted to the practical application of the 
theory of catastrophes in such areas of science and 
technology as mechanics, construction, climatology and 
others [6]. 

The issues of modeling natural disasters are 
considered in the work of scientists S.L. Castillo Daza 
and F. Naranjo Mayorga [7]. 

An important task in science and technology is 
to ensure the strength and reliability of industrial and civil 
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facilities in the face of man-made and natural disasters. 
The task is complicated by the fact that both 
catastrophes can have a simultaneous impact on an 
engineering structure. The reason for such synergy may 
be their mutual influence, since natural disasters can be 
the primary source of a man-made disaster, and vice 
versa. 

Deformations can lead to the loss of stability of 
the technical structure and to its collapse, and thus 
cause a man-made disaster. Reducing the negative 
consequences of their occurrence depends on how 
quickly it is possible to predict them, and then effectively 
use the mechanisms and tools to neutralize the negative 
consequences.

II. Statement of the Problem and
Mathematical Model

a) Formulation of the Problem
Consider the solution of the problem of the 

state of an underground engineering structure in a rock 
mass, which is affected not only by ordinary (classical) 
stresses, but also by couple stresses (Cosserat 
Wednesday Cosserat). In this case, classical stresses 
lead to tensile-compressive and shear deformations, 

while couple stresses cause deformations of curvature 
and rotation in the system.

The state of an elastic rock mass with an 
engineering structure is modeled by an infinite isotropic 
plane with moment stresses, in which there is a hole of 
arbitrary shape. It is required to obtain analytical 
formulas for determining the components of the stress, 
displacement and rotation functions of the elements of 
the rock mass around the engineering structure in order 
to identify critical areas.
This complex task will consist of two stages.

First, the state of the main (zero) untouched 
massif is determined, which is modeled by a solid 
plane.

Secondly, additional components of the 
functions of stresses, displacements and rotation of the 
array, in which there is a hole of arbitrary non-circular 
shape, are determined.

The stress state of an elastic plane with a hole 
consists of the components of the main stresses of the 
untouched massif and the components of additional 
stresses due to the presence of the hole. Stress 
functions can be represented as a sum (1):

),()()(),()()( ζψζψζψζϕζϕζϕ 000000 +=+= ),(Р),(Р),(Р ζζζζζζ 000 += (1)

where ),(Р),(),( ζζζψζϕ 000 - stress functions of the 
ground state characterizing the untouched massif;

),(),(),( 000000 ζζζψζϕ Р - stress functions of the 
additional stress state caused by the presence of a 
working; 

),(Р ζζ0 - solution of the well-known Helmholtz 
equation of the form (2):

02 =+∆ PcP (2)

where ∆ - Laplace operator, value 2с - is the square of 
the modulus of the wave vector,

),z(0ϕ −)z(0ψ Kolosov-Muskhelishvili stress functions for 
rock massif [8]. 

Let us write in the Cartesian coordinate system 
the basic (zero) equations of the planar moment theory 
of elasticity in the case of the absence of bulk ordinary 
and moment forces in an untouched massif:
- equilibrium equations according to the formula (3):

0;
y
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- Hooke's law for a medium with couple stresses 
according to formula (4):
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0
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x τττ,τ,σ,σ ≠ and 0

y
0
x μ,μ -

components, respectively, of the main ordinary and 
couple stresses of the untouched massif; 

−0
yx

0
y

0
x γ,ε,ε components of the main deformations 

from ordinary stresses;

0
y

0
x χ,χ - components of the main deformations 

(curvature) from moment stresses in an intact massif; 
Е – Young's modulus, G – Poisson's ratio.

The deformations and the component of the 
rotation vector are related to the components of the 
displacement vector by formulas (5):
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Fig. 1: Calculation Scheme of the Problem 
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III. Mathematical Model and Problem
Solving Methodology

To solve the problem, analytical and numerical 
methods are used, as well as calculations using the 
Fortran programming language. The choice in favor of 
this particular programming language is dictated by the 
convenience and obtaining a more accurate solution of 
differential equations.

