
Literature Study on Analyzing and Designing of Algorithms By1

Sneha Kumari & Aishwarya2

Sneha Kumari1 and Aishwarya23

1 Ajeenkya D Y Patil4

Received: 1 January 1970 Accepted: 1 January 1970 Published: 1 January 19705

6

Abstract7

The fundamental goal of problem solution under numerous limitations, such as those imposed8

by issue size, performance, and cost in terms of both space and time. Designing a quick,9

effective, and efficient solution to a problem domain is the objective. Certain problems are10

simple to resolve while others are challenging. To develop a quick and effective answer, much11

intelligence is needed. A new technology is required for system design, and the foundation of12

the new technology is the improvement of an already existing algorithm. The goal of13

algorithm research is to create effective algorithms that improve scalability, dependability, and14

availability in addit15

16

Index terms— analysis, solution, time, algorithm, optimal, complexity, computing, application, space, design17

1 I. introduction18

esign and analysis of algorithms is referred to as DAA. It aids in the analysis of the answer prior to coding.19
Algorithms and documentation can be used to determine the space and time complexity. A clear image of the20
code you will write to address the problem is provided by algorithms and designs. It enables you to obtain the21
optimal time and spatial complexity for a shorter solution. The standards formeasuring algorithms before we22
can create effective ones. Algorithms are rated according to the amount of computing resources they need. The23
majority of these resources are running time and memory. Other factors may also be taken into consideration24
depending on the application, such as the volume of disc visits in a database programme or the amount of25
communication bandwidth in the networking application. The design of the algorithms must take into account26
a variety of challenges that arise in practice. Algorithms are instructions that you create in order to solve a27
complicated problem. You create these instructions by carrying out various computations, processing data, and28
scenario.29

The methods are follows to solve a problem using descriptions of how to employ time and space resources are30
known as algorithms. Prior to implementing the actual code, you may use algorithms to learn more about the31
time and spatial complexity. Algorithms resemble technology in many ways. Although we all have the newest32
CPUs, we still need to run implementations of effective algorithms on that machine in order to get the full benefits33
of our investment in the most recent processor. When you develop the algorithms for the specific problem, you34
can determine the optimum solution. It is the most effective technique to illustrate any issue with the finest and35
most practical answers.36

2 b) Making Decisions37

Decisions are made based on the following: a. Determining the Computational Device’s Capabilities: In a RAM i;38
e random access machine, instructions are carried out one at a time (this is the underlying premise). As a result,39
algorithms created to run on these devices are known as sequential algorithms. b. Selecting between exact and40
approximate problemsolving techniques. The choice between tackling the problem precisely or roughly is the next41
crucial option. An exact algorithm is one that solves a problem precisely and yields the desired outcome. When42

1

Global Journals LATEX JournalKaleidoscope™
Artificial Intelligence formulated this projection for compatibility purposes from the original article published at Global Journals.
However, this technology is currently in beta. Therefore, kindly ignore odd layouts, missed formulae, text, tables, or figures.

CrossRef DOI of original article:



12 IV. ALGORITHM CHARACTERISTICS

a problem is too complicated to have a precise solution, we must use a technique known as an approximation43
algorithm.44

c. Techniques for designing algorithms: It is design methodology is a comprehensive approach for problem-45
solving that may be used to a variety of situations from different computing areas.46

3 Programme = Algorithms + DS (Data Structures)47

Although data structure & algorithm are separate concepts, programme is developed by combining them.48
Therefore, selecting the appropriate DS i; e data structures is necessary before constructing the algorithm.49
Algorithm implementation is only achievable with the aid of data structures and algorithms. Algorithmic strategy,50
methodology, and paradigm are a generic method for solving a variety of issues algorithmically. Examples include51
using ”brute force,” ”divide and conquer,” ”dynamic programming,” ”greedy technique”.52

4 III. Procedural for Algorithmic Problem Solving53

An initial input and a list of instructions are used by algorithms. The user’s input, which may be expressed as54
words or numbers, is the first piece of information required to build judgements. The provided information is55
subjected to a series of computations, which may involve mathematical operations and moral assessments. The56
final step of an algorithm is called the output, and it is typically stated as more data. The picture below depicts57
the stages that go into creating and analyzing an algorithm.58

5 c) Methods for Specifying an Algorithm59

An algorithm can be specified in three different ways.60

6 Natural Language61

Using plain language to describe an algorithm is really straightforward and simple. However, using normal62
language to describe an algorithm is not always straightforward, thus we only obtain a brief definition.63

