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6

Abstract7

In search, exploration, and reconnaissance tasks performed with autonomous ground vehicles,8

an image classification capability is needed for specifically identifying targeted objects9

(relevant classes) and at the same time recognize when a candidate image does not belong to10

anyone of the relevant classes (irrelevant images). In this paper, we present an open-set11

low-shot classifier that uses, during its training, a modest number (less than 40) of labeled12

images for each relevant class, and unlabeled irrelevant images that are randomly selected at13

each epoch of the training process. The new classifier is capable of identifying images from the14

relevant classes, determining when a candidate image is irrelevant, and it can further recognize15

categories of irrelevant images that were not included in the training (unseen). The proposed16

low-shot classifier can be attached as a top layer to any pre-trained feature extractor when17

constructing a Convolutional Neural Network.18

19

Index terms— semi-supervised learning, open-set classification, neural networks, receiver operating charac-20
teristic.21

1 I. Introduction22

xtensive research in the field of machine learning has been progressively improving the performance of object23
recognition algorithms which achieve impressive results on a variety of multiclass classification tasks [15,17,24].24
Especially in search, exploration, and reconnaissance applications where object recognition methods have been25
concentrated on a closed-set setting where all testing samples belong to one of the classes that the classifier has26
been trained on [29]. The limited finite number of classes which are the target of inspection need to be detected27
out of the infinite object classes that are encountered in unconstrained environment.28

To tackle this challenge, efforts have been made to endow Convolutional Neural Networks (CNNs) the innate29
human brain capability to identify objects they are trained on while deliberately discarding objects of no interest.30
Lately, the introduction of open-set classification [20,31,30] has introduced an ability to correctly identify images31
as unknown test objects that do not belong to any known classes, as opposed to falsely classifying them in32
one of the known classes (i.e., classes that the model has been trained on). More specifically, [28,10] defines33
open-set classification as the problem of balancing the known space ??specialization) and unknown open space34
(generalization) of the model. Examples such as out-of distribution detection [18] and realistic classification [26]35
show the interest in the concept of open-set recognition [4] while showing that CNNs can be trained to reject36
examples that have not been seen during training or are too hard to classify.37

Recently, works on video object discovery [33] go against the closed-set assumption that each image during38
inference belongs to one of the fixed number of relevant classes. In [33] the terminology of relevant and irrelevant39
is introduced and is used in this paper since it aligns with the definitions stated in the Abstract. In most real-40
life applications this closedset assumption is uncommon and ideal, therefore recently proposed methods [4] are41
subject to an open-set condition where images not seen during training should be classified into irrelevant or42
unseen classes. Consequentially, in this work we introduce the splitting of testing samples in three categories:43

1

Global Journals LATEX JournalKaleidoscope™
Artificial Intelligence formulated this projection for compatibility purposes from the original article published at Global Journals.
However, this technology is currently in beta. Therefore, kindly ignore odd layouts, missed formulae, text, tables, or figures.



2 II. FEATURE EXTRACTOR

(a) relevant; labeled samples used during train-Figure ??: Schematic of the two parts of our network. We44
feed to the Pretrained Network labeled ”Relevant” images and unlabeled ”Irrelevant” images. For each image45
our proposed classifier produces class score vectors that get classified using a threshold criterion and Receiver46
Operating Characteristic (ROC), with accuracy much greater than already existing techniques, especially for the47
irrelevant dataset.48

ing, (b) irrelevant; unlabeled samples used during training and (c) irrelevant but also unseen; for categories of49
images that are not seen during training and should be identified as irrelevant.50

Another challenge the visual recognition community faces is the absence of labeled examples. Especially in51
military applications having large labeled datasets is an unreal expectation as needs and mission tools used52
for search and reconnaissance evolve. An open-set recognizer will face limitations such as the absence of large53
amounts of training samples, thus an open-set recognition technique that simultaneously supports the few-shot54
setting is needed. Therefore, in this paper we propose a low-shot solution to the problem of open-set recognition55
which considers exclusively the classification layer of a CNN.56

