
© 2023. Rohit Maurya & Rahul Sharma. This research/review article is distributed under the terms of the Attribution-
NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0). You must give appropriate credit to authors and reference
this article if parts of the article are reproduced in any manner. Applicable licensing terms are at
https://creativecommons.org/licenses/by-nc-nd/4.0/.

Global Journal of Computer Science and Technology: C
Software & Data Engineering
Volume 23 Issue 1 Version 1.0 Year 2023
Type: Double Blind Peer Reviewed International Research Journal
Publisher: Global Journals
Online ISSN: 0975-4172 & Print ISSN: 0975-4350

Comparison of Primand Kruskal’s Algorithm
 By Rohit Maurya & Rahul Sharma

 Ajeenkya D Y Patil University
Abstract- The goal of this research is to compare the performance of the common Prim and the Kruskal of
the minimum spanning tree in building up super metric space. We suggested using complexity analysis
and experimental methods to evaluate these two methods. After analysing daily sample data from the
Shanghai and Shenzhen 300 indexes from the second half of 2005 to the second half of 2007, the results
revealed that when the number of shares is less than 100, the Kruskal algorithm is relatively superior to
the Prim algorithm in terms of space complexity; however, when the number of shares is greater than 100,
the Prim algorithm is more superior in terms of time complexity. A spanning tree is defined in the glossary
as a connected graph with non-negative weights on its edges, and the challenge is to identify a maz
weight spanning tree. Surprisingly, the greedy algorithm yields an answer. For the problem of finding a
min weight spanning tree, we propose greedy algorithms based on Prim and Kruskal, respectively.
Graham and Hell provide a history of the issue, which began with Czekanowski's work in 1909. The
information presented here is based on Rosen.

Keywords: kruskal, prim’s, graph, minimal spanning trees, complexity.

GJCST-C Classification: FOR Code: 080201

ComparisonofPrimandKruskalsAlgorithm

 Strictly as per the compliance and regulations of:

Comparison of Primand Kruskal’s Algorithm
Rohit Maurya α & Rahul Sharma σ

Abstract- The goal of this research is to compare the
performance of the common Prim and the Kruskal of the
minimum spanning tree in building up super metric space. We
suggested using complexity analysis and experimental
methods to evaluate these two methods. After analysing daily
sample data from the Shanghai and Shenzhen 300 indexes
from the second half of 2005 to the second half of 2007, the
results revealed that when the number of shares is less than
100, the Kruskal algorithm is relatively superior to the Prim
algorithm in terms of space complexity; however, when the
number of shares is greater than 100, the Prim algorithm is
more superior in terms of time complexity. A spanning tree is
defined in the glossary as a connected graph with non-
negative weights on its edges, and the challenge is to identify
a maz weight spanning tree. Surprisingly, the greedy algorithm
yields an answer. For the problem of finding a min weight
spanning tree, we propose greedy algorithms based on Prim
and Kruskal, respectively. Graham and Hell provide a history
of the issue, which began with Czekanowski's work in 1909.
The information presented here is based on Rosen.

I. Introduction

 minimum spanning tree of an undirected graph
can be readily obtained using Prim or Kruskal's
classical algorithms. To enumerate all spanning

trees in an undirected graph, a number of algorithms
have been suggested. These algorithms' main worries
are good time and space complexities. A minimum
spanning tree of an undirected graph can be readily
obtained using Prim or Kruskal's classical algorithms. A
number of algorithms have been suggested to count all
of an object's spanning trees.

A spanning tree of a connected graph can be
constructed including all the vertices with minimum
possible no of edges. If there are n vertices in the graph,
then each spanning tree has n-1 edges. A connected
weighted graph where all the vertices are interlinked by
some weighted edges can contain multiple numbers of
spanning trees.A minimum spanning tree of an
undirected graph can be easily obtained using Prim or
Kruskal's classical algorithms. A number of algorithms
for enumerating all spanning trees in an undirected
graph have been proposed. These algorithms' main
concerns are good time and space complexities. The
majority of algorithms generate spanning trees by
utilising some fundamental cut or circuit. The cost of the
tree is not considered during the generation process.