7 Pseudocode64

It combines elements of normal language with those of programming languages. Natural English is frequently65
less exact than pseudocode.66

8 A flowchart67

Flowcharts were formerly the standard for expressing algorithms in the early days of computers, but this way of68
representation has since proven to be inconvenient. An algorithm is graphically represented by a flowchart. It is69
a way of representing an algorithm using a network of linked geometric forms that each include descriptions of70
an algorithm step.71

9 d) Proving the Accuracy of an Algorithm72

An algorithm’s correctness must be established once it has been stated. An algorithm must provide a needed73
result in a finite period of time for each valid input.74

10 e) Analysis of an Algorithm75

The most crucial factor for an algorithm is efficiency. There are actually 2 types. They are efficiency in time,76
which measures how quickly the algorithm executes, and efficiency in space, which measures how much more77
memory it consumes. Therefore, the following criteria should be considered while analyzing an algorithm time78
efficiency, space efficiency, simplicity, and generality.79

11 f) Code for Algorithm80

An appropriate programming language is used to code or implement an algorithm. It is possible to make the81
conversion from an algorithm to a programme improperly or extremely inefficiently. An algorithm must be82
appropriately implemented. Writing efficient, optimized code is crucial if you want to lighten the load on the83
compiler.84

12 IV. Algorithm Characteristics85

Each algorithm should possess the following six essential characteristics: A) Input-One or more inputs may be86
present in an algorithm. The inputs are taken from a predetermined group of participants. Any form of file can87
be entered, including text, pictures, and images. B) Output-It can provide one or more results i; e. output. It is88
essentially number that has a predefined relationship with the input.89

C) Finiteness-An algorithm should end after a finite number of steps, then only it considers as computational90
method. D) Certainty-An algorithm must have every step well described. For each scenario, the action that has91

2



to be taken must be vaguely described. Because the step is difficult to grasp, one would assume that it lacks92
definiteness. As a result, mathematical expressions are expressed in these situations in a way that is similar93
to how instructions are written in a computer language. E) Efficiency-An algorithm is typically assumed to be94
efficient. means that the processes should be sufficiently simple that a man might be able to solve them. F)95
Language Independence -An algorithm type should be languages-independent, meaning that its instructions or96
commands must function consistently regardless of the language in which they are implemented.97

V. Guidelines to Be followed for Development of Algorithm98
The following guidelines must be adhered to while developing an algorithm:99
? An algorithm will be surrounded by the symbols START (or BEGIN) and STOP (or END).100

13 VI. Anaysis of an Algorithm & its Method101

A method for evaluating an algorithm’s performance is algorithm analysis. The time and spatial complexity are102
the main variables on which the algorithms rely. Two algorithms are examined using asymptotic analysis to see103
how well they perform when the input size is changed (increased or reduced). i. Worst Case Analysis-It is the104
algorithm’s worst case, or the circumstance that causes the majority of operations to be carried out must be105
understood.106

In the worst case, we are able to determine an algorithm’s upper bound running time. When the sought-after107
element (x) is not present in the array, linear search experiences its worst-case scenario. ii. Best Case Analysis-108
The scenario in which an algorithm is run with the fewest number of operations is known as its ”best case.” It109
establishes the algorithms lower bound for execution time in the best-case scene. It is necessary to understand110
the situation that just executes a few activities. When x appears at the first position, the best case for the linear111
searching problem happens. In the best situation, the number of processes is fixed and independent of n. Thus,112
for time complexity, (1) is the best-case situation. The best scenario is represented by Omega notation. When113
the method is used, just the lowest bound of time is calculated. iii. Average Case Analysis-It is an algorithm,114
which is the scenario in which the algorithm becomes aroused after a few operations. For example, when we115
execute a linear search technique in any data structure and find an element at the midway place, that scenario116
is referred to as the average case. When studying typical instances, Theta Notation is used. It establishes the117
complexity of time with the aid of the upper and lower bounds.118

14 VII. Advantages of an Algorithm119

1. Since it shows a step-by-step approach to solving a particular problem, it is easy to understand. 2. An120
algorithm executes a predefined procedure. 3. Because each step has its own logical sequence, an algorithm is121
easy to debug. 4. An algorithm is used to divide the problem into smaller components or stages, which makes122
it simpler for programmers to turn the problem into usable software. 5. It is independent what programming123
language is used.124

