
Towards Verification of UML Class Models using Formal1

Specification Methods: A Review2

Emanuel S. Grant3

Received: 1 January 1970 Accepted: 1 January 1970 Published: 1 January 19704

5

Abstract6

Abstractâ??” In today’s world, many elements of our lives are being affected by software and7

for that we are in greater need of high-quality software. The Unified Modeling Language8

(UML) is considered the de facto standard for object-oriented software model development.9

UML class diagram plays an important role in the design and specification of software10

systems. A class diagram provides a static description of system components.11

12

Index terms— formal methods; model verification; MDE; UML models; UML class diagrams13

1 Introduction14

raphical models of software systems are designed and developed in the initial phase of the Software Development15
Life Cycle (SDLC) [1]. A model is an abstract representation that is used to analyse and understand a different16
aspect of software system [2]. In Model-Driven Engineering (MDE), the software design model is considered a17
foundation of all development activities. Models in software engineering are used to elicit requirements, design18
the system, and develop the code of the proposed system.19

In software engineering, it is essential and beneficial to design a model before the implementation.20
It provides an understandable view of the system and improves communication among technical developers21

and non-technical users. Along with that, the software design model provides identification of ambiguities and22
uncertainties at the initial level of SDLC with the help of model verification techniques [3,4].23

Unified Modeling Language (UML) [2] is a widely used graphical modeling language, and it is extensively used24
in MDE. It is used to specify, simulate, and construct software system components. The UML has been adopted25
and standardized by the Object Modeling Group [5]. It has many static and dynamic models for dealing with26
different aspects of software.27

The class model is an essential part of UML which performs a major role in analysis and design of software28
[5].This work considers the UML class diagram, which is the most fundamental and widely used among all29
UML models according to a survey presented in [6]. A Class Diagram provides a static description of system30
components. The key components of a class model are classes with their attributes and methods, hierarchy31
(generalization) class relationships, and associations (general, aggregation, and composition) [2,7].32

UML is considered the standard for objectoriented software model development that allows modeling of various33
aspects of complex systems [2,7]. However, there are many concepts in the UML with imprecise semantics, which34
limit the use of the UML and reduce the quality of the UML models. Also, they lack a formal foundation.35
Therefore, model verification is not possible in them. Thus, developing technologies for the analysis and36
verification of UML models is significant to developers who use UML for system modeling.37

The programming language code is developed with the reference of the design models in MDE, and defects38
and ambiguities in the model can implicitly transfer into the programming code, making it more difficult to39
determine and rectify. Also, the development of these models is a highly time-intensive process. Therefore, it is40
extremely important to check the correctness of these models and identify the problems in the early stage of the41
software design process.42

Model verification ensures that the design model is unambiguous, correct, and bug-free. It essentially verifies43
the model’s accuracy and guarantees that the model is consistent and acceptable. The ability to analyse and44
validate UML models is provided by formal specification methods [8]. Formal methods involve the use of a45

1

Global Journals LATEX JournalKaleidoscope™
Artificial Intelligence formulated this projection for compatibility purposes from the original article published at Global Journals.
However, this technology is currently in beta. Therefore, kindly ignore odd layouts, missed formulae, text, tables, or figures.

CrossRef DOI of original article:



8 I. UML CLASS DIAGRAM

specification language and mathematical theories to design models. They enhance consistency, eliminate design46
flaws, and improve system reliability.47

Despite the challenges that model complexity has introduced into MDE-based software development processes,48
as well as the benefits of using formal methods to verify software, there has been a lot of work done on applying49
formal methods and formal analysis techniques to ensure the model correctness.50

This paper reviews the progress of some research articles on UML class model verification methods Z(zed) and51
Object Constraint Language (OCL) and directs future research in the area of formal specification language. The52
primary goal of this work is to provide a summary of approaches considered in selected articles, along with the53
quality of their results and conclusions. This review will be useful for researchers to understand the important54
open issues in existing methods and limitations that need to be addressed in the area of model correctness.55