Specifically, we present an approach on significantly improving the performance of a simple, time efficient,57
one-layer classifier on recognising labeled (relevant) images along with non-labeled (irrelevant and unseen as58
mentioned above) images (Figure ??). The ability to specifically recognize a number (of the order of 50) of59
relevant classes and also identify when an image does not belong to any of them in a labelinexpensive way is one60
of the main motivations for low-shot open-set recognition.61

Efforts with similar goals have been concentrated on the training of the entire CNN. For example, the PEELER62
algorithm [25] combines the random selection of a set of novel classes per episode, a loss that maximizes the63
posterior entropy for examples of those classes, and a new metric learning formulation in order to train the64
weights of a CNN in such a manner that it can recognize images of a limited amount of classes ( 20) that are65
unseen during training. Dhamija et al. [7] proposes the introduction of two loss functions that are designed to66
maximize entropy for unknown inputs while increasing separation in deep feature space by modifying magnitudes67
of known and unknown samples. Although the work of Dhamija et al. introduces the concept of unknown sample68
recognition like we do, the number of recognizable classes is still very limited compared to the testing done in69
our method.70

Both of the aforementioned algorithms train the entirety of the CNN, unlike the methods proposed by71
Kozerawski and Turk [23] which can augment any few shot learning method without requiring retraining in72
order to work in a few-shot multiclass open-set setting.73

Although not concerned with one-class classification, a similar approach is followed in our work too, where74
we utilize a pre-trained feature extractor (such as the ones publicly available by PyTorch 1 ) and propose an75
independent open-set low-shot classification method which can augment any existing feature extractor.76

To explore the open-set low-shot problem in a holistic, non-specific and easily applicable way, we concentrate77
only on the training of the classification matrix (matrix used to turn the feature vector to a probability vector78
in Figure ??), using the pre-trained ResNet feature extractors [15] discussed in Section 2. We reduce the image79
matrices to feature vectors [8,1] which are then used in Section 4 to train the classifier with the help of the80
analytic derivative of our loss function and a unique, partially labeled, target matrix. In Section 5, we use the81
classification variability statistics and a Receiver Operating Characteristic (ROC) curve as a method to calculate82
threshold scores for each relevant class. An approach that uses random selections of unlabeled irrelevant images83
during each epoch of the classifier training is introduced. Testing datasets are used in Section 3 for determining84
the ability to effectively classify all Relevant, Irrelevant and Unseen datasets. In the last Section we make some85
closing remarks on our work presented in this paper.86

In summary, the contributions of this work are the following:? We present a novel open-set low-shot (OSLS)87
classification method which can be added as the top layer to any pre-trained feature extractor in order to88

create a CNN that can classify images in relevant classes and also determine if an image does not belong to any89
of the relevant classes.90

2 II. Feature Extractor91

Deep Residual Networks have been proven to be a very effective in mapping images to a meaningful feature92
space, especially when trained from large datasets [32]. In this work we use ResNet18 and ResNet34 [16] to map93
the sample images to the vector space. Both architectures produce 512-long feature vectors which compared to94
deeper network feature products lead to a shorter algorithm running time. The different types of ResNets we95
used, although not very different, will be discussed in Section 3. The weights were trained using the ImageNet1k96
dataset [6] which involves a large-scale ontology of images. The development of the feature extractor itself is out97
of the scope of this paper and pre trained feature extractors available by PyTorch are used.98

Before providing the training images feature vectors to the OSLS classifier we normalize them using the99
following equation: (1) Where is a 512-long vector feature map and are its respective maximum and minimum100
values in vector form. This type of basic normalization constrains the values from 0 to 1. We apply the101
normalization to prevent the Exponential Loss and its Derivative in Equation ??and Equation ??1, respectively,102
from gaining extremely high values. Additionally, we demonstrate in Section 6 that this type of normalization103
significantly increases our method’s classification accuracy compared to the more popular softmax normalization.104
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It can be argued that the use of softmax normalization yields poor solutions for open-set recognition as it tends105
to overfit on the training classes.106