Author α α: Ajeenkya D Y Patil University, Pune, Maharashtra, India.
e-mail: rohit221107@gmail.com

This paper presents an algorithm for generating
spanning trees of a graph in decreasing cost order. New
opportunities emerge by generating spanning trees in
increasing cost order. This method can be used to find
the second smallest or, more broadly, the k-th smallest
spanning tree.The smallest spanning tree satisfying
some additional constraints can be found by checking
whether these constraints are satisfied at each
generation. Our algorithm is based on Murty's (1967)
algorithm, which enumerates all solutions to an
assignment problem in increasing cost order. The
complexities of time and space are discussed.

The network is undirected. These algorithms'
main worries are good time and space complexities.
The goal of this research is to compare the performance
of the common Prim and the Kruskal of the minimum
spanning tree in constructing super metric space. To
evaluate these two methods, we suggested using
complexity analysis and experimental methods. After
analysing daily sample data from the Shanghai and
Shenzhen 300 indexes from the second half of 2005 to
the second half of 2007, the results revealed that when
the number of shares is less than 100, Kruskal algorithm
is relatively superior to Prim algorithm in terms of space
complexity; however, when the number of shares is
greater than 100, Prim algorithm is more superior in
terms of time complexity.

II. Prim’s Algoritms

VojtchJarnak, a Czech mathematician, created
the Prim algorithm in 1930. Robert C. Prim rediscovered
it in 1957, and Edsger W. Dijkstra republished it in 1959.
To determine the minimal spanning tree (MST) of a
given linked weighted graph, Prim's algorithm uses a
greedy approach. When the graph is dense, this
algorithm is recommended. When there are many edges
in a graph, the graph is said to be dense. Only
undirected linked graphs can use this approach, and
there must not be any edges with a negative edge
weight. The algorithm is pretty effective in this situation.
There will always be a shortest path because there are
no cycles with nonnegative weights.

It begins by choosing a random vertex to serve
as the tree's root. Then itThe shortest edge from any
vertex in the tree to the new vertex is added in order to
extend the tree, as is the edge closest to the current
vertex. Once all vertices have been added to the tree,
the procedure ends.

A

G
lo
ba

l
Jo

ur
na

l
of
 C

om
pu

te
r
Sc

ie
nc

e
an

d
Te

ch
no

lo
gy

 V

ol
um

e
X
X
III

 I
ss
ue

 I
 V

er
sio

n
I

27

 (

)
C

Y
e
a
r

20
23

© 2023 Global Journals

Keywords: kruskal, prim’s, graph, minimal spanning
trees, complexity.

III. The Following are the Steps to
find the Minimum Spaning Tree

using Prim’s Algoritms

1. If a graph has loops and parallel edges, remove
those loops and parallel edges.

2. Select any node at random, labelling it with a
distance of 0 and all other nodes as. The chosen
node is considered the current node and has been
visited. All other nodes are assumed to be unvisited.

3. Locate all unvisited nodes that are currently linked
to the current node. Determine the distance
between the unvisited nodes and the current node.

4. Label each vertice with its corresponding weight to
the current node, but relabel a node if it is less than
the previous label value. The nodes are labelled with
their weights each time; keep track of the path with
the smallest weight.

5. Color over the current node to indicate that it has
been visited. We don't need to look at a vertex again
once we've visited it.

6. Among all unvisited nodes, find the one with the
lowest weight to the current node; mark this node as
visited and treat it as the current working node.

