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Rohit Maurya α & Rahul Sharma σ 

Abstract- The goal of this research is to compare the 
performance of the common Prim and the Kruskal of the 
minimum spanning tree in building up super metric space. We 
suggested using complexity analysis and experimental 
methods to evaluate these two methods. After analysing daily 
sample data from the Shanghai and Shenzhen 300 indexes 
from the second half of 2005 to the second half of 2007, the 
results revealed that when the number of shares is less than 
100, the Kruskal algorithm is relatively superior to the Prim 
algorithm in terms of space complexity; however, when the 
number of shares is greater than 100, the Prim algorithm is 
more superior in terms of time complexity. A spanning tree is 
defined in the glossary as a connected graph with non-
negative weights on its edges, and the challenge is to identify 
a maz weight spanning tree. Surprisingly, the greedy algorithm 
yields an answer. For the problem of finding a min weight 
spanning tree, we propose greedy algorithms based on Prim 
and Kruskal, respectively. Graham and Hell provide a history 
of the issue, which began with Czekanowski's work in 1909. 
The information presented here is based on Rosen. 

 

I. Introduction 

 minimum spanning tree of an undirected graph 
can be readily obtained using Prim or Kruskal's 
classical algorithms. To enumerate all spanning 

trees in an undirected graph, a number of algorithms 
have been suggested. These algorithms' main worries 
are good time and space complexities. A minimum 
spanning tree of an undirected graph can be readily 
obtained using Prim or Kruskal's classical algorithms. A 
number of algorithms have been suggested to count all 
of an object's spanning trees.  

A spanning tree of a connected graph can be 
constructed including all the vertices with minimum 
possible no of edges. If there are n vertices in the graph, 
then each spanning tree has n-1 edges. A connected 
weighted graph where all the vertices are interlinked by 
some weighted edges can contain multiple numbers of 
spanning trees.A minimum spanning tree of an 
undirected graph can be easily obtained using Prim or 
Kruskal's classical algorithms. A number of algorithms 
for enumerating all spanning trees in an undirected 
graph have been proposed. These algorithms' main 
concerns are good time and space complexities. The 
majority of algorithms generate spanning trees by 
utilising some fundamental cut or circuit. The cost of the 
tree is not  considered  during  the  generation  process.  
 
 
Author α α: Ajeenkya D Y Patil University, Pune, Maharashtra, India.  
e-mail: rohit221107@gmail.com 

This paper presents an algorithm for generating 
spanning trees of a graph in decreasing cost order. New 
opportunities emerge by generating spanning trees in 
increasing cost order. This method can be used to find 
the second smallest or, more broadly, the k-th smallest 
spanning tree.The smallest spanning tree satisfying 
some additional constraints can be found by checking 
whether these constraints are satisfied at each 
generation. Our algorithm is based on Murty's (1967) 
algorithm, which enumerates all solutions to an 
assignment problem in increasing cost order. The 
complexities of time and space are discussed. 

The network is undirected. These algorithms' 
main worries are good time and space complexities. 
The goal of this research is to compare the performance 
of the common Prim and the Kruskal of the minimum 
spanning tree in constructing super metric space. To 
evaluate these two methods, we suggested using 
complexity analysis and experimental methods. After 
analysing daily sample data from the Shanghai and 
Shenzhen 300 indexes from the second half of 2005 to 
the second half of 2007, the results revealed that when 
the number of shares is less than 100, Kruskal algorithm 
is relatively superior to Prim algorithm in terms of space 
complexity; however, when the number of shares is 
greater than 100, Prim algorithm is more superior in 
terms of time complexity. 

II. Prim’s Algoritms 

VojtchJarnak, a Czech mathematician, created 
the Prim algorithm in 1930. Robert C. Prim rediscovered 
it in 1957, and Edsger W. Dijkstra republished it in 1959. 
To determine the minimal spanning tree (MST) of a 
given linked weighted graph, Prim's algorithm uses a 
greedy approach. When the graph is dense, this 
algorithm is recommended. When there are many edges 
in a graph, the graph is said to be dense. Only 
undirected linked graphs can use this approach, and 
there must not be any edges with a negative edge 
weight. The algorithm is pretty effective in this situation. 
There will always be a shortest path because there are 
no cycles with nonnegative weights. 

