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Abstract7

Numerous convolution neural networks increase accuracy of classification for remote sensing8

scene images at the expense of the models’ space and time sophistication. This causes the9

model to run slowly and prevents the realization of a trade-off among model accuracy and10

running time. The loss of deep characteristics as the network gets deeper makes it impossible11

to retrieve the key aspects with a sample double branching structure, which is bad for12

classifying remote sensing scene photos.13

14

Index terms— remote sensing, convolutional neural network, standard convolution, feature extraction.15

1 I. Introduction16

n applications including urban development, land-use planning, infrastructure construction management, natural17
disasters, and crisis management, urban land-use classification is crucial [1]. The rate of change in land usage18
increases with the nation’s rate of growth. Costly, labor-intensive, and time-consuming are landuse surveys [2].19
China conducts a national land-use survey every ten years. High-resolution remote sensing processing technologies20
are being developed, which may assist planners in quickly and affordably gathering comprehensive land-cover21
data [3]. Deep convolutional neural networks (DCNNs), for instance, might fully achieve the classification of22
urban land-use by automatically extracting species-specific information from remote sensing photos. According23
to current criteria for land-use classification, one typical class may include more than one type of item. Each24
might also contain various objects that adhere to various standards. The Land-Use Standard of the 2nd and 3rd25
National Land-Use Resource Surveys, for instance, has various contents. Convolutional neural networks (CNN)26
trying to identify high-resolution remote sensing images are faced with significant difficulties by the complex27
spatial and textural patterns in one class [4]. Early FCNbased models had a limited ability to reconstruct spatial28
information despite acquiring rich contextual data and suffered from loss of high-frequency details, blurring29
boundaries, and difficulty identifying features.A skip connection was introduced to the networks to address this30
issue. By combining the multi-layer feature maps from the encoder with the decoder structure for incremental31
up sampling, Ronneberger et alU-Net.’s.32

Architecture created high-resolution feature maps [5]. The classification effects of object boundaries are33
improved by the merging of high-and low-level semantic information. Later, Yu and Koltun added atrous34
convolution to fully convolutional networks (FCN), which could maintain the resolution of a featured image,35
expand the receptive field to capture multi-scale context information, and boost the precision of semantic36
segmentation using spatial information in the images [6]. Spatial Pyramid Pooling (SPP) [7] has been widely37
used to better capture information about the global context.38

To take advantage of the potential of global context information, Zhao et al. used a pyramid pooling module to39
aggregate the context of several regions [8]. In order to gather multi-scale information, Chen et al. implemented40
pyramid-shaped atrous pooling in spatial dimensions [9] and piled up atrous convolution [10] with various atrous41
in cascade or in parallel. The resolution in the scale axis dimension was insufficient for Atrous Spatial Pyramid42
Pooling (ASPP) [9] to precisely extract target features from remote sensing images, therefore it still had certain43
drawbacks (RSIs). In order to effectively identify complicated situations while maintaining the model’s size,44
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2 II. RELATED WORKS

Yang et al. introduced densely-connected Atrous Spatial Pyramid Pooling (DenseASPP) [12], which was able45
to cover a broader scale of the feature map and acquire more intensive receptive field information. A labor-46
intensive foundation, including welltagged remote sensing image labels for the most recent urban land cover47
types under distinct categorization standards, must be built in order to address the inherent difficulties in48
the present classification methods used to classify urban land use. Combining algorithms to produce higher-49
level sematic class images is another effective way to replace the original photos in laborintensive tasks. We50
proposed a double-layer deep convolutional neural network called DUA-Net that mainly combined two networks51
with different advantages, U-Net and DenseASPP, into a parallel structure in order to take into account the52
characteristics of urban land-use types, which contain multiple elements in one type. The methodology utilised53
in this study can produce a larger, continuous block of land use classification for urban areas. It can considerably54
cut down on operation durations and manual interactions when using the image of this classification result as55
the input for artificial fine classification, which can increase efficiency. Additionally, with the aid of vector data,56
we can fully utilise the same standard to categorise the photographs taken at various points in time in order to57
study the changes in land types at various times.58