Let us construct some domains S and Σ on the 
plane, which are described by the corresponding 
analytic functions of the complex variables z and ζ . Let 
us assign to each point ζ of the region Σ a certain point 
z of the region S using relation (6):

)(z ζω= (6)

where )(ζω is a single-valued analytic function in some 
domain Σ on the plane of the complex variable ηξζ i+=

, i is the imaginary unit ( 12 −=i ).
If the reverse correspondence is also possible, 

then there is a conformal mapping or transformation of 
the domain S onto Σ, and vice versa [7].

If the function (6) has a simple pole at some 
point, then the point ∞=z corresponds to the point ζ , 

and the function )(ζω will have the form )(fс)( ζ
ζ

ζω +=

with a holomorphic function )(f ζ (c-const). The point ζ

can become a potential bifurcation point or a critical 
point of the problem.

In addition, a holomorphic function can be 
expanded in a series with any required accuracy in the 
form (7):

...aaaa)(f ++++= 3
3

2
21

0
ζζζ

ζ (7)

Such a transformation allows you to display any 
mathematical function from the Cartesian coordinate 
system to the polar one. The geometric interpretation of 
such an operation is to map the area of an arbitrary 
contour onto a circle of unit radius centered at the origin, 
which greatly simplifies calculations.

The advantage of the proposed method is 
obtaining numerical results in dimensionless units.

In an untouched rock mass, only vertical 
displacements take place, so the main stresses have 
the following form (8):

,τH,-σσ 0
yx

0
xy

0
y

0
x 0==== τγλλ 0== 0

y
0
x μμ (8)

where 
ν

νλ
−

=
1

- side pressure coefficient, −γ specific 

(volumetric) weight of a rock mass; H - the depth of the 
array point being considered. Now the main stress 
functions will be equal to (9):

,z)(z)z(
4
10 λγϕ +Η

−=Γ= ,z)(z)z(
2
10 λγψ −Η

−=Γ′= ( ) 00 =Ρ z,z (9)

where −Γ′Γ, stress distribution characteristics at 
infinity.

Let's construct an underground tunnel of an 
arbitrary transverse profile in a rock mass and find the 
components of ordinary and moment stresses, 
displacements and rotations in its vicinity. Such an array 
around a non-circular working is modeled under plane 
deformation conditions as an infinite isotropic elastic 

weightless plane with asymmetric stress tensors. It is 
weakened by a hole of some form in the plane of the 
complex variable z=x+iy and free from external forces 
and moments. 

The calculation scheme of the problem is 
shown in Figure 1, where a non-circular hole of arbitrary 
shape is located in the plane of the complex variable 
z=x+iy.
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To solve the problem, we pass to the region of 
the complex variable Σ and conformally map the entire 
infinite region outside the hole onto the exterior of the 
unit circle in the variable θρηξζ iei =+= plane using the 
mapping function (10):

)(R)]([R)(z 1−+=+== ζεζζεφζζω         (10)

where ρ, θ are polar coordinates.
Condition (11) is required:

1+ 0≠′ )(ζφε при 1≥ζ                      (11)

Here n
n

N
n )i()( −+∑= ζβαζφ

1

( )constR,, nn −βα , 

ba
ba,baR

+
−

=
+

= ε
2

(a,b – semiaxes of an ellipse), 

ε - small numerical parameter, is in the interval 
11 ≤≤− ε and characterizes the deviation of a given hole 

from a circular. 
To solve the problem, initial and boundary 

conditions are set.

1. Initial conditions at t=0 are given by formula (12):

000 === θρθρ ωυυ ,,                   (12)

2. Boundary conditions on the contour of a unit circle 
at are 1=ρ given by formula (13):

0=− τσ ρθρ i , 0=ρµ (13)

where θρθρ ωυυ ,, - displacement and rotation 

components, ρθρρ µτσ ,, - stress components on the 

circuit.
The functions of the main stresses in the 

displayed area according to formula (8) will take the 
following form (14):

( ) ( ) ( ) ( ) ( ) 0=°ΡΓ′=°Γ=° ζζζωζψζωζϕ ,,, (14)

The additional stress functions are found from 
the boundary conditions and, according to the Laurent 
theorem, can be represented in the region outside the 
hole by uniformly convergent power series (15):