3 III. Datasets107

The proposed OSLS classification method is used on a variety of training and testing examples, each using108
different sample arrangements. To explore the capabilities of the proposed method in different settings, two109
different datasets are being used: the Caltech256 [11] and a custom Mixed dataset.110

To explain with more clarity our method and results, we describe the way the Caltech256 dataset is split in111
two groups. Caltech256 is an open source dataset, it consists of 256 different image classes and has been recently112
used a lot as a benchmark for a variety of machine learning applications [2,9].113

Similar to our selection of ResNets, we use an open source and broadly used dataset in order to make114
our example and results as general and less task specific as possible. As we intend to produce work that115
is going to be used in the future for specific applications, to give a hint on how the method can be geared116
towards recognition in unique environments the eight infrared classes (Figure 3) which are available from the117
Military Sensing Information Analysis Center (SENSIAC) Automatic Target Recognition (ATR) database [34]118
are used in a number of our tests. Finally, in order to explore the behavior of our method on unique and very119
different environments from the ones present in the Caltech256 dataset, we created our own infrared (IR) combat120
vehicle image group by taking snapshots from the publicly available IR videos provided in the Military Sensing121
Information Analysis Center (SENSIAC) ATR database (examples displayed in Figure 3). The new data product122
is composed of the same amount of pictures with the one in Figure 2, with the exception that the first 8 relevant123
image classes are infrared instead of Caltech 256 pictures. Although only The second dataset we train and test124
our classification method on is the Mixed dataset. The relevant group is composed of 50 select classes from the125
ImageNet [6] dataset and includes pictures of vehicles, aircraft, humans and weapons. This group will serve as126
the target images that are expected to be recognised. On the other hand, the irrelevant group is composed of 50127
classes from the MIT Places [35] dataset which includes a variety of outdoor scenery pictures such as buildings128
and natural environment. The choice of these two datasets is deliberate as in our application we are trying to129
recognize objects in a scene and push away scenes that have no relevant objects. Each class on the relevant part130
of the mixed dataset is comprised of 1,300 images, while each irrelevant class has available 13,000 pictures on131
average. The imbalance between relevant and irrelevant images is representative of the imbalance in the unlabeled132
data captured in the field which will contain many more irrelevant objects compared to targeted classes. From133
every class in both groups, 10 images are reserved for testing the accuracy of the various methods which are134
compared after the training of the classifier has been completed. When using the Mixed dataset in this work,135
a part of the irrelevant pictures will be reserved and used as unseen samples (Figure ??), images that have not136
been seen during training but have to be recognized by the classifier in the same way as the irrelevant.137

Examples of the mixed dataset images are presented on Figure 4 while a complete list of the classes in138
alphabetical order is presented in the Appendix. The way the mixed dataset is utilised for training and testing139
the low-shot classifier is discussed in Section 5.140

4 IV. Low-Shot Classifier Training141

The two integral parts of our classifier training process are the target matrix and the loss function. Our training142
goal is to tweak the initially randomized weight matrix in such a manner that when multiplying it with a testing143
feature map, it produces a score matrix whose largest value is the desired class element.144

In machine learning, a fully connected layer performs the following calculation:145
(146
Where W is weighting matrix of the classifier, F is the feature map matrix, V is the bias vector and f is the147

activation function. A Singular Value Decomposition (SVD) method solves our matrix equations [21,19]. The148
pseudo-inverse method calculation results as:149

(3)150
Here, is the feature maps„ is the weight matrix which we desire to train, and ?H is the target, the ideal outcome151

for the score matrix. Our MATLAB implementation handles the training one class at the time, therefore is a152
matrix and , is a long vector for each class, where is the number of training images in every epoch and = 512153
is the length of the feature vectors (constant). With no use of the bias vector, and the reversed order of and ,154
to account for the row-column switch, in SVD we calculate the , matrix one vector (class) at a time therefore155
essentially solving for the least square solution of:156