High resolution remote sensing images are being used in a variety of applications, including the classification59
of remote sensing scenes [1], hyperspectral image classification [2], change detection [3,4], geographic image60
classification, and the classification of land use [5, etc. However, image categorization presents significant61
challenges due to the intricate spatial patterns and geographical structure of remote sensing images. Therefore,62
it is crucial to effectively comprehend the semantic information of remote sensing photographs [6]. The goal of63
this study is to identify a straightforward and effective lightweight network model that is capable of quickly and64
reliably classifying remote sensing scene photos. Researchers have suggested a variety of techniques for efficiently65
extracting visual information.To begin with, manually created feature descriptors including colour histograms,66
texture descriptors, local binary mode, GIST, directional gradient histograms, bag-of-visual words (BOVW), etc.67
were used to extract picture features. Researchers then proposed some unsupervised feature learning techniques68
that can automatically extract shallow detail features from images in order to address the drawbacks of the69
method of manually extracting features. These techniques include principal component analysis (PCA), sparse70
coding, autoencoder, Latent Dirichlet allocation, and probabilistic latent semantic analysis. For the extraction of71
shallow picture information, the two feature extraction techniques mentioned above work quite well. However, the72
extraction of high-level features from images using these techniques is challenging, which restricts the development73
of classification accuracy.74

Researchers have proposed convolutional neural networks, which have the ability to automatically extract75
significantly discriminative features from images, as a way to get around the limitations of existing methods.76
Since then, the model based on convolution neural networks has replaced other techniques as the industry77
standard for classifying remote sensing scene images. A lightweight convolution neural network may now achieve78
a balance between the speed of model operation and the precision of model classification thanks to advancements79
in convolution neural networks. Lightweight networks have currently been used for a variety of applications,80
including target recognition, image segmentation, and classification. The fire module, which separates the initial81
basic convolution layer into an extrusion layer and an expansion layer, was proposed by SqueezeNet. The82
extension layer is made up of a set of continuous 1 x 1 convolution and 3 x convolution channels, whereas the83
extruded layer is made up of a continuous set of 1 x 1 convolution channels. The Google team’s MobileNet has84
three iterations: V1, V2, and V3. In order to divide the regular convolution into depthwise convolution and 1 x85
convolution, MobileNetV1 employs depthwise separable convolution. This significantly decreases the number of86
network parameters and, to some extent, increases accuracy. An inverse residual module and a linear bottleneck87
structure were presented by MobileNetV2. The convolution of 1 x 1 for ascending dimension, 3 x depthwise88
separable convolution for feature extraction, and 1 x 1 convolution for dimension reduction were all applied to this89
bottleneck structure in that order. With the addition of the SE module and the use of neural structure search,90
MobileNet V3 examines the network’s setup and parameters [10]. An extremely effective convolution neural91
network architecture called ShuffleNet was created for mobile devices with constrained processing resources.92
Compared to some sophisticated ones with comparable accuracy, the design only requires two operations-group93
convolution and channel mixing-which significantly lowers the computation time.94

2 II. Related Works95

Remote sensing picture databases are being produced in greater numbers. These datasets use a variety of land96
cover and land use categories, and Castillo-Navarro et al. [14] have developed datasets that cover various scenes to97
increase surface coverage. Additionally, the labels that have been applied to the datasets vary [15]. For instance,98
BigEarthNet [17] and SEN12MS [16] both give image-level labels and pixellevel labels, respectively, and both99
datasets with varying scene categories can only be used for particular semantic segmentation applications. For100
instance, LULC has hundreds of fine-grained semantic categories like highways, buildings, cars, the countryside,101
cities, etc.102