( ) ( ) ,b,a nnnn ∑==
∞ −−

0

0000 ζζψζζϕ ( ) ( ) θρζζ innn ecRp, −∞

∞−
∑ Κ=Ρ00 (15)

where ( )−Κ ρcRn modified Bessel function of the 
second kind of the nth order of the imaginary argument 
(McDonald function) [10]. To find the derivatives of the 

function, the following well-known recursive formulas 
(16) were used: 
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    (16)

After carrying out the required transformations, 
the stress functions )(),( ζψζϕ are obtained, which will 
be holomorphic from ζ outside the circle of unit radius, 
and the function ),( ζζΡ will satisfy equation (17):

,)(с 022 =Ρ′−∆Ρ ζω

ζζηζ ∂∂
∂

=
∂

∂
+

∂

∂
=∆

2

2

2

2

2
4                         (17)

Potentials ),(),(),( ζζζψζϕ Ρ outside the 
contour of the hole will be sought in the form of series in 
powers of the small parameter ε according to formula 
(18) and we will restrict ourselves to the zeroth and first 
approximations:

,)()( n
n∑=

∞

0
ζϕεζϕ

    
,)()( n

n∑=
∞

0
ζψεζψ    ∑

∞

Ρ=Ρ
0

),(),( ζζεζζ n
n                       (18)

We expand the functions included in the 
boundary conditions (13) into functional series in powers 
of the small parameter ε according to (18) and compare 
the expressions with each other for its equal powers. For 
expansion, we also use the following well-known power 
series (19):

...xxxx)(
)x(

kk +−+−=−∑=
+

∞ 32

0
11

1
1   (19)

Differentiating it, we get another power series 
we need (20): 
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1 211
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−+

∞

∑ xxkx
x

kk (20)

Also, equating the expressions with equal 
powers of the small parameter θσ inn e= , we obtain the 
following system for determining the solution of the 
Helmholtz equation - functions Pn (21):
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In this case, we restrict ourselves to the zero 
and first approximations (22)-(24):
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(24)

where ( ) ( ) ( ) )1(,, 000 ≥npba nnn - zero approximation 

coefficients;
( ) ( ) ( ) )1(,, 111 ≥npba nnn - coefficients for the first 

approximation.
As a result of expansion into series (18) and 

equating the coefficients for the same powers of a small 
parameter, we obtain a sequence of boundary value 
problems for a circular hole         ( ξω R= ):

(25)











==














∂
Ρ∂

−Φ′

=′+′+′+
∂
Ρ∂

−Φ′++′+ −−−

...)3,2,1(02Re

02
111

nimi
R
i

R
m

n
n

nnn
n

nnnn

σσ

φψφϕφϕ
σ

ψϕσϕ
(26)

IV. Results and Performance Analisis

A feature of problem (24) is that, as a result of 
the solution, we obtain only the imaginary parts of the 
complex variable ηξζ i+= . 

1. The stress functions of the state of the array in the 
zeroth approximation.

In the displayed area Σ on the contour of the 
working at ρ=1, the components of stresses and 
displacements are calculated as follows:

- for the main stress state according to the formulas
(27):
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0)0( −−+−=
Н ,

[ ]θλλγσθ 2cos)1()1(
2

0)0( −++−=
Н ,
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H                          
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H ,

,0000 === ωµµ ρθθρ
(27)

- for an additional stress state according to formulas 
(28):
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2. The stress functions of the state of the array in the 

first approximation.      
- the components of the main stresses on the contour 

of the working at ρ=1 will be found by the formulas 
(30): 
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- the components of additional stresses on the 

working contour at ρ=1 can be found by the 
formulas  (31): 
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From the formulas (27)-(32) obtained above for 

the main and additional stress state, it is clearly seen 
that the effect of moment stresses affects only the 
additional stress state of the mass, which consists of the 
classical elastic part and the part due to the influence of 
the new elastic constant λ  included in the quantity 

.
F

F
+1  

According to formulas (27) - (32), we will carry 
out numerical calculations using Fortran, we will build 
graphs with initial data that characterize the physical 
properties of the siltstone rock [11]:   

,МПа,Е 1010620 ⋅=  ν=0.20, α=0.726, 100940 −= αδ сек.
, λ=0.25, сR=3,  Macdonald functions of the second 
kind ,.K 034700 =  ,.K 040201 =  ,.K 061502 =

,.K 122203 = ,.K 305904 = ,.K 937805 = ..K 431836 =  The 
polar angle is taken in the interval πθ 20 ≤≤ . 