The remainder of the paper is organized as follows. Section 2 represents the review process including the56
research questions and the inclusion/exclusion criteria. Section 3 gives a brief theoretical background of UML57
class model along with the model transformation and formal methods to verify the correctness of UML models.58
Section 4discusses the studies and work done in the area of verification and correctness of UML class models using59
formal methods. Section 5 discusses the review summary and important open issues in the domain of formal60
specification methods followed by the conclusion.61

2 II.62

3 Review Process63

This section discusses the Research Questions followed by defining inclusion and exclusion criteria for the review.64

4 a) Research Questions65

This paper focuses on providing an analysis and comparison of the research initiatives done in the field of formal66
verification approaches mainly Z(zed) notation and Object Constraint Language (OCL). More precisely, we aim67
to answer the following research questions in this literature review: RQ1:68

5 Theoretical Background69

This section covers some of the theories and prior work in the area of UML models and various aspects of UML70
class diagrams along with the description of the requirement of model transformation and formal specification71
methods to verify the correctness of such models.72

6 H b) Inclusion/Exclusion Criteria73

In this section, we defined inclusion/exclusion criteria to determine the related works. The inclusion criteria74
focus on: 1)studies related to the verification of UML class model using formal methods Z and OCL and 2) paper75
published in English. On the other hand, We exclude the formal verification studies that are related to dynamic76
UML models. Based on the inclusion/exclusion criteria, I have selected following studies that are related to the77
Z-notation and OCL for this review.78

7 a) Unified Modeling Language (UML)79

UML [2,7] has been widely accepted as the standard language for modeling and documenting software systems.80
Their significance has been enhanced with the beginning of the Model-Driven Development (MDD) approach, in81
which analysis and design models play an essential role in the process of software development. The UML offers82
a number of diagram forms to describe particular aspects of software artifacts. These diagram structures can be83
divided into two categories static or dynamic views:84

Static view: It describes the structural aspect of the system and its components. It includes objects, classes,85
attributes, operations, and their inter-relationships. The structural view can be represented by class diagrams86
and composite structure diagrams.87

Dynamic view: It describes the behavioral aspect of the system. The dynamic view reflects the changes related88
to the internal states of individual objects and changes in the system’s overall state. This view can be represented89
by sequence, activity, and state chart diagrams.90

8 i. UML Class Diagram91

The UML class diagrams are used to represent the static structure of system components [2,7]. It describes92
the system structure in terms of classes, attributes, and constraints imposed on classes (operations) and their93
inter-relationships.This work focuses on the use of the UML class diagrams. Class diagrams are used at the94
analysis phase to present a view of the static entities in the problem domain, and at the design phase to present95
a view of the static entities (classifiers) in the solution domain. A class diagram is best described as a set of96
graph elements connected by their relationships.97

2



Classes in UML models are represented as rectangles. Each class consists of a name, set of attributes, and98
set of operations on the class’s attributes. Figure ?? shows an example of a class diagram consisting of classes,99
associations (aggregations and compositions), and generalizations.100

ii101

9 . UML Association (Aggregation, Association, Composition,102

generalization)103

There are some rules and requirements for combining the classes to construct partial or complete UML class104
models.105

Association It can be depicted as bi-directional or unidirectional. The association lines indicate the possible106
relationship between the class entities [9]. An association represents attributes and objects from the related107
classes, such as the relationship between class A and class C seenin Fig. ??.108

10 Figure 1: UML Class Diagram109

Association ends can be annotated with labels, known as association end names and multiplicities. For example,110
multiplicity can be expressed as specific numbers, ranges of numbers, or unlimited numbers, as shown in Figure111
?? between classes A and C. Aggregation An aggregation is represented as an association with a white diamond112
on one end, where the class at the diamond end is the aggregate (container class). It includes or owns instances113
of the class (contained class) at the other end of the association [9] (e.g., the relationship between class A and114
B in Figure ??). Composition It is a special type of aggregation in which instances of the contained class are115
explicitly owned by instances of the container classes [9]; if an instance of the container class is deleted, the116
instances of the contained class are also deleted. Figure ?? shows class C, the container class, and class D, the117
contained class. It is represented as an association with a black diamond.118