(4)157
When the exact solution does not exist, which means that is not a full-rank square matrix, we get approximate158

solutions as: Therefore the approximation error is: (6) and in a least-square approach the loss function is: (7)159
substituting Equation ??results:160

We introduce an exponential version of the least square solution in order to explore a new, faster converging161
loss function based on [22]. Our new squared-exponential loss function is: (9) therefore the gradient can be162
proven analytically to be: (10) and the gradient vector is: (11) There are two main reasons for choosing this loss163
function. A squared-exponential function is easy to differentiate analytically and the differentiation is applied164
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5 V. LOW-SHOT CLASSIFIER AND ROC THRESHOLD CALCULATION

to the linear algebra form implemented in the MATLAB code. Note that the dot operator in Equation ??1,165
i.e., . , used with multiplication in MATLAB, creates element wise operations. Compared to other differentiable166
functions we tested, the square-exponential was the one to converge faster and in a steady way. A problem we167
encountered, which we solved by normalizing the feature maps as described in Equation ??, is that because of168
the nature of the function, for numbers greater than 1, the Loss would result in extremely high values.169

The gradient matrix in Equation 11 is then multiplied by a learning rate( ) and added to the weight matrix (170
, ), repeating this sequence for every epoch. The steps taken towards training the classifier matrix are therefore171
all independent from machine learning libraries or functions. Although many different loss functions that get172
differentiated in a semi-analytic fashion are being used by machine learning libraries, we concentrated our efforts173
on not using any existing libraries to create a stand-alone method. Therefore the squared-exponential loss function174
is a good fit.175

As in most machine learning applications, the update mechanism used towards convergence is some variation176
of a normal gradient descent equation. In our specific case we use: (12) Here, in every epoch , , gets updated by177
subtracting from it the product of the learning rate [ and the gradient matrix. We obtain our learning rate using178
an algorithm inspired by Iterative Shrinkage-Thresholding Algorithm (ISTA) [3]. We begin with calculating a179
pseudo-loss which is going to be compared with the actual loss to determine whether the learning rate needs to be180
decreased or kept as specified on the previous epoch. This iterative method progressively decreases the learning181
rate as we approach closer to the desired optimal point. The last, and most unique part about our classification182
mAs in most machine learning applications, the update mechanism used towards convergence is some variation of183
a normal gradient descent equation. In our specific case we use: ethod is our target. As mentioned in the Section184
1, the uniqueness of our approach relies on the fact that we make use of unlabeled images during the training of185
the weight matrix. This is done by extending a typical onehot encoding [14] matrix to also include class score186
distributions as targets for the Irrelevant images. Labeled images have arrays of zeros and a unit value on the187
correct class element as targets.188

() = ? ? = || || = =1 2 = =1 ( ? ? ) 2 = =1 ( =1 ? ) 2 = =1 2 = =1 ( =1 ? ) 2 = =1 2 2 = ( . * 2 ) * ? =189
? ? ? ? ? ? ? ? ? ? ? ? ? ? 1 0 0 0 1 0 0 0 1 ?0.2 ?0.2 ?0.2 ?0.2 ?0.2 ?0.2 ?0.2 ?0.2 ?0.2 ? ? ? ? ? ? ? ? ? ? ?190
? ? ? +1 = ? 1 213191

Irrelevant pictures belong to none of the classes therefore the score for each class should be zero. By192
experimentation we concluded that the irrelevant target that works best should be a slight negative value,193
such as -0.2. This intuition matches some of the binary classification work that has been done on Support Vector194
Machines’ (SVM) correlation filters, where 0 and 1 were not as separable as a negative value (-0.1, -1) and 1195
[36,5]. As an example, if a training dataset was consisted of six pictures, half of them labeled and half of them196
unlabeled, and the labeled ones were members of three different classes, our target matrix would look as follows:197

We train the weight matrix in such a way that during evaluation the irrelevant images class score vector values198
are spread equally between the classes and acquire values as close to zero as possible. This helps the Irrelevant199
pictures to score less than the respective class threshold.200