It begins by choosing a random vertex to serve 
as the tree's root. Then itThe shortest edge from any 
vertex in the tree to the new vertex is added in order to 
extend the tree, as is the edge closest to the current 
vertex. Once all vertices have been added to the tree, 
the procedure ends. 
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III. The Following are the Steps to           
find the Minimum Spaning Tree                 

using Prim’s Algoritms 

1. If a graph has loops and parallel edges, remove 
those loops and parallel edges. 

2. Select any node at random, labelling it with a 
distance of 0 and all other nodes as. The chosen 
node is considered the current node and has been 
visited. All other nodes are assumed to be unvisited. 

3. Locate all unvisited nodes that are currently linked 
to the current node. Determine the distance 
between the unvisited nodes and the current node. 

4. Label each vertice with its corresponding weight to 
the current node, but relabel a node if it is less than 
the previous label value. The nodes are labelled with 
their weights each time; keep track of the path with 
the smallest weight. 

5. Color over the current node to indicate that it has 
been visited. We don't need to look at a vertex again 
once we've visited it. 

6. Among all unvisited nodes, find the one with the 
lowest weight to the current node; mark this node as 
visited and treat it as the current working node. 

7. Repeat steps 3–5 until all nodes have been visited. 

Prim’s Algoritms: 
PRIM (Graph, c, t)  
P ĕN[Graph]  
For every m  P 
  do key[m] ĕ Ğ 
  key[t] ĕ 0  
  [t]ĕnull 
  while P Į Ø  
do m ĕ EXTRACTMINNODE(P)  
for every n  Adjacent[m]  
do if n  P and c (m,n ) < key[n]  
 
[n] ĕ m  
key[n] ĕ c(m,n)  

IV. Kruskal’s Algoritms 

This algorithm, designed by Joseph Kruskal, 
was published for the first time in the Proceedings of the 
American Mathematical Society in 1956. The algorithm 
begins by creating an ordered set of edges by weights 
and proceeds through the ordered set by adding an 
edge to the partial MST if the new edge does not form a 
cycle. The algorithm takes a greedy approach, in which 
it finds the path with the least weight in each iteration 
stage and includes it in the growing spanning tree. 

Sort all edges of the given graph in increasing 
order using Kruskal's algorithm. If the newly added edge 
does not form a cycle, it continues to add new edges 
and nodes to the MST. It selects the minimum weighted 
edge first, followed by the maximum weighted edge. 

Thus, in order to find the optimal solution, it makes a 
locally optimal choice in each step. As a result, this is a 
Greedy Algorithm. 

V. The Steps for Detemining MST using 
Kuruskal Algoritms are as Follow 

Sort the edges in non-descending order of 
weight. 

Choose the smallest edge. Check to see if it 
forms a cycle with the spanning tree that has been 
formed thus far. Include this edge if the cycle is not 
formed. Otherwise, throw it away. 

Step 2 should be repeated until the spanning 
tree has (V-1) edges. 
Kruskal Algoritms 

Kruskal(Graph):  
T = Empty;  
For every node n ę G.N:  
CreateSet(n)  
For every path (m, n) ę G.E arranged by 
increasing  
weights(m,n):  
 if NewSet(m) Į NewSet(n):  
T = T Ĥ {(m, n)}  
 UNION (m, n)  
return T 

Problem Statement  
Find the MST through Prim’s Algorithm and 

Explain it step wise. 

 
Solution: 
Step 1: 

First write all edges weight in Ascending order: 
 2,2,3,3,3,3,4,5,6,10 
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Step 2: 

 
Step 3: 

 
Step 4: 

 
Step 5: 

 
Step 6: 

 

 

Step 7: 

 
Total weight of MST is 18 and one more path or 

another MST 
 

 
 

 
Step 10: 

 
It also have weigth is 18 so both way are right. 

VI. Find the Time Complexity of prims’s 
Algorithm we Follow Step by step 

1. Set up a minimum priority queue (heap) and add 
the first vertex to it. 

2. Do the following while the queue is still not empty: 

a. Take the queue's minimum weight edge. 
b. If the edge connects a vertex that has not yet been 

visited, add it to the minimum spanning tree and 
mark the vertex as visited. 
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Step 8:

Step 9:



c. Add all adjacent edges of the newly visited vertex to 
the queue if they connect to unvisited vertices. 