7. Repeat steps 3–5 until all nodes have been visited.

Prim’s Algoritms:
PRIM (Graph, c, t)
P ĕN[Graph]
For every m P
 do key[m] ĕ Ğ
 key[t] ĕ 0
 [t]ĕnull
 while P Į Ø
do m ĕ EXTRACTMINNODE(P)
for every n Adjacent[m]
do if n P and c (m,n) < key[n]

[n] ĕ m
key[n] ĕ c(m,n)

IV. Kruskal’s Algoritms

This algorithm, designed by Joseph Kruskal,
was published for the first time in the Proceedings of the
American Mathematical Society in 1956. The algorithm
begins by creating an ordered set of edges by weights
and proceeds through the ordered set by adding an
edge to the partial MST if the new edge does not form a
cycle. The algorithm takes a greedy approach, in which
it finds the path with the least weight in each iteration
stage and includes it in the growing spanning tree.

Sort all edges of the given graph in increasing
order using Kruskal's algorithm. If the newly added edge
does not form a cycle, it continues to add new edges
and nodes to the MST. It selects the minimum weighted
edge first, followed by the maximum weighted edge.

Thus, in order to find the optimal solution, it makes a
locally optimal choice in each step. As a result, this is a
Greedy Algorithm.

V. The Steps for Detemining MST using
Kuruskal Algoritms are as Follow

Sort the edges in non-descending order of
weight.

Choose the smallest edge. Check to see if it
forms a cycle with the spanning tree that has been
formed thus far. Include this edge if the cycle is not
formed. Otherwise, throw it away.

Step 2 should be repeated until the spanning
tree has (V-1) edges.
Kruskal Algoritms

Kruskal(Graph):
T = Empty;
For every node n ę G.N:
CreateSet(n)
For every path (m, n) ę G.E arranged by
increasing
weights(m,n):
 if NewSet(m) Į NewSet(n):
T = T Ĥ {(m, n)}
 UNION (m, n)
return T

Problem Statement
Find the MST through Prim’s Algorithm and

Explain it step wise.

Solution:
Step 1:

First write all edges weight in Ascending order:
 2,2,3,3,3,3,4,5,6,10

Comparison of Primand Kruskal’s Algorithm

© 2023 Global Journals

G
lo
ba

l
Jo

ur
na

l
of
 C

om
pu

te
r
Sc

ie
nc

e
an

d
Te

ch
no

lo
gy

 V

ol
um

e
X
X
III

 I
ss
ue

 I
 V

er
sio

n
I

28

 (

)
Y
e
a
r

20
23

C

Step 2:

Step 3:

Step 4:

Step 5:

Step 6:

Step 7:

Total weight of MST is 18 and one more path or

another MST

Step 10:

It also have weigth is 18 so both way are right.

VI. Find the Time Complexity of prims’s
Algorithm we Follow Step by step

1. Set up a minimum priority queue (heap) and add
the first vertex to it.

2. Do the following while the queue is still not empty:

a. Take the queue's minimum weight edge.
b. If the edge connects a vertex that has not yet been

visited, add it to the minimum spanning tree and
mark the vertex as visited.

Comparison of Primand Kruskal’s Algorithm

G
lo
ba

l
Jo

ur
na

l
of
 C

om
pu

te
r
Sc

ie
nc

e
an

d
Te

ch
no

lo
gy

 V

ol
um

e
X
X
III

 I
ss
ue

 I
 V

er
sio

n
I

29

 (

)
C

Y
e
a
r

20
23

© 2023 Global Journals

Step 8:

Step 9:

c. Add all adjacent edges of the newly visited vertex to
the queue if they connect to unvisited vertices.

Assume the input graph contains V vertices and
E edges. Prim's algorithm's time complexity can be
calculated as follows:

• It takes O(V) time to initialize the priority queue.
• It takes O(log V) time to extract the minimum weight

edge from the queue.
• It takes constant time to check if a vertex has been

visited.
• Adding an edge to the minimum spanning tree

takes an infinite amount of time.
• It takes constant time to mark a vertex as visited.
• Because each edge can only be added to the

queue once, adding adjacent edges to the queue
takes O(E log V) time.