The circumstances that can show the relationship between the content of interest and its surroundings are103
rarely taken into account, and many datasets simply ignore the relationships within and across semantic classes104
[18]. Rich and detailed geometric features, texture information, and geospatial data are all present in high-105
resolution RSIs [19]. For land-use classification, the features extracted from these images can be interpreted with106
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high accuracy. Pixelbased image analysis, object-based image analysis, and pixel-level semantic segmentation107
have all been used to classify the land use of RSIs [20]. Lowresolution remote sensing photos have historically108
been classified primarily using spectral data from remote sensing photographs.109

Because the spectral features of pixels, which lack textural features and structural data, are unable to fully110
capture the characteristics of land-use kinds, the classification results for complicated land-use types, such as111
residential land and wasteland, are frequently less than optimal [21]. Similar pixels in different land-use types112
on residential and industrial land may exist. Some strategies, like Transfer Learning [22], Active Learning [24],113
and others, have been developed with the goal of increasing the size and enhancing the effectiveness of training114
datasets. Ammour et al. [25] merged two asymmetric networks for data domain adaption and classification,115
projected the two networks to the same feature space, and performed post-training for the weight coefficient116
adjustment method of the two networks. They employed a pretraining network for feature extraction.117

Migration tests were conducted by Zhou et al. [26] using data from the same sensor at various dates.118
Additionally, they created a very difficult migration experiment that tested the efficacy of feature extraction119
and migration structure and was performed on hyperspectral remote sensing data from various viewpoints. The120
object-oriented classification approach [27] takes into account the correlation information between pixels and the121
internal texture features of ground objects while leveraging the spectrum information of RSIs [28] to make up for122
the inadequacies of conventional pixel-based classification methods. However, feature descriptions are generally123
incomplete, and the data collected is frequently insufficient to assist the characterization and identification of124
ground objects.125

Deep learning overcomes the limitations of artificial features, directs object categorization, and achieves pixel-126
level land-use classification of RSIs by mastering the shape and texture aspects of various objects. Deep learning127
has been used extensively in RSIs for land-use classification. To automatically train the representative and128
discriminative features in a hierarchical way for land-use scene classification, deep filter banks were proposed to129
integrate multicolumn stacked denoising sparse autoencoders (SDSAE) with Fisher vectors (FV) [29]. A land-use130
classification framework for photographs (LUCFP) was presented by Xu et al., and it was effectively used to131
automate the verification of land surveys in China [30]. Adaptive hierarchical image segmentation improvement,132
multilevel extraction of features, and multiscale supervised deep -learning models were integrated to accurately133
produce detailed maps for disparate urban areas from the fusion of the UHSR ortho mosaic and digital elevation134
model, taking into account the highlevel details in an ultrahigh-spatial-resolution (UHSR) unmanned aerial135
vehicle (UAV) dataset (DSM). Excellent potential was shown by this framework for the thorough mapping of136
varied urban areas [31]. Another cuttingedge hybrid approach is multi-temporal relearning using convolutional137
long short-term memory (LSTM) models. It integrates post-classification relearning with locational semantic138
segmentation and is effective at categorising complex LULC maps with multitemporal VHR pictures [32].139

3 III. Methodology a) Proposed Architecture140

Figure 1 depicts the model’s overall structure, which is broken down into nine sections. We suggest a feature141
extraction structure for the network’s shallow layers in the first and second groups. The maximum pool layer142
is used for down sampling in the third group, where standard convolution and depth-wise separable convolution143
are combined. This reduces the spatial dimensions of the input images and lowers the danger of overfitting from144
irrelevant features. The majority of representative features from remote sensing image are extracted by groups 4145
through 8. For the purpose of extracting richer feature information, Groups 4 through 7 use the proposed dual146
branch multi-level feature intense fusion method.147