Table 1 shows the dimensionless values of the 
main stresses of a solid rock mass in the zero and first 
approximation, calculated using formulas (25) and (26). 

 
 

 

Table 1: Basic Stresses of a Solid Rock Mass in the Zero and First Approximation 

 
𝜽𝜽, 

degree −
𝝈𝝈𝝆𝝆

(𝟎𝟎)𝟎𝟎

𝜸𝜸Н −
𝝈𝝈𝝆𝝆

(𝟏𝟏)𝟎𝟎

𝜸𝜸Н −
𝝈𝝈𝜽𝜽

(𝟎𝟎)𝟎𝟎

𝜸𝜸Н −
𝝈𝝈𝜽𝜽

(𝟏𝟏)𝟎𝟎

𝜸𝜸Н −
𝝉𝝉𝝆𝝆𝝆𝝆

(𝟎𝟎)𝟎𝟎

𝜸𝜸Н −
𝝉𝝉𝝆𝝆𝝆𝝆

(𝟏𝟏)𝟎𝟎

𝜸𝜸Н −
𝝉𝝉𝜽𝜽𝜽𝜽

(𝟎𝟎)𝟎𝟎

𝜸𝜸Н −
𝝉𝝉𝜽𝜽𝜽𝜽

(𝟏𝟏)𝟎𝟎

𝜸𝜸Н 

0 0.250 0.000 1.000 0.000 0.000 0.000 0.000 0.000 
15 0.300 0.188 0.949 -0.188 0.188 0.325 0.188 0.325 
30 0.438 0.563 0.813 -0.563 0.325 0.325 0.325 0.325 
45 0.625 0.750 0.625 -0.750 0.375 0.000 0.375 0.000 
60 0.813 0.563 0.438 -0.563 0.325 -0.325 0.325 -0.325 
75 0.949 0.188 0.302 -0.188 0.188 -0.325 0.188 -0.325 
90 1.000 0.000 0.250 0.000 0.000 0.000 0.000 0.000 
105 0.949 0.188 0.302 -0.188 -0.188 0.325 -0.188 0.325 
120 0.812 0.563 0.438 -0.563 -0.325 0.325 -0.325 0.325 
135 0.625 0.750 0.625 -0.750 -0.375 0.000 -0.375 0.000 
150 0.438 0.563 0.813 -0.563 -0.325 -0.325 -0.325 -0.325 
165 0.300 0.188 0.949 -0.188 -0.188 -0.325 -0.188 -0.325 
180 0.250 0.000 1.000 0.000 0.000 0.000 0.000 0.000 
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Figure 2 shows the main radial stresses in the 
zero and first approximation of a solid massif, which are 
distributed symmetrically about the coordinate axes, 
and in this case the rock mass experiences only 
compression. The value of the radial stress at the upper 
points of the contour is 4 times greater than the stresses 

at the lateral points, and the circumferential stresses, on 
the contrary, are greater. 

Figure 3 shows the main circumferential 
stresses in the zero and first approximation. 

 
 

Fig. 2: Basic Radial Stresses in Zero and First Approximation 
 

Fig. 3: Basic Circumferential Stresses in Zero and First Approximation 

From Figure 3, we can conclude that the 
stresses are symmetrical with respect to the coordinate 
axes and the rock mass experiences only compression. 

Figure 4 shows that the main shear stresses in 
the zero and first approximation are symmetrical about 

the axis of the bisector of the first quarter. In this case, in 
the first and third quarters, the array experiences only 
compression, and in the rest of the area, tension. 

  
Fig. 4:  Basic Shear Stresses in Zero and First Approximation 
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Table 2 shows the values of additional stresses 

at the initial moment of time, calculated by formulas (22) 
and (24) in dimensionless units. 