Along with using this target oriented training procedure, we also increase our recognition accuracy by201
calculating our threshold scores using the ROC method as explained in Section 5.202

5 V. Low-Shot Classifier and Roc Threshold Calculation203

The multiplication between a feature vector and a weight matrix yields a class score vector. Neural Network204
classification theory uses the highest score (Top 1, Top 3 or Top 5 have been used too) to group the images205
into classes. We extend this criterion to make it applicable when unlabeled images are present by introducing a206
Threshold Score ( value for each class.207

The value serves as a binary discriminating test in order to group pictures in the Relevant and Irrelevant bins.208
As mentioned above, we don’t only need to divide pictures in the two groups, we also want the relevant group209
pictures to be normally classified in their respective class.210

It is important to note that the is calculated during the training of the OSLS. We need the to be pre-calculated211
before we start evaluating our testing dataset. Once the training has been completed and the is known, the212
classification process runs as follows: a) The testing image runs through the classifier and scores, which denote213
the likelihood of the image belonging to each class, are calculated. b) The image is assigned to the class with214
highest score. c) The score of the assigned image is compared to the of the class where it was assigned. If it is215
higher then it is considered as a member of the class. If lower, it is determined to be an irrelevant image. To216
maximize the combined accuracy we use the ROC curve [27,13,12] to chose our threshold values. The same Way217
we would do with a Normal Threshold, the ROC Threshold is going to be calculated right after training and218
before testing, using explicitly the training data.219

To demonstrate the need of using the ROC we graph the ROC curves of five, unique compared to each other,220
classes of pictures that we trained our classifier on. All five classes were part of the labeled dataset (relevant221
classes). We can see in Figure 7 False Relevant is the ratio of pictures that were irrelevant but were predicted as222
relevant, over the total number of incorrectly classified pictures.223

In our analysis we focus on the classification of Relevant pictures, which we assume to be the Positive statistical224
case, therefore we use the terms True Relevant Rate (TRR) and False Relevant Rate (FRR). TRR and FRR are225
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no different than the True Positive Rate (or Sensitivity) and False Positive Rate (or Fall-Out) respectively, used226
in statistical analysis. Therefore we define:(14) = + and = +227

In Figure 7 it is obvious that the IR Human class is so unique that the classifier does not have any trouble228
distinguishing it from the rest of the dataset, therefore as seen in the figure above its AUC equals to 1 and the229
ROC does not have much effect on its cumulative accuracy. Different classes though present different levels of230
difficulty for our classifier. The Chimp class as seen above, has an AUC of 0.91, which means that the ROC can231
significantly improve its cumulative accuracy if a is picked wisely.232

The Normal Threshold would pick the point on the graph where the False Relevant Rate is minimum for a233
True Relevant Rate of 1, hence, for the Chimp graph, the ¹0.57. 1.00º point. Using our ROC algorithm we can234
pick any other point on the graph, such as the ¹0.20. 0.84º point which is the one further away from the blue line235
that represents a random guess. By doing this, although we slightly decreased our TRR, we get a great increase236
in FRR, which results to a significantly higher cumulative accuracy. This accuracy increase is going to be clearly237
presented and discussed in the next Section.238

Tables 1, 2 and 3 demonstrate the usefulness of the ROC method in classifying Relevant images and rejecting239
an image if it is Irrelevant. In order to highlight the ROC capabilities, we compare our results to the two baseline240
methods, the ”No Irrelevant” and the ”+1 Class”.241

The first baseline result (No Irrelevant), was produced by training the classifier only on labeled images of242
the relevant classes. This is the case where although we have unlabeled images for the irrelevant classes, we do243
not use them, expecting the labeled images to have enough meaningful features to accommodate recognizing the244
irrelevant ones. To evaluate this method, we use our Normal Threshold Score Criterion discussed above where245
we set the lowest correct relevant training score as the threshold for each class. During testing, if the image’s246
highest class score is larger than the respective threshold then its classified as Relevant, if not as irrelevant.247