Prim's algorithm has a total time complexity of
O((V-1) log V + E log V) because step 2 is repeated V-1
times. In practise, the term E log V dominates the time
complexity, so Prim's algorithm has an overall time
complexity of O. (E log V).

It should be noted that this analysis assumes
that the priority queue is implemented using a binary
heap. The time complexity may differ slightly if a
Fibonacci heap or another data structure is used.
Problem Statement

Find the MST through Kruskal’s Algorithm and
Explain it step wise.

Solution:
Step 1:

In the Kruskal algorithm first we assign first a
node as head or starting point to start the finding MST
and show all possible way from that node

Here I take as a head or starting point node is A

Step 2:

Step 3:

Step 4:

Step 5:

Step 6:

Comparison of Primand Kruskal’s Algorithm

© 2023 Global Journals

G
lo
ba

l
Jo

ur
na

l
of
 C

om
pu

te
r
Sc

ie
nc

e
an

d
Te

ch
no

lo
gy

 V

ol
um

e
X
X
III

 I
ss
ue

 I
 V

er
sio

n
I

30

 (

)
Y
e
a
r

20
23

C

VII. Find the time Complexity of
Kruskal Algorithm we Follow Step

by Step

1. Sort the edges in increasing weight order.
2. To keep track of connected components, create a

disjoint-set data structure.
3. Do the following for each edge, in increasing order

of weight:
a. Add the edge to the minimum spanning tree and

merge the two components if it connects two
vertices that are not in the same connected
component.

b. Otherwise, throw away the edge.

Assume the input graph contains V vertices and
E edges. Kruskal's algorithm's time complexity can be
calculated as follows:

• It takes O(E log E) time to sort the edges.
• It takes O(V) time to initialise the disjoint-set data

structure.
• Using the disjoint-set data structure, determining

whether two vertices are in the same connected
component takes O(log V) time.

• Using the disjoint-set data structure, merging two
connected components takes O(log V) time.

• Adding an edge to the minimum spanning tree
takes an infinite amount of time.

• It takes time to discard an edge.
Kruskal's algorithm has a total time complexity

of O(E log E + V log V) because step 3 is repeated E
times. In practise, the term E log E dominates the time
complexity, so Kruskal's algorithm has an overall time
complexity of O. (E log E).

It should be noted that this analysis assumes
that the edges are sorted using a standard sorting
algorithm such as quicksort or mergesort. The time
complexity may differ slightly if a radix sort or another
algorithm is used. Furthermore, the time complexity of
the disjoint-set data structure is determined by the
implementation used.

VIII. To Find the Space Complexity of
Prim’s and Kruskal’s Algorithm

The Prim Algorithm:
• To store edges, the minimum priority queue (heap)

requires O(E) space.
• The boolean array used to mark visited vertices

takes up O(V) space.
• The minimum spanning tree takes up O(V) space.
• Prim's algorithm has a total space complexity of O(V

+ E).
The Kruskal Algorithm:

• The disjoint-set data structure used to keep
connected components together takes up O(V)
space.

• The array used to store the edges takes up O(E)
space.

• The minimum spanning tree takes up O(V) space.
• Kruskal's algorithm has an overall space complexity

of O(V + E).
It should be noted that the above space

complexity calculations assume a standard
implementation of each algorithm. However, depending
on the implementation, the space complexity can vary.
Additionally, the input graph may require space, but this
is typically considered a separate factor and is not
included in the algorithm's space complexity calculation.

IX. Comparision Between Prim’s and
Kruskal’s Algorithm

1. Prim's algorithm is a greedy algorithm that starts
with a single vertex and gradually adds edges to
form a minimum spanning tree. Kruskal's algorithm
is also a greedy algorithm that begins with the edge
with the smallest weight and gradually adds edges
to form a minimum spanning tree.