Assume the input graph contains V vertices and 
E edges. Prim's algorithm's time complexity can be 
calculated as follows: 

• It takes O(V) time to initialize the priority queue. 
• It takes O(log V) time to extract the minimum weight 

edge from the queue. 
• It takes constant time to check if a vertex has been 

visited. 
• Adding an edge to the minimum spanning tree 

takes an infinite amount of time. 
• It takes constant time to mark a vertex as visited. 
• Because each edge can only be added to the 

queue once, adding adjacent edges to the queue 
takes O(E log V) time. 

Prim's algorithm has a total time complexity of 
O((V-1) log V + E log V) because step 2 is repeated V-1 
times. In practise, the term E log V dominates the time 
complexity, so Prim's algorithm has an overall time 
complexity of O. (E log V). 

It should be noted that this analysis assumes 
that the priority queue is implemented using a binary 
heap. The time complexity may differ slightly if a 
Fibonacci heap or another data structure is used. 
Problem Statement  

Find the MST through Kruskal’s Algorithm and 
Explain it step wise. 

 
Solution: 
Step 1: 

In the Kruskal algorithm first we assign first a 
node as head or starting point to start the finding MST 
and show all possible way from that node  

 
Here I take as a head or starting point node is A 
 

Step 2: 

 
Step 3: 

 
Step 4: 

 
Step 5: 

 
Step 6: 
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VII. Find the time Complexity of     
Kruskal Algorithm we Follow Step            

by Step 

1. Sort the edges in increasing weight order. 
2. To keep track of connected components, create a 

disjoint-set data structure. 
3. Do the following for each edge, in increasing order 

of weight: 
a. Add the edge to the minimum spanning tree and 

merge the two components if it connects two 
vertices that are not in the same connected 
component. 

b. Otherwise, throw away the edge. 

Assume the input graph contains V vertices and 
E edges. Kruskal's algorithm's time complexity can be 
calculated as follows: 

• It takes O(E log E) time to sort the edges. 
• It takes O(V) time to initialise the disjoint-set data 

structure. 
• Using the disjoint-set data structure, determining 

whether two vertices are in the same connected 
component takes O(log V) time. 

• Using the disjoint-set data structure, merging two 
connected components takes O(log V) time. 

• Adding an edge to the minimum spanning tree 
takes an infinite amount of time. 

• It takes time to discard an edge. 
Kruskal's algorithm has a total time complexity 

of O(E log E + V log V) because step 3 is repeated E 
times. In practise, the term E log E dominates the time 
complexity, so Kruskal's algorithm has an overall time 
complexity of O. (E log E). 

It should be noted that this analysis assumes 
that the edges are sorted using a standard sorting 
algorithm such as quicksort or mergesort. The time 
complexity may differ slightly if a radix sort or another 
algorithm is used. Furthermore, the time complexity of 
the disjoint-set data structure is determined by the 
implementation used. 

VIII. To Find the Space Complexity of 
Prim’s and Kruskal’s Algorithm 

The Prim Algorithm: 
• To store edges, the minimum priority queue (heap) 

requires O(E) space. 
• The boolean array used to mark visited vertices 

takes up O(V) space. 
• The minimum spanning tree takes up O(V) space. 
• Prim's algorithm has a total space complexity of O(V 

+ E). 
The Kruskal Algorithm: 

• The disjoint-set data structure used to keep 
connected components together takes up O(V) 
space. 

• The array used to store the edges takes up O(E) 
space. 

• The minimum spanning tree takes up O(V) space. 
• Kruskal's algorithm has an overall space complexity 

of O(V + E). 
It should be noted that the above space 

complexity calculations assume a standard 
implementation of each algorithm. However, depending 
on the implementation, the space complexity can vary. 
Additionally, the input graph may require space, but this 
is typically considered a separate factor and is not 
included in the algorithm's space complexity calculation. 

IX. Comparision Between Prim’s and 
Kruskal’s Algorithm 

1. Prim's algorithm is a greedy algorithm that starts 
with a single vertex and gradually adds edges to 
form a minimum spanning tree. Kruskal's algorithm 
is also a greedy algorithm that begins with the edge 
with the smallest weight and gradually adds edges 
to form a minimum spanning tree. 