The second baseline result, which we call ”+1 Class”, was generated by training the classifier to recognize the248
relevant classes along with one extra class which encapsulates all irrelevant images. During the training of the249
classifier, all unlabeled images of the Irrelevant classes were assigned to an extra class. The evaluation is being250
done by simply comparing the highest scoring index of every image with the correct target.251

Table ?? shows how the baseline methods scored for both relevant and irrelevant images compared to the252
Low-Shot Classifier, with and without applying the ROC optimization for the Top-1 selections.253

6 Table 1: Low-Shot Classifier Compared to Baseline254

Examples for the Top-1 Selections255
As ”Normal” we describe the dataset consisted of 50 relevant and 50 irrelevant Caltech256 classes and as256

”Infrared” the dataset where we have substituted 8 of the relevant classes with IR ones. Both datasets are257
described in Section 3. The Low-Shot Classifier results are obtained by running the algorithm described up until258
Section 6 and the Low-Shot Classifier with ROC by adding the ROC extension. ”R” and ”I” are the relevant259
and irrelevant classification accuracy re-spectively. The numbers shown in the tables are the Top-1 percentages260
of images that got classified correctly during evaluation. It can be observed that the baseline methods are unable261
to classify decently both groups of images. The +1 Class method seems to over-train the classifier on recognising262
the unlabeled images failing to put the labeled ones in the correct classes. This happens most likely due to the263
unbalanced training data, as the 51st class has as many images as the rest 50 together. On the other hand, by264
using only labeled images, we train the classifier to specifically recognise the labeled group, failing to filter out265
the unlabeled images ”noise”.266

In the first row of Table ??, the results of our classifier without the ROC extension show that our loss function267
combined with our unique target matrix and the threshold score criterion can recognize equally well both labeled268
and unlabeled images. It is notable that for the relevant group our method loses a small amount of accuracy269
compared to the label-specific baseline method but does substantially better in identifying irrelevant images. The270
ROC method greatly increases the unlabeled images recognition, to the modest expense of the labeled images.271
The table shows the importance of using the ROC to greatly increase the cumulative accuracy. Our ROC classifier272
increases by 12% the cumulative recognition scores compared to the +1 Class method and by 25.4% compared273
to the label exclusive transfer learning method.274

The described results are also depicted in the Accuracy Comparison Graph in Figure 8. For every method275
discussed we use three different ResNet10 feature extractors (BatchSGM, SGM, L2) in order to show the276
consistency of our classifier results.277

With a few exceptions, no matter the feature extractor or the nature of our dataset (including infrared,278
including more unlabeled images), our proposed method (green data points) not only provides a higher cumulative279
accuracy but also eliminates the bias between labeled and unlabeled images by classifying both equally well when280
compared to the baseline approaches. In the graph we introduced the results of our extended datasets which281
consists of more unlabeled images.282

Table ?? offers a closer look to the comparison of the two extended datasets.283
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8 VI. OSLS CLASSIFIER RESULTS

7 Table 2: Extended Datasets Comparisons284

We follow the same notation in Table ?? as used in Table ??, with the only difference being that the ”+50” and285
”+150” Irrelevant datasets are the two expanded datasets noted in Section 3. Although it is clear in both in286
Table ?? and the plot in Figure 8, that our method still scores better in a cumulative perspective, we can also287
observe that biases against the relevant (in Low-Shot Classifier with ROC algorithm) or irrelevant (in Low-Shot288
Classifier algorithm) group begin to occur when increasing the amount of irrelevant images.289

We see that for the Low-Shot Classifier the more we increase the irrelevant to relevant ratio the worse we score290
on the irrelevant part. This might seem counter intuitive as we would expect that the more unlabeled images we291
see during training, the better we would be able to recognise them. In reality, we introduce many more feature292
elements on the irrelevant part, which leads to consequently eliminating their uniqueness.293