Generalization A generalization is represented by an association with a triangle on one end represents, where119
the class at the triangle end of the association is the parent class of the classes at the other ends of the association,120
called subclasses [9]. A subclass inherits all of the parent class’s attributes, operations, and associations (e.g.,121
subclasses E and F inherit properties of parent class C in Figure ??).122

11 b) Model Transformation123

Models provide a level of abstraction that allows developers and stakeholders to visualize different parts of the124
system while avoiding implementation details. A large number of models can exist for any given system, and it125
is essential to assure the consistency of those models [10].126

Most software engineering operations have included model transformation in their development life cycle.127
It is the process of transforming a graphical model for the purposes of analysis, optimization, evolution,128

migration, or even code generation. Model transformation employs a collection of rules known as transformation129
rules, which take one or more input models and output one or more target models [11].130

Model transformation can be either manual or automatic. Manual transformation involves an application of131
custom transformation rules while in automatic transformation the predefined transformation rules are applied132
to class model [11]. Regardless of the transformation method used, it is essential that the software engineer has133
a thorough understanding of the project’s scope, as well as the syntax and semantics of the source and target134
models. Transformation rules will be designed and applied to the models in order to automate the transformation135
process. The source models will be UML class diagrams, and the target models will be their equivalent formal136
specification schemas.137

12 c) Formal Specification Methods138

The inadequacies of system and software specifications are one of the primary issues with software-intensive139
systems. Although the requirements should usually accurately describe the functions of the software system,140
many of the details that should be carried out and defined in a more detailed specification are not addressed.141

As a result, there are inconsistencies and misinterpretations, which lead to issues in the latter stages of design142
and implementation. These issues are frequently identified during the system integration stages. There are143
graphical software development methods, such as data-flow diagrams, finite state machines, and entity relationship144
diagrams, that have been shown to help with the development of better specifications, but they lack precision in145
the details of the specification and a smooth way of developing a design and implementation.146

Formal specification methods are feasible solution to these issues. They precisely define the system and ensure147
a smooth transition from specification to design to implementation. There are a number of formal specification148
languages such as Z notation, Object Constraint Language (OCL), VDM, Alloy etc. In general, all of these formal149
specification languages involve formal specification, refinement, and verification, which comprise of set theory,150
predicate logics, and algebra, among other things. The primary goal of our review is to compare two of these151
formal specification approaches i.e., Z notation and OCL.152

The syntax and semantics of static and dynamic aspects of a system are formally specified in terms of153
mathematical notations in formal languages. Formal languages improve the system’s reliability and security154

3



16 B) OBJECT CONSTRAINT LANGUAGE (OCL)

by reducing ambiguity in the system’s requirements using their mathematical representation. The use of formal155
languages is essential while working with the large/complex real-time software systems in which the accuracy of156
the system is important.157

The importance of formal languages increases in real-time safety critical systems where the primary concern158
is reliability and performance of the system. There is decent amount of work done in terms of defining and159
specifying formal languages for software systems and UML models, with some being accepted by the industry,160
such as Z, OCL, VDM, B, Alloy, etc. As each language has its own pros and cons, this survey compares two161
languages Z and OCL that can be utilize for verifying real-time safety critical systems.162

13 i. Z-notation163

The Z notation [12]- [15] is based on first-order logic and typed set theory. A schema i.e., a component of Z164
notation that describes the state and operations of a specification. A schema is a collection of variable declarations165
accompanied by a set of predicates that constrain the variable’s possible values.166

14 ii. Object Constraint Language (OCL)167

The Object Constraint Language (OCL) [16]- [22] is a constraint expression language for objectoriented languages168
and other modeling artifacts. OCL is a component of the Unified Modeling Language (UML) that plays a key169
role in the software lifecycle’s analysis phase. For a detailed and unambiguous specification, traditional graphical170
models, such as class models, are insufficient. Therefore, We require to add some more constraints to the objects171
to resolve those issues. However, the classic formal method requires a significant knowledge of mathematics,172
making it difficult for the average business or system modeler to employ. OCL has been designed to bridge this173
gap. It was created by IBM’s Insurance group as a business modeling language.174