2. Time complexity: The time complexity of Prim's 
algorithm is O(E log V), where E is the number of 
edges and V is the number of vertices in the graph. 

Comparison of Primand Kruskal’s Algorithm
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Step 7:

Step 8:

We get MST through it which weight is 18

Final view is this



The time complexity of Kruskal's algorithm is O(E 
log E) or O(E log V), depending on the 
implementation. 

3. Prim's algorithm has a space complexity of O(V), 
where V is the number of vertices in the graph. 
Kruskal's algorithm has a space complexity of O(E), 
where E is the number of edges in the graph. 

4. Prim's algorithm always generates a connected 
minimum spanning tree. If the graph is not 
connected, Kruskal's algorithm can generate a 
forest of minimum spanning trees. 

5. Edge selection: Prim's algorithm chooses the edges 
with the lowest weight among all those that connect 
the tree to a non-tree vertex. Kruskal's algorithm 
chooses edges based on the lowest weight among 
all edges that have yet to be added to the tree. 

6. Performance: Prim's algorithm performs better on 
dense graphs (where E is close to V2), while 
Kruskal's algorithm performs better on sparse 
graphs (where E is much less than V2). 

Overall, both the Prim and Kruskal algorithms 
are effective and widely used for determining minimum 
spanning trees. The algorithm chosen is determined by 
the characteristics of the input graph and the specific 
requirements of the problem. 
Time Complication: 

• The time complexity of Prim's algorithm is O(E log 
V), where E is the number of edges and V is the 
number of vertices in the graph. In dense graphs 
where E is close to V2, this complexity outperforms 
Kruskal's algorithm. 

• In sparse graphs, where E is much less than V2, 
Kruskal's algorithm has a time complexity of O(E log 
E), which is better than Prim's algorithm. 

Space Complexity: 

• Prim's algorithm takes up O(V + E) space, and 
Kruskal's algorithm takes up O(V + E) space as 
well. As a result, the space complexity of both 
algorithms is comparable. 

There are several alternative algorithms for 
determining the minimum spanning tree, each with its 
own time and space complexities: 

• Boruvka's algorithm has a time complexity of O(E 
log V), making it faster in dense graphs than Prim's 
algorithm. However, it requires O(E log V) space, 
which is greater than that required by Prim's 
algorithm. 

• Although the Reverse-Delete algorithm has an 
O(E2) time complexity, it performs well on sparse 
graphs. It has an O(V + E) space complexity. 

• The time complexity of Randomized Prim's 
algorithm is similar to that of Prim's algorithm, but it 
can be faster in practise due to the randomised 
nature of its implementation. 

Overall, the algorithm chosen is determined by 
the properties of the graph being processed. Prim's or 
Boruvka's algorithms may be preferable for dense 
graphs. Kruskal's algorithm or the Reverse-Delete 
algorithm may be preferable for sparse graphs. 
Randomized Prim's algorithm is another viable option in 
practise. 

X. Conclusion 

Finally, Prim's and Kruskal's algorithms are two 
well-known algorithms for determining the minimum 
spanning tree of a weighted, connected graph. 

Prim's algorithm employs a greedy approach, 
beginning with a single vertex and expanding the 
minimum spanning tree one edge at a time. At each 
step, the algorithm maintains a priority queue to select 
the edge with the lowest weight. Prim's algorithm has a 
time complexity of O(E log V), where E is the number of 
edges and V is the number of vertices in the graph. 

Kruskal's algorithm, on the other hand, employs 
a greedy approach but works by adding edges to the 
minimum spanning tree in increasing weight order while 
avoiding cycles. To keep connected components and 
check for cycles, the algorithm employs a disjoint-set 
data structure. Kruskal's algorithm has a time complexity 
of O(E log E), where E is the number of edges in the 
graph. 

Both algorithms require O(V + E) space in 
terms of complexity. 

Overall, the algorithm chosen is determined by 
the properties of the graph being processed. Prim's 
algorithm is preferable for dense graphs, whereas 
Kruskal's algorithm is preferable for sparse graphs. 
Other algorithms, such as Boruvka's algorithm and the 
Reverse-Delete algorithm, can also be used depending 
on the problem's specific requirements. 
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