When introducing the proposed ROC approach on the second row (Table ??) we do not observe the introduction294
of bias because the ROC threshold has been adjusted in such a way that it is non discriminating against any295
group (OptimalROC). On Table ?? we present the results of our adjusted ROC Classifier being used on the +150296
Irrelevant dataset. The same behavior is observed when we test the rest datasets.297

The ”Optimal ROC” and ”No Irrelevant” rows correspond to Table ?? second and fourth data rows. Putting a298
constraint on how much we are willing to shift the )( to limit the loss in relevant, affects negatively the irrelevant.299
We desire to find a percentage which during testing gives us a decent cumulative accuracy without big losses300
on the Relevant part. This could be imagined as turning a knob to tune our ROC Table ??: ROC Adjustment301
for the +150 Irrelevant dataset implementation. This can be specific in every application, therefore an open302
ended approach is adopted. A100% constraint would be the Low-Shot Classifier without ROC, as we set our303
Threshold Scores to be the lowest correctly classified irrelevant picture in every class. On the table presented, a304
90% Constraint means that we ask our ROC algorithm to keep our thresholds to a value that will not hurt our305
correct relevant guesses more than 10% during the calculation of the . Therefore these constraints are applied306
when using the training images and they differ from the percentages encountered in the testing (Table ??). As307
we can see, for the specific case we can compromise with an 18.7% total increase instead of the the 20.5% of the308
optimal case, in order to get a more equal recognition accuracy.309

8 VI. OSLS Classifier Results310

The Low-Shot Classifier is able to recognise images from the relevant classes and also identify irrelevant images311
from the classes it has seen during training. Ideally, during operation we desire to recognise objects that are not312
seen at all during training, which is the main objective of openset recognition. To achieve this we extend the313
capabilities of the Low-Shot Classifier described in Section 3 to recognizing unseen images resulting the OSLS314
Classifier. The unseen samples are the sub-group of the irrelevant classes that do not get involved in training but315
it is still expected that the OSLS Classifier recognises them as irrelevant. This ). By introducing this imbalance316
and by not repeating the same irrelevant samples in each epoch, our classifier is able to generalize better on the317
irrelevant part, yielding better classification accuracy for the irrelevant and unseen testing samples. In all results318
presented in this paper the testing images are always different than the images used during training. All the319
results presented in the box plots of this text are for an OSLS classifier that is trained on 40 relevant and 40320
irrelevant classes, both of which have the amount of relevant images per class specified in the x-axis. Similar321
works in the open-set literature [10,7,25] are using a lower number of classes during training and testing (10 to322
95 classes compared to the total number of classes used in this paper ranging between 90 and 250). To show how323
the OSLS Classifier performs in tests where the same order of classes are used, we vary the number of relevant324
and irrelevant classes used during training. Although it is of interest to recognize samples of as many classes325
as possible (a maximum of 40 as presented in Figure 10), by observing Table ?? it is evident that the OSLS326
Classifier achieves very high Top-1 accuracy scores in situations where the relevant and irrelevant classes we are327
trying to detect are limited. We take as an example the case (in bold) where we train the of the proposed method328
we attach the classifier to deeper feature extractors. Throughout the paper the feature extractor used to test329
any classifier was a pretrained ResNet18 provided by PyTorch1. In Figure 11 results for a classifier similar to330
the one in Figure 10 are presented with the only difference being that the feature vectors are produced using331
the deeper ResNet34. Improvements in accuracy ranging from _0.11 to _0.02 (for the 5 and 40 Images per332
Class cases respectively), compared to those of Figure 10b, can be observed for the relevant testing samples while333
virtually no improvement is observed for the irrelevant and the unseen samples. Similar results are expected334
if the OSLS Classifier is used as a head for deeper networks which produce feature vectors of higher quality.335
The improvements can be attributed to the fact that a deeper network has the ability to produce better quality336
feature representations.337