IV.175

15 Literature Review a) Z notation176

The Z notation is used in the first research [S1, [12][13][14][15] to formalize and verify the UML class model.177
The authors ??Evans et al.) employed Z notation to develop the formal foundation for the UML core meta178
model in S1. They claimed that the formal foundation provides a number of benefits, including transparency,179
extendability, consistency testing, refinement, and proof [12,13].180

They have defined a compositional schema with multiple subschema a as to represent the UML class model. The181
sub-schemas formalize UML model elements such as type, instance, values, operation, associations, generalization182
etc.183

The authors also propose three alternatives for formalizing the UML model [12]: 1) Supplementary: In this184
way, the UML model’s informally specified elements are formally expressed. 2) Object-Oriented Extended Formal185
Language: In this approach, established formal methods are extended with object-oriented principles such as186
Object-Z and Z++. 3) Method Integration: In this method, the complete UML model is translated into a formal187
model in order to improve its precision.188

The authors of [12] expanded on their previous work by proposing a graphical representation transformation189
of the UML class model. They also offered a three-step roadmap for formalizing and verifying models: 1) Select190
a formal language that is both expressive and well supported by the tools for the model’s static and dynamic191
features of UML class model. 2) Formally describe a graphical modeling notation’s abstract syntax. 3) Define192
a function that transforms the model’s syntax and semantics into formal notation. Finally, tools for validating193
formal semantics should be developed.194

The authors of [14] suggested that formal UML analysis alone is insufficient for determining semantic195
correctness. Furthermore, the authors stated that it is not particularly accessible to practitioners with limited196
knowledge of discrete mathematics, and that industry experts’ comments is also necessary for the semantic validity197
of the UML model. In [15], Authors designed a formal methods reference manual for Z notation, which precisely198
and explicitly specifies the semantics of UML concepts. Along with that, the Inference rules for examining various199
UML model properties are provided in the reference manual [15].200

16 b) Object Constraint Language (OCL)201

In the second study [S2, [16][17][18][19][20][21][22], object constraints language (OCL) used for verification of the202
UML class model.203

Cadoli et al. [16] proposed a constraint programming-based linear inequality-based method for finite model204
verification. They used the Constraint Satisfaction Problem (CSP) to represent the UML class model, and the205
ILOG’s Solver assessed the satisfiability of the UML class model [16]. The Managed Object Format (MOF)206
syntax is used by the ILOG solver as an input. In addition, two class model correctness issues were addressed207
and encoded into CSP. In the first problem, they check that all the model’s classes are completely satisfied at208
the same time. In the second problem, they prove that a finite non-empty model can be generated from the class209
model.210

To verify the UML class model, Malgouyres and Motet [17] employed Constraint Logic Programming (CLP).211
They used CLP clauses to translate the UML class model, metamodel, and meta-metamodel [17]. In this212

4



approach, c Concrete metamodel and UML class model elements are translated into CLP facts while abstract213
elements and constraints are transformed into rules. CLP’s goals are also specified, which contradicts the214
consistency standards. Finally, the inconsistencies are handled by a unified checker. The UML class model215
is considered inconsistent if the unified checker identifies the solution to the goal and if the goals are resolved.216

Pérez and Porres [18] proposed a system for using CLP to assess the satisfiability of a UML class model. The217
suggested methodology detects design flaws in UML class models with OCL annotations. They used the bounded218
verification approach and used the model-finding tool formula to reason about finite constraints for the number219
of instances of the model. The suggested method verifies predefined correctness features such as satisfiability and220
the lack of redundant constraints. It can also be used to analyze complex models in order to discover the optimal221
object model for the domain. They also used an eclipse plug-in called CD-to-Formula to design the proposed222
framework.223