15 VIII. Disadvantages of an Algorithm125

1. Algorithms take a lot of time.126
2. It’s challenging to demonstrate looping and branching in algorithms. 3. Big challenges are hard to describe127

and even more challenging to write algorithms for.128

16 IX. Types of Algorithms a) Brute Force Algorithm129

The most fundamental algorithm that may be developed to address a problem is of this type. We must first130
identify at least one answer before attempting to enhance it in order to create the optimal one. The most simple131
and fundamental algorithm is one of them. Any problem can be solved using the brute force approach; however,132
it often doesn’t add much time or space complexity.133

17 b) Recursive Algorithm134

It is the easiest algorithms to create since it doesn’t need to individually consider each sub problem. When135
the problem scale is substantially decreased, the recursive algorithm procedure converts the problem into a136
smaller scale but similar form problem, which is then solved. Among these, the basic issue-solving process is137
characterized by self-reference at the level of recursive description, where the scenario and approach that may138
solve the problem directly are defined. Similar to mathematical induction, the fundamental concept of recursive139
process description involves quoting oneself in order to minimize the complexity of the problem. Recursion is a140
very efficient approach, but since it calls a recursive stack each time the recursion function is invoked, memory141
management must always be kept in mind. When the complexity is reduced to a given extent, the problem is142
then directly solved.143

18 i. Divide and Conquer Algorithm144

This is one of the techniques that programmers utilize the most. With this approach, the problems are divided145
into smaller ones, each of which is solved independently, before the combined solutions are used to determine the146

3



26 X. CONCLUSION

solution to the initial challenges. As it is relatively stable and ideal for the majority of the challenges posed, this147
algorithm is widely employed in a variety of problems. When deciding how to address a problem, the divide-and-148
conquer tactic is widely used. Strassen’s Matrix Multiplication, Merge Sorting, Binary Search, Quick Sorting,149
etc. are a few typical issues that are resolved utilizing Divide and Conquer algorithms.150

19 Dynamic Programming Algorithms151

This type of algorithm is most efficient ways of problem solutions, this algorithm is the most popular. This152
technique is very efficient in terms of time complexity since it just requires recalling previous results and applying153
it to future results that correspond. Since this type of procedure maintains the previously computed answer in154
order to avoid having to compute it repeatedly, it is also known as the recalled technique.155

There are two versions of this algorithm: Bottom-Up Approach: This method begins by resolving the smallest156
feasible subproblems first, building on the answers obtained from those subproblems to solve the larger problem.157

Top-Down Approach: This method begins by resolving all of the problems until it reaches the necessary158
subproblem, which is then addressed utilizing subproblems that have already been resolved.159

20 Greedy Algorithms160

This algorithm does not consider the future while making decisions; instead, it considers the situation at hand.161
It doesn’t matter if the best outcome at the moment leads to the best result altogether. A greedy algorithm162
gradually assembles an approach, always choosing as the next step the element that offers the most apparent and163
immediate advantage. Greedy so works well with problems when choosing locally optimal also leads to a global164
solution. Although the algorithm that is greedy is not consistently successful, when it exists, it is fantastic! This165
method is typically the simplest since it is easy to develop. It’s probable that this method won’t work for all166
problems. But, if the problem has any of the following characteristics, we can decide if this approach can be167
applied to any of the problem cases.168

21 A Greedy Property Choice169

A greedy method can be used to tackle a problem if it is possible to make the best or most advantageous option at170
each stage without going back and changing the decision made at the prior stage. The ”greedy choice property”171
is the name given to this trait.172

22 The Runner-Up Substructure173

If the most effective solution to the challenge is also the most effective solution to each of its subproblems, the174
problem can be solved using a greedy approach. This trait is known as ”optimal substructure”. It achieves this175
because it is continuously working to get the best result possible locally. Examples of common cases or problems176
that the Greedy Algorithm solves includes the Kruskal’s Algorithm, Prim’s Algorithm, Dijkstra Shortest Path177
Algorithm, Huffman Coding, and others.178

23 Backtracking Algorithms179

It is based on a depth-first recursive search. It is an improvement over using raw force. Here, we choose one180
choice from the many that are available and try to solve the problem. The Brute force approach, which evaluates181
each potential answer, is used to choose the desired/best solutions. It is an algorithmic method for recursively182
addressing problems. The Backtracking Algorithm may be used to solve problems like the Hamiltonian Cycle,183
Rat in Maze Problem, the N Queen Problem, the M-Coloring Problem, etc.184