2. Time complexity: The time complexity of Prim's
algorithm is O(E log V), where E is the number of
edges and V is the number of vertices in the graph.

Comparison of Primand Kruskal’s Algorithm

G
lo
ba

l
Jo

ur
na

l
of
 C

om
pu

te
r
Sc

ie
nc

e
an

d
Te

ch
no

lo
gy

 V

ol
um

e
X
X
III

 I
ss
ue

 I
 V

er
sio

n
I

31

 (

)
C

Y
e
a
r

20
23

© 2023 Global Journals

Step 7:

Step 8:

We get MST through it which weight is 18

Final view is this

The time complexity of Kruskal's algorithm is O(E
log E) or O(E log V), depending on the
implementation.

3. Prim's algorithm has a space complexity of O(V),
where V is the number of vertices in the graph.
Kruskal's algorithm has a space complexity of O(E),
where E is the number of edges in the graph.

4. Prim's algorithm always generates a connected
minimum spanning tree. If the graph is not
connected, Kruskal's algorithm can generate a
forest of minimum spanning trees.

5. Edge selection: Prim's algorithm chooses the edges
with the lowest weight among all those that connect
the tree to a non-tree vertex. Kruskal's algorithm
chooses edges based on the lowest weight among
all edges that have yet to be added to the tree.

6. Performance: Prim's algorithm performs better on
dense graphs (where E is close to V2), while
Kruskal's algorithm performs better on sparse
graphs (where E is much less than V2).

Overall, both the Prim and Kruskal algorithms
are effective and widely used for determining minimum
spanning trees. The algorithm chosen is determined by
the characteristics of the input graph and the specific
requirements of the problem.
Time Complication:

• The time complexity of Prim's algorithm is O(E log
V), where E is the number of edges and V is the
number of vertices in the graph. In dense graphs
where E is close to V2, this complexity outperforms
Kruskal's algorithm.

• In sparse graphs, where E is much less than V2,
Kruskal's algorithm has a time complexity of O(E log
E), which is better than Prim's algorithm.

Space Complexity:

• Prim's algorithm takes up O(V + E) space, and
Kruskal's algorithm takes up O(V + E) space as
well. As a result, the space complexity of both
algorithms is comparable.

There are several alternative algorithms for
determining the minimum spanning tree, each with its
own time and space complexities:

• Boruvka's algorithm has a time complexity of O(E
log V), making it faster in dense graphs than Prim's
algorithm. However, it requires O(E log V) space,
which is greater than that required by Prim's
algorithm.

• Although the Reverse-Delete algorithm has an
O(E2) time complexity, it performs well on sparse
graphs. It has an O(V + E) space complexity.

• The time complexity of Randomized Prim's
algorithm is similar to that of Prim's algorithm, but it
can be faster in practise due to the randomised
nature of its implementation.

Overall, the algorithm chosen is determined by
the properties of the graph being processed. Prim's or
Boruvka's algorithms may be preferable for dense
graphs. Kruskal's algorithm or the Reverse-Delete
algorithm may be preferable for sparse graphs.
Randomized Prim's algorithm is another viable option in
practise.

X. Conclusion

Finally, Prim's and Kruskal's algorithms are two
well-known algorithms for determining the minimum
spanning tree of a weighted, connected graph.

Prim's algorithm employs a greedy approach,
beginning with a single vertex and expanding the
minimum spanning tree one edge at a time. At each
step, the algorithm maintains a priority queue to select
the edge with the lowest weight. Prim's algorithm has a
time complexity of O(E log V), where E is the number of
edges and V is the number of vertices in the graph.

Kruskal's algorithm, on the other hand, employs
a greedy approach but works by adding edges to the
minimum spanning tree in increasing weight order while
avoiding cycles. To keep connected components and
check for cycles, the algorithm employs a disjoint-set
data structure. Kruskal's algorithm has a time complexity
of O(E log E), where E is the number of edges in the
graph.