Cabot et al. [19] presented incremental verification of the class model’s OCL integrity constraint. Integrity224
checking is a technique used for determining whether an operation violates a specified integrity constraint. They225
introduced the term Potential Structure Event (PSE) and stated that verifying integrity requirements after each226
structure event (e.g., Insert, Update, Delete, or Specialized Entity) can be costly and time-consuming [19]. As a227
result, PSEs for each integrity constraint are recorded, and only those events that can violate the constraint are228
represented. Furthermore, only the instances of entity and relationship types that have been affected by PSEs229
are validated and verified.230

Cabot et al. [20] presented an approach to translate UML class models annotated with OCL constraints231
into a constraint satisfaction problem (CSP). The authors briefly discussed translation of UML/OCL classes,232
associations, generalization sets, and OCL invariants into CSP. A tool based on CSP [21] is then used to233
verify a predefined set of correctness properties for the original UML/OCL diagrams. The UML/OCL language234
combination integrates well with automated inference systems. If the generated CSP is solvable, the model is235
considered satisfiable otherwise is considered unsatisfiable. The CSP tool supports bounded reasoning about236
satisfiability, consistency, finite satisfiability, independence of invariants, and partial state completion. It237
handles class diagrams with multiplicity, class hierarchy, association-class constraints but does not allow multiple238
inheritance. Along with that, tool does not support all the features in OCL specification, such as constraints on239
a string, aggregation, and composition relationship.240

Cabot et al. presented the UML to CSP tool in [21]. It takes the XMI format for the class model and OCL241
as a separate text file for input. The model and OCL are translated to CSP, which is then verified by the CSP242
solver. The XMI file is parsed using the Metadata Repository API, while OCL constraints are processed by the243
Dresden OCL Toolkit.244

Cabot et al. [22] expanded on their previous work [20], arguing that an insufficient constraint or bound could245
miss defects in the model due to a small search space or could be inefficient if set too large. Large initial bounds246
and constraints are set in the proposed solution [22]. Then, using the interval constraint propagation technique,247
the set of bounds is tightened up as much as feasible with user input, and unwanted value from the bounds is248
removed. Since then this technique has been enhanced to the point where verification bounds are now defined249
automatically whenever its possible.250

17 V. Review Summary and Conclusion251

Software design models play an important part in modern software development. They are useful for more252
than just documentation; they are also used for analysis, design, testing, and even code development using an253
automated transformation technique. The transformation technique allows existing software artifacts to be reused254
automatically. However, it has several flaws, such as the fact that model flaws are automatically transmitted to255
the changed model through the transformation. These flaws are difficult to detect and correct. Model verification256
appears to be a viable solution to the problem.257

The verification of the UML class model is essential for assuring model quality prior to transformation.258
Verification of the UML class model through formal notation has been discussed in several studies. In this review,259
we discussed prior works in the field of formal specification specially related to Z and OCL methods. We presented260
a comparison of these formal methods in Table 2 based on the analysis of studies [12]- [22]. This comparison261
is performed based on the features like support for UML features, Tool support, feedback for the user, and the262
efficiency of the methods and verification tool. Both the methods provide support for association, aggregation,263
and generalization relationships and do not support the features like dependency relationships (aggregation and264
composition) and x or constraint. Z notation is supported by Z word and Z/Eves verification tools. USE and265
UML to CSP tools are capable of working with OCL. Both of these tools support semi-automatic transformation.266
Both the tools (Z word and USE) provide feedback to users in order to notify them of the verification process’s267
outcome. Z word provides the successful message in textual form on a pop-up window. In case of USE tool, if268
the verification process ends successfully it is complemented by a sample object model. This sample object model269
acts as the proof of the verification. When the verification process does not succeed, the Z Word and USE tools270
can display some hints in textual form on a window. This can help model designers in identifying the reasons for271
the failure and adjusting the model accordingly.272

However, this models or tools require from the user a significant level of expertise on formal aspects in order273