24 Fig. 4: Backtracking Algorithm [13] c) Randomized Algo-185

rithm186

This sort of algorithm bases its conclusions on random numbers, i.e., it incorporates random numbers into its187
reasoning. Selecting the desired result is helpful. the process of choosing a number at random that offers an188
instant benefit. One of the problems that the randomized Algorithm could fix is quicksort. The pivot in Quicksort189
is selected at random.190

25 d) Searching Algorithm191

A searching algorithm is a method for finding a certain key among a group of sorted or unordered data. A number192
of problems may be solved using the searching algorithm, such as the following: Binary search, sometimes referred193
to as linear search, is one form of search technique.194

26 X. Conclusion195

Algorithms may be used by both individuals and machines to carry out routine activities. The primary distinction196
is that computers employ algorithms far more quickly and effectively than we can. A series of actions used to197

4



solve a problem is called an algorithm. In the field of information technology and computer science, building198
algorithms to tackle various sorts of problems requires careful planning and analysis. A problem that needs199
to be solved initiates the process of designing an algorithm, which is then followed by the classification of the200
problem’s type into the categories listed above, the implementation of the algorithm, and finally an evaluation of201
the finished algorithm’s efficiency (both in terms of time and space). The computer theory of complexity, which202
offers a theoretical estimate of the resources needed for an algorithm to effectively address a certain computer203
issue, includes algorithm analysis as a key component. Analysis is used to calculate how much space and time204
are needed to run a programme. Applying various algorithmic design techniques, such as divide-and-conquer,205
greedy, and others, to real-world issues. The capacity to comprehend and calculate the algorithm’s performance.206
Algorithms are frequently simple to design, simple to implement, and quick to execute. Insidiously difficult207
mathematical proofs may be needed to demonstrate their correctness.

1

Figure 1: Fig. 1 :

2

Figure 2: Fig. 2 :
208

5



26 X. CONCLUSION

Figure 3:

1

Figure 4: Fig. 1 :

2

Figure 5: Fig. 2 :

6



3

Figure 6: Fig. 3 :

Figure 7:

7



26 X. CONCLUSION

8



[Thomas H Cormen et al.] , Charles E Thomas H Cormen , Ronald L Leiserson , Clifford Rivest , Stein . p. .209
(Introduction to algo-rithms. third edition)210

[Peddapati and Phanisri Kruthiventi ()] ‘A New Random Search Algorithm: Multiple Solution Vector Ap-211
proach’. Sankar Peddapati , K K Phanisri Kruthiventi . 2016 6th International Advanced Computing212
Conference, 2016. p. .213

[Chimmanga et al. ()] ‘Application of best first search algorithm to demand control’. Kashale Chimmanga ,214
Josephat Kalezhi , Phillimon Mumba . 2016 IEEE PES Power Africa Conference, 2016. IEEE. p. .215

[Brassard and Bratley ()] Fundamental of Algorithm-mics, G Brassard , P Bratley . 1996. Prentice-Hall.216

[Global Journals Literature Study on Analyzing and Designing of Algorithms 11. Montazeri and P. Duhamel Proc. EU SP ICO-94 ()]217
‘Global Journals Literature Study on Analyzing and Designing of Algorithms 11. Montazeri and P. Duhamel’.218
Proc. EU SP ICO-94, (EU SP ICO-94) 2023. 1994. 2 p. . (A set of algorithms linking NLM S and RLS219
algorithms)220

[Goldberg ()] D E Goldberg . Genetic Algorithms in Search, Optimization and Machine Learning, (New York)221
1989. Addison-Wesley.222

[Ziewitz ()] ‘Governing algorithms: Myth, mess, and methods’. M Ziewitz . Technology & Human Values 2015.223
41 (4) p. . (Science)224

[Na et al. ()] ‘Machine learning and its algorithm and development analysis [J]’. Jiang Na , Yang Haiyan , Huang225
Gu Qingchuan , Jiya . Information and Computer Science (Theoretical Edition) 2019. 2023. 87 (01) p. .226

[Cioffi ()] ‘The block-processing TF adaptive algorithm’. J Cioffi . IEEE Trans. Acoust., Speech, Signal Processing227
1986. 34 (1) p. .228

[Young ()] The Technical Writers Handbook, M Young . 1989. Mill Valley, CA. University Science229

9