To extract deep-level features from Group 8, we sequentially applied 1 x 1 standard convolution, 3 x 3 standard148
convolution, and 3 x 3 depth wise separable convolution. The multilevel characteristics are fully exchanged and149
fused on the basis of double branch fusion, which not only increases classification accuracy but also significantly150
speeds up the network and achieves a balance between accuracy and speed. The number of convolution channels151
in Groups 5 and 8 is also increased to 256 and 512, respectively, in order to extract more features. The feature152
information generated by the final fusion is used to calculate the likelihood of each scene category, and Group153
9 is used for classification. Each layer in deep feature extraction structures from Group 4 to Group 7 may fully154
extract the data of the current layer through three branches, including Identity, 1 x 1 standard convolution, and155
3 x 3 depth wise separable convolution. Additionally, the shallow information loss caused by network deepening156
can be successfully avoided by merging the features retrieved by 1 x 1 standard convolution with each prior157
layer. Batch normalization (BN) can speed up training and use a greater learning rate while reducing the158
network’s reliance on parameter initialization. Additionally, there are far less remote sensing photos available159
for training compared to the natural image data collection. In order to gather spatial information, boundary160
information, multi-scale contextual information, and global contextual information, our proposed model utilised161
parallel modules. As a result, it was able to reduce border ambiguity and class imbalance, address the inaccurate,162
fragmented single element classification in urban land-use semantic segmentation, and increase urban land-use163
classification accuracy. This section showed the DUA-suggested Net’s architecture for classifying urban land use.164
The essential components of the suggested design, including the U-Net module, DenseASPP module, and Channel165
Attention Fusion module, were then thoroughly explained. In this study, U-Net and DenseASPP, two different166
DCNNs, were used to build the distributed system of DUA-Net, which fully utilised the various benefits of these167
two types of networks in the semantic segmentation of RSIs. The suggested framework has three components,168
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4 IV. RESULTS AND DISCUSSION

as seen in Figure 1: a backbone network, a parallel extracting features module, and a feature fusion module.169
First, the VGG16 network is introduced as the foundation for extracting the features in U-Net and DenseASPP.170
Second, we use the U-Net module and DenseASPP module to simultaneously collect various semantic pieces of171
information due to the complexity of land-use type, structure, and geographic distribution of abnormality.172

For more specifics, the DenseASPP module aggregates semantic information at various scales to capture173
multi-scale contextual information and global contextual information, and the U-Net module fuses high-level and174
low-level semantic information to improve the extraction of spatial and boundary information. Then, to address175
the issue of improper segmentation caused by comparable characteristics of similar categories, the feature maps176
output by the U-Net module and DenseASPP module were fused in the channel dimension through the attention177
mechanism in the Channel Attention Fusion module. The segmentation results were then produced by convolution178
with a convolution kernel size of 1 x 1 after the feature vectors had been mapped to the necessary number of179
classes. The DenseASPP module was introduced as the feature extractor in order to gather multi-scale contextual180
information as well as global contextual information in RSIs. In order to achieve integration at various levels with181
various dilation rates, DenseASPP employs the concept of dense connection and arranges numerous convolution182
layers in a cascade manner. Without significantly growing the model size, this organising approach not only183
covers a broader scale, but also covers it intensively. To gather semantic information from various scales, this184
work specifically exploited dense connections to send the output of each atrous convolution layer to all previously185
unvisited atrous convolution layers.186

Additionally, the atrous convolution dilation rate at each layer increased layer by layer, enlarging the receptive187
field while maintaining the same level of feature map resolution. The layer with the lowest dilation rate among188
them was positioned in the lower layer, and the layer with the highest dilation rate was positioned in the upper189
layer. The outputted feature map from the multi-scale convolution process was the last step. The connection190
between feature channels is typically ignored by traditional techniques, and thus exhibit low sensitivity to critical191
information characteristics throughout the fusion process.192

We used the channel attention method to successfully combine the feature maps from the U-Net module193
and the DenseASPP module. This fusion module achieved the automatic selection and weight assignment of194
attention regions, then increased output feature quality by using SENet to learn the correlation between various195
feature channels (and to boost the extraction of significant features). In particular, its primary operations were196
concatenation, squeeze, and excitation. The shallow features of the network are intended to be extracted by the197
first and second sets of down sampling structures. The impact of down sampling on network performance during198
the shallow feature extraction phase is significant. Down sampling is the process of scaling down the complex199
feature map to maintain the image’s primary features while reducing the spatial size of the image. Having a200
greater number of pooling layers is one of the primary techniques for down sampling in deep convolution neural201
networks.202