5



17 V. REVIEW SUMMARY AND CONCLUSION

to understand the feedbacks and resolve the issues. Overall, We can say that the existing verification tools, apart274
from being certainly limited in size, is in some cases targeted at a very limited or specific audience.275

Finally, efficiency is a major concern. Current UML class model verification methods effectively verify the276
correctness of small models with few constraints. However, in some circumstances, especially when dealing with277
large and complex models, their performance suffers. Along with that, they also lack support for certain key278
features of the UML class model.279

Unfortunately, none of the verification tools examined in this study performs well in terms of achieving the280
verification requirements. These tools and methods in general do not integrate well and have been developed281
to conduct verification apart from the rest of the activities that characterize a model designer’s work. It forces282
users to switch between model editors and verification tools to check for errors every time models are refined or283
improved, usually with little or no hint on where to apply fixes if the verification fails.284

To conclude this, in my opinion, a verification tool, in order to be effective and widely adopted, has to present,285
at least, few important characteristics: 1) It should provide support for some key features of UML class model286
(i.e., aggregation, composition, x or constraint), 2) It should easily integrate into the model designer tool chain,287
3) It should offer meaningful feedback for the user, and 4) It should be relatively efficient while verifying the288
large or complex real-world UML class models.

1

What is the importance of UML models and static
CD models?
RQ2: What is the importance of model transformation
and formal specification methods?
RQ3: Which model defects have been undertaken in
proposed approach?
RQ4: Is a verification approach supported by the tool?
RQ5: What are the deficiencies associated with the
selected formal approach?

Figure 1: Table 1 :

2

MethodSupport for UML Fea-
tures

Tool
Sup-
port

Feedback to user Efficiency

Error: Does not provide
Z Association, Generaliza-

tion, Multiplicity Con-
straints

Z
Word,
Z/Eves

meaningful feedback Success-
ful: message in textual form
on a pop-up

Not efficient with
large or complex
UML class models

window
OCLAssociation, Association

Classes, Generalization,
Multiplicity Constraints

USE
Tool
UML-
toCSP

Error: Does not provide
meaningful feedback Success-
ful: object model

Not efficient with
large or complex
UML class models

Figure 2: Table 2 :
289

6



[Spivey and Michael ()] , J Spivey , J R Michael . The Z notation 1992. Prentice Hall. 29.290

[Gutwenger et al. (2003)] ‘A New Approach For Visualizing UML Class Diagrams’. C Gutwenger , M Jünger ,291
K Klein , J Kupke , S Leipert , P Mutzel . Proc ACM Symp. Software Visualization (SOFTVIS03), (ACM292
Symp. Software Visualization (SOFTVIS03)) June 2003. Association for Computing Machinery. p. .293

[Davis et al. ()] ‘A strategy for comparing alternative software development life cycle models’. Alan M Davis , H294
Edward , Edward R Bersoff , Comer . IEEE Transactions on software Engineering 1988. 14 (10) p. .295

[Malgouyres and Motet ()] ‘A UML model consistency verification approach based on meta-modeling formaliza-296
tion’. Hugues Malgouyres , Gilles Motet . Proceedings of the 2006 ACM symposium on Applied computing,297
(the 2006 ACM symposium on Applied computing) 2006. p. .298

[Meedeniya and Apeksha ()] Correct model-tomodel transformation for formal verification, Dulani Meedeniya ,299
Apeksha . 2013. University of St Andrews (PhD diss)300

[Mens and Van Gorp ()] Electronic notes in theoretical computer science, Tom Mens , Pieter Van Gorp . 2006.301
152 p. . (A taxonomy of model transformation)302

[Cadoli et al. ()] ‘Finite satisfiability of UML class diagrams by Constraint Programming’. Marco Cadoli , Diego303
Calvanese , Giuseppe De Giacomo , Toni Mancini . CSP Techniques with Immediate Application (CSPIA)304
2004. 2 p. .305