Figure 5 shows additional moment hoop 
stresses in zero and first approximation.

Table 2: Additional Stresses in the Rock Mass Around the Loose Elliptical Working 
 

𝜃𝜃, 
degree −

𝜎𝜎𝜌𝜌
(0)00

𝛾𝛾Н  −
𝜎𝜎𝜌𝜌

(1)00

𝛾𝛾Н  −
𝜎𝜎𝜃𝜃

(0)00

𝛾𝛾Н  −
𝜎𝜎𝜃𝜃

(1)00

𝛾𝛾Н  −
𝜏𝜏𝜌𝜌𝜌𝜌

(0)00

𝛾𝛾Н  −
𝜏𝜏𝜌𝜌𝜌𝜌

(1)00

𝛾𝛾Н  −
𝜏𝜏𝜃𝜃𝜃𝜃

(0)00

𝛾𝛾Н  −
𝜏𝜏𝜃𝜃𝜃𝜃

(1)00

𝛾𝛾Н  HR

)(

γ
µθ

000  
HR

)(

γ
µθ

001
 

0 -0.250 0.000 1.359 2.624 0.000 0.000 0.000  0.000  -0,195  0,519  
15 -0.302 -0.188 1.261 2.177 -0.1885 -0.325 0.261  -0.543  -0,169  0,329  
30 -0.434 -0.563 0.992 1.099 -0.3258 -0.325 0.452  0.005  -0,098  0,462  
45 -0.625 -0.750 0.625 -0.025 -0.375 0.000 0.522  1.495  0,000  0,216  
60 -0.813 -0.563 0.258 -0.749 -0.325 0.325 0.452  2.585  0,098  0,152  
75 -0.949 -0.188 -0.011 -1.027 -0.188 0.325 0.261  2.038  0,169  0,001  
90 -1.000 0.000 -0.109 -1.074 0.000 0.000 0.000  0.000  0,195  -0,065  
105 -0.949 -0.188 -0.011 -1.027 0.188 -0.325 -0.261  -2.038  0,169  0,057  
120 -0.813 -0.563 0.258 -0.749 0.325 -0.325 -0.452  -2.585  0,098  0,045  
135 -0.625 -0.750 0.625 -0.025 0.375 0.000 -0.522  -1.495  0,000  0,364  
150 -0.437 -0.563 0.992 1.099 0.325 0.325 -0.452  -0.005  -0,098  0,287  
165 -0.301 -0.188 1.261 2.177 0.188 0.325 -0.261  0.5437  -0,169  0,513  
180 -0.250 0.000 1.359 2.624 0.000 0.000 0.000  0.000  -0,195  0,342  

  

Fig. 5:  Basic Additional Moment Stresses in Zero and First Approximation 

Analysis of Figure 5 shows that the first 
distribution is symmetrical, while the second distribution 
is symmetrical about the X and Y axes and asymmetric 
about the axes of the first and third, as well as the 
second and fourth quarters. 

Total stresses, displacements and rotations for 
an elliptical working are calculated as the sum of the 
zero and first approximations (main and additional). 

V. Conclusion 

Thus, the task of determining the potential 
stress functions that affect a certain system is 
completely solved. The advantage of the study is that 
the task is complicated by taking into account the 
moment stresses that cause deformations of curvature 

and rotation in the system. This increases the risk of loss 
of stability of the system and the rate of its destruction. 

The use of such methods as mathematical and 
computer modeling, the use of numerical methods, 
contributed to obtaining adequate solutions to the 
problem. 

The graphical implementation of the obtained 
numerical results makes it possible to see the critical 
zones in which the system experiences the greatest 
pressure from external forces. As a result, the system 
can lose its stability and go into a nonequilibrium state. 
It is in these areas that engineering construction requires 
urgent measures such as strengthening and 
strengthening mechanisms with effective technological 
solutions to avoid possible catastrophic collapses. 
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The adoption of preventive measures to identify 
the risks of disasters by identifying critical areas and 
tools for their neutralization can be widely used in the 
analysis of the behavior of complex systems that are 
affected by some external forces. 
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