Both algorithms require O(V + E) space in
terms of complexity.

Overall, the algorithm chosen is determined by
the properties of the graph being processed. Prim's
algorithm is preferable for dense graphs, whereas
Kruskal's algorithm is preferable for sparse graphs.
Other algorithms, such as Boruvka's algorithm and the
Reverse-Delete algorithm, can also be used depending
on the problem's specific requirements.

References Références Referencias

1. B.Hughes. Trees and ultra metric spaces: a
categorical equivalence [J]. Advances in
Mathematics, 2004, 189(1):148-191

2. M. J. Naylor, L.C.Rose, B. J.Moyle. Topology of
foreign exchange markets using hierarchical
structure methods [J]. Physica A: Statistical
Mechanics and its Applications, 2007, 382(1):199–
208.

3. J.G. Brida, W. A. Risso. Multidimensional minimal
spanning tree: The Dow Jones case [J]. Physica A:
Statistical Mechanics and its Applications, 2008,
387(21):5205-5210.

4. Martel. The expected complexity of Prim's minimum
spanning tree algorithm [J]. Information Processing
Letters, 2002 ,81(4):197-201.

5. Yang Guo Hui, Zhou Chun Guang. An algorithm for
clustering gene expression data using minimum

Comparison of Primand Kruskal’s Algorithm

© 2023 Global Journals

G
lo
ba

l
Jo

ur
na

l
of
 C

om
pu

te
r
Sc

ie
nc

e
an

d
Te

ch
no

lo
gy

 V

ol
um

e
X
X
III

 I
ss
ue

 I
 V

er
sio

n
I

32

 (

)
Y
e
a
r

20
23

C

spanning tree [J]. Journal of Computer Research
and Development, 2003, 40(10):1431-1435.

6. Feixue Huang. Comparison of Prim and Kruskal on
Shanghai and Shenzhen 300 Index hierarchical
structure tree, 2009,237-240

7. Michael Laszlo and Sumitra Mukherjee, Member,
IEE . Minimum Spanning Tree Partitioning Algorithm
for Micro aggregation, July 2005 ,902-904

8. Peace Ayegba. A Comparative Study of Minimal
Spanning Tree Algorithms, 2020

9. Jogamohan Medak. Review and Analysis of
Minimum Spanning Tree Using Prim’s Algorithm,
2018

10. Kenneth Sorensen. An Algorithm to Generate all
Spanning Trees of a Graph in Order of Increasing
Cost, 2005

11. Arogundade O.T. Prim Algorithm to Improving Local
Access Network in Rural Areas, 2011

12. Harvey J. Greenberg. Greedy Algorithm for
Minimum Spanning Tree, 1998

Comparison of Primand Kruskal’s Algorithm

G
lo
ba

l
Jo

ur
na

l
of
 C

om
pu

te
r
Sc

ie
nc

e
an

d
Te

ch
no

lo
gy

 V

ol
um

e
X
X
III

 I
ss
ue

 I
 V

er
sio

n
I

33

 (

)
C

Y
e
a
r

20
23

© 2023 Global Journals

	Comparison of Primand Kruskal’s Algorithm
	Author
	Keywords
	I. Introduction
	II. Prim’s Algoritms
	III. The Following are the Steps to find the Minimum Spaning Treeusing Prim’s Algoritms
	IV. Kruskal’s Algoritms
	V. The Steps for Detemining MST using Kuruskal Algoritms are as Follow
	VI. Find the Time Complexity of prims’s Algorithm we Follow Step by step
	VII. Find the time Complexity of Kruskal Algorithm we Follow Stepby Step
	VIII. To Find the Space Complexity of Prim’s and Kruskal’s Algorithm
	IX. Comparision Between Prim’s and Kruskal’s Algorithm
	X. Conclusion
	References Références Referencias