[Clark and Evans (1997)] ‘Foundations of the unified modeling language’. T Clark , A Evans . Proc. 2nd Northern306
Formal Methods Workshop, (2nd Northern Formal Methods WorkshopIlkley, U.K.) Jul. 1997. Springer. p. .307

[Dobing and Parsons ()] ‘How UML is used’. Brian Dobing , Jeffrey Parsons . Communications of the ACM 2006.308
49 (5) p. .309

[Cabot and Teniente ()] ‘Incremental evaluation of OCL constraints’. Jordi Cabot , Ernest Teniente . Interna-310
tional Conference on Advanced Information Systems Engineering, (Berlin, Heidelberg) 2006. Springer. p.311
.312

[Varró ()] ‘Model transformation by example’. Dániel Varró . International Conference on Model Driven313
Engineering Languages and Systems, (Berlin, Heidelberg) 2006. Springer. p. .314

[Sendall and Kozaczynski ()] ‘Model transformation: The heart and soul of model-driven software development’.315
Shane Sendall , Wojtek Kozaczynski . IEEE software 2003. 20 (5) p. .316

[Pérez and Porres ()] ‘Reasoning about UML/OCL class diagrams using constraint logic programming and317
formula’. Beatriz Pérez , Ivan Porres . Information Systems 2019. 81 p. .318

[Evans ()] ‘Reasoning with UML class diagrams’. Andy S Evans . Proceedings. 2nd IEEE Workshop on Industrial319
Strength Formal Specification Techniques, (2nd IEEE Workshop on Industrial Strength Formal Specification320
Techniques) 1998. IEEE. p. .321

[Lano et al. ()] ‘The UML as a Formal Modeling Notation’. A Lano , R Evans , K France , B Rumpe . Computer322
Standards and Interfaces 1998. 19 p. .323

[France et al. ()] ‘The UML as a formal modeling notation’. Robert France , Andy Evans , Kevin Lano , Bernhard324
Rumpe . Computer Standards & Interfaces 1998. 19 (7) p. .325

[Rumbaugh et al. ()] The Unified Modeling Language Reference Manual, J Rumbaugh , I Jacobson , G Booch .326
2004. Hoboken, NJ, USA: Pearson Higher Education.327

[Booch et al. ()] The Unified Modeling Language, Rational Software Corporation, G Booch , J Rumbaugh , I328
Jacobson . 1997. Addison-Wesley, Indiana, USA.329

[Clarisó et al. ()] ‘Towards domain refinement for UML/OCL bounded verification’. Clarisó , Carlos A Robert ,330
Jordi González , Cabot . SEFM 2015 Collocated Workshops, (Cham) 2015. Springer. p. .331

[Cabot et al. ()] ‘UMLtoCSP: a tool for the formal verification of UML/OCL models using constraint program-332
ming’. Jordi Cabot , Robert Clarisó , Daniel Riera . Proceedings of the twenty-second IEEE/ACM international333
conference on Automated software engineering, (the twenty-second IEEE/ACM international conference on334
Automated software engineering) 2007. p. .335

[Unified Modeling Language Specification. Version 2.5 (2012)] Unified Modeling Language Specification. Version336
2.5, October 2012. Object Modeling Group337

[Cabot et al. ()] ‘Verification of UML/OCL class diagrams using constraint programming’. Jordi Cabot , Robert338
Claris , Daniel Riera . 2008 IEEE International Conference on Software Testing Verification and Validation339
Workshop, 2008. IEEE. p. .340

7


	1 Introduction
	2 II.
	3 Review Process
	4 a) Research Questions
	5 Theoretical Background
	6 H b) Inclusion/Exclusion Criteria
	7 a) Unified Modeling Language (UML)
	8 i. UML Class Diagram
	9 . UML Association (Aggregation, Association, Composition, generalization)
	10 Figure 1: UML Class Diagram
	11 b) Model Transformation
	12 c) Formal Specification Methods
	13 i. Z-notation
	14 ii. Object Constraint Language (OCL)
	15 Literature Review a) Z notation
	16 b) Object Constraint Language (OCL)
	17 V. Review Summary and Conclusion