The image feature representations used in this study are obtained raw, before any normalization is applied to338
them. As mentioned in Section 2, we use Equation 1 to normalized the input feature vectors. Figure 12 exhibits339
a decrease in accuracy if the features are normalized using the popular Softmax normalization commonly used in340
classification layers. More specifically, the OSLS results in Figure 10b show an improvement compared to Figure341
12 that ranges from 0.19 to 0.15 for the relevant, 0.17 to 0.08 for the irrelevant and 0.26 to 0.08 for the unseen342
testing samples (for the 5 and 40 Images per Class cases respectively).343

Finally, in order to demonstrate the value of the OSLS classifier, we compare it to the two baseline examples344
mentioned in Table ??. The first alternative method (Figure 13a) for classifying relevant samples along with345
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rejecting irrelevant and unseen images is to group all the later in one class during training by assigning the extra346
class label to them (”+1 Class”). The second method (Figure 13b) the OSLS Classifier is compared to is a normal347
classification layer which is trained only on relevant images but is expected to recognize irrelevant and unseen348
images too (”No Irrelevant”).349

By comparing Figure 10b to Figure 13a, for a low number of samples per class, the ”+1 Class” method350
performs equally well or in cases even better in all three categories compared to OSLS, with relevant accuracy351
scores ranging from 0.6 to 0.7 for the 5, 10 and 20 Images per Class cases while unseen and irrelevant recognition352
reaching accuracies 0.96. When enough data samples per class are available though, the OSLS method improves353
the relevant accuracy by 0.05 and 0.1 for the 30 and 40 images per class cases respectively. The improvement354
in relevant image classification that the OSLS classification (Figure 10b) achieves is significant compared to the355
minor ( 0.01) decrease in relevant and unseen accuracy scores.356

The OSLS classifier is meant to be used as the final layer of any CNN that is expected to recognise samples357
that belong to the training classes while identifying as irrelevant images that are not relevant regardless if they358
originate from seen or unseen during training datasets. In order to demonstrate the versatility (5 and 10), a359
normal classification layer tends to over-fit on the later. Due to this over-fitting, the ROC Threshold rejects most360
of the samples during testing resulting to very high ( 0.9) irrelevant and unseen and very low ( 0.53) relevant361
accuracy scores. When there are more training images per class, a significant increase in relevant accuracy362
can be observed which is followed by a decrease in irrelevant and unseen accuracy. More specifically, assuming363
similar specifications (normalization, loss function etc.), if a single layer classifier is trained on 40 classes, each364
one including 40 images, the mean relevant, irrelevant and unseen accuracies during testing are 0.78, 0.72 and365
0.73 respectively. If an equal number of unlabeled images are used during training, in the manner specified by366
the OSLS method, the mean relevant accuracy decreases by 0.02 while the irrelevant and unseen accuracy scores367
increase by 0.22 and 0.21 respectively. The trade-off between a very small decrease in relevant accuracy and a368
ten times larger increase in both irrelevant and unseen classification performance is the best demonstration of369
how the OSLS Classifier can be utilized in real-life applications.370

The proposed OSLS Classifier using the ROC Threshold Score criterion not only makes the resulting model371
more flexible and easy to customize depending on the needs of the datasets, but also makes the method flexible for372
any application. This is a specifically interesting feature of our work, as we can use the classifier as an extension373
to any image recognition algorithm which desires to filter out irrelevant and unseen images without the expense374
of labeling.375

9 VII. Conclusion376

In military reconnaissance applications a capability is needed where objects of interest -such as adversary targets-377
are reliably distinguished from objects of no relevance. Although a modest amount of labeled examples for the378
targets might be available to use during the training of the classifier, labels for the irrelevant objects might be379
scarce or even not possible to obtain.380

To tackle this problem in this work we present an Open-Set Low-Shot Classifier which is trained using a381
modest number of labeled images from the relevant classes and unlabeled irrelevant images. During testing, this382
information is used for determining when a candidate image is either relevant, irrelevant or even unseen during383
training. The OSLS Classifier performs better compared to baseline classifying approaches, is able to handle the384
classification of many more classes compared to similar open-set approaches in the visual recognition literature385
and is able to demonstrate sufficient balance with high 1 2
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