4 IV. Results and Discussion203

Three of the down sampling techniques indicated in Section IIB are utilised in the first and second levels of the204
network to verify the effectiveness of our suggested down sampling techniques. Two datasets, UC and RSSCN,205
were employed for the experiments, and the OA and Kappa were used as evaluation metrics. According to Figure206
2, the first and third convolution steps for the Conv-Downsampling (CD) are 1, while the second and fourth207
convolution steps are 2. The convolution kernels for the pooling down sampling (Max pooling-Downsampling,208
MD) are all 3 x 3, with convolution steps of 1 x 1. The pooling step size and maximum pooling size are both 2.On209
the two datasets, pooling down sampling had poorer classification accuracy and Kappa values than convolution210
down sampling. Convolution down sampling in deep networks produces superior nonlinear performance than211
pooled down sampling, which is the reason. On the 80/20UC and 50/50RSSCN datasets, the suggested down212
sampling methods have classification accuracy scores of 99.53% and 97.86%, respectively, and Kappa values of213
99.50% and 97.50%, which are greater than those of the other two down sampling methods.214

This demonstrates once again how much more accurately the multi-level features dense fusion technique215
can identify remote sensing scene photos. In this section, three types of visualisation, including grad cam, t-216
distribution random neighbour embedding (T-SNE), and randomly picked and tested are explained and examined217
in order to more clearly demonstrate the effectiveness of the suggested method. Through a visual thermal map,218
the grad cam presents the retrieved features in order of significance. The most comprehensive spatial and semantic219
information is found in the final layer of a convolution neural network.220

Grad Cam creates an attention map to highlight key portions of an image by fully utilizing the features of the221
last layer of convolution. In this experiment, some remote sensing scene photos from the RSSCN collection of222
”Industries,” ”Fields,” ”Residences,” ”Grass,” and ”Forests” are randomly chosen. Figure 2 compares the thermal223
diagram visualization outcomes of the enhanced BMDF-LCNN approach with the baseline LCNN-BFF method.224

Figure 2 shows that, for ”Industries” scenarios, the LCNN-BFF approach transfers the attention to the highway225
rather than accurately focusing on the factory region, whereas the proposed BMDF-LCNN method accurately226
focuses on the industrial area. While the BMDF-LCNN approach is well focused on the target region, the LCNN-227
BFF model’s focused areas for the ”Fields” and ”Grass” scenarios both showed a partial deviation, ignoring the228
similar surrounding targets and searching with few objects. Additionally, the LCNN-BFF method’s restricted229
coverage and inability to fully extract the target for scenario regions like ”Residence” and ”Forests” has an230
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impact on the classification accuracy. However, in these cases, the suggested BMDF-LCNN approach can get231
a comprehensive region of interest. Next, we use t-distribution random neighbor embedding to illustrate the232
classification results on the UC (8/2) and RSSCN233

(5/5) datasets (T-SNE).234
High-latitude characteristics are mapped by T-SNE to two-or threedimensional space for visualization, which235

is a very effective way to assess the classification effect of the model.236

5 V. Conclusion237

A lightweight network based on the dense fusion of dual-branch, multi-level features is proposed for the238
categorization of remote sensing scene photos. A fresh down sampling technique was also developed to gather239
more accurate feature data. The information of the current layer can be fully extracted and fused with the features240
extracted by 1x1 standard convolution in the previous layer using the three branches of 3 3 depth wise separable241
convolution, 1 x 1 standard convolution, and identity in the network. This effectively realizes the information242
interaction between different levels of features and improves the classification performance and computational243
speed of the model. The suggested model still requires development. Due to the generation of certain redundant244
data during multi-level feature heavy fusion, the computational complexity rises. Future
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