
Critical Analysis of Solutions to Hadoop Small File Problem1

Dr. Chandramouli H2

Received: 1 January 1970 Accepted: 1 January 1970 Published: 1 January 19703

4

Abstract5

Hadoop big data platform is designed to process large volume of data. Small file problem is a6

performance bottleneck in Hadoop processing. Small files lower than the block size of Hadoop7

creates huge storage overhead at Namenode?s and also wastes computational resources due to8

spawning of many map tasks. Various solutions like merging small files, mapping multiple9

map threads to same java virtual machine instance etc have been proposed to solve the small10

file problems in Hadoop. This survey does a critical analysis of existing works addressing11

small file problems in Hadoop and its variant platforms like Spark. The aim is to understand12

their effectiveness in reducing the storage/computational overhead and identify the open13

issues for further research.14

15

Index terms—16

1 I. Introduction17

adoop is an open source big data processing platform designed to process large volume of data. The data is kept18
in form of files in Hadoop distributed file system (HDFS). A map job is spawned on a java virtual machine (JVM)19
instance for each file in HDFS. The file data is copied to a memory block and the block is passed to map task. In20
addition, a object instance is created for each file in the Namenode of Hadoop to facilitate processing. When the21
file size is more than or equal to block size, maximum performance gain in achieved in terms of number of maps22
spawned and the meta data storage overhead at Namenode. In case of IoT applications, the data files are small23
(less than 2KB) and when these files are stored in HDFS for data processing, it affects the Hadoop performance24
[1][2]. On one hand, it drastically increases the storage overhead at Namenode for object bookkeeping [3]. On25
another hand it exhausts the computational resources by spawning multiple map tasks which only lasts for26
smaller duration to process small files. The time spent in bootstrapping the map task becomes higher than data27
processing time in case of small files. Various solutions have been proposed addressing the Hadoop small file28
problem. The existing solutions can be categorized as: (i) file merging solutions, (ii) file caching solutions, (iii)29
optimizing Hadoop cluster structure and (iv) Map task optimizations. In file merging solutions, pre-treatment30
of small files is done to form a big file and this big file is stored in HDFS. In file caching solutions, files are sent31
to a file queue, and when queue size crosses threshold files are sent to processing in a systematic manner. In32
Hadoop cluster structure optimization solutions, hierarchical memory structure is created combining cache and33
HDFS memory to reduce the overhead due to single name node. In map task optimization solution, number of34
JVM instances spawned for map tasks are reduced and shared.35

This work does a critical analysis on various solutions in the above four categories of file merging, file caching,36
Hadoop cluster structure optimization and map task optimization. The effectiveness of each of the solutions in37
terms of storage and computation are analyzed and their open issues are identified. Based on the open issues, a38
prospective solution framework is designed and detailed.39

2 II. Survey40

Ahad et al [4] proposed a dynamic merging strategy based on the file type for Hadoop. Dynamic variable size41
portioning is applied to blocks and the file contents are fitted to blocks using next fit allocation policy. By42
this way large file is created and saved to HDFS. In addition, authors also secured the block using Twofish43
cryptographic technique. The solution reduced name node memory, number of data blocks and processing time.44

1

Global Journals LATEX JournalKaleidoscope™
Artificial Intelligence formulated this projection for compatibility purposes from the original article published at Global Journals.
However, this technology is currently in beta. Therefore, kindly ignore odd layouts, missed formulae, text, tables, or figures.

CrossRef DOI of original article:

2 II. SURVEY

Merging was done only based on file types without considering the context and their semantic relation. Siddiqui45
et al [5] proposed a cache based block management technique for Hadoop as a replacement for default Hadoop46
Archives (HAR). A logical chain of small files is built and transferred to data blocks. In addition, efficient47
read/write on blocks was facilitated using block manager. Though the solution achieved more than 92% space48
utilization of data blocks, small files are merged only based on size, without considering the semantic relations49
and content characteristics. Zhai et al [6] built a index based archive file to solve the small file problem in50
Hadoop. The small files are merged to large file and metadata record is created to retrieve each file content.51
Meta data records are arranged into buckets. An order preserving hash is created over metadata records. The52
hash and the metadata records are in turn written to a index file. The index files helps to retrieve the file53
contents for processing. This method is able to save atleast 11% disk space but the solution access efficiency54
becomes lower with large number of small files. Also the indexing does not support streaming inputs. Cai et al55
[7] proposed a file merging algorithm based on two factors of distribution of the files and the correlation of the56
file. Correlation between files is built based on their history of access and the highly correlated files are kept in57
the same block. Through experiments, author found that placing highly correlated files in same block improved58
the speed up. The correlation is not based on content characteristics so over a period of time, performance59
can reduce. Choi et al [8] integrated combinedfileinputformat and JVM reuse to solve the small file problem.60
Small files are combined till block size and passed to map task. JVM instances are reused for the map task ,61
so they overhead of JVM bootstrap is minimized. Though the integration reduces the computational overhead,62
the approach combined files in order without considering their semantics. Also the memory buildup due to JVM63
reuse can crash the tasks due to inefficient memory management. Peng et al [9] combined merging and caching64
techniques to solve the small file problem. User based collaborative filtering is applied to learn the correlation65
between the files. Files with higher correlation are merged into single large file. Remote procedure call (RPC)66
requests to fetch the block information about the files are reduced by caching the access requests and looking into67
cache for the blocks before placing RPC requests. By this way, authors were able to reduce the file access time68
by 50% and increase storage utilization by 25% compared to default Hadoop. The scheme does not works well69
for streaming data, as the correlation model proposed in this work is not adaptive to streaming data. Niazi et al70
[10] proposed a new technique called inode stuffing to solve the small file problem. For small files, the metadata71
and data block are combined and decoupling is maintained only for large files. The approach is not scalable as72
it increases the metadata storage overhead at Namenodes. Jing et al [11] proposed a dynamic queue method to73
solve the small file problem. The files are first classified using the period classification algorithm. The algorithm74
calculates similarity score based on sentence similarity between two documents. The similar files are then merged75
to large file using multiple queues for specific file sizes. Authors also used file pre-fetching strategy to improve76
the efficiency of file access. Analyzing similarity between pairs is a cumbersome task for large number of files.77
Sharma et al [12] proposed a dual merge technique called Hash Based-Extended Hadoop Archive to solve the78
small file problem in Hadoop. The small files are merged using two level compaction. This reduces the storage79
overhead at Namenode and increase the data block space utilization at Datanodes. File access is made efficient80
using two level hash function. The proposed solution is atleast 13% faster compared to default Hadoop. The81
files were merged without considering the content characteristics and their semantics. Wang et al [13] combined82
merging and caching to solve the small file problem in Hadoop. Authors proposed a equilibrium merger queue83
algorithm to merge small files to Hadoop block size and then merged file is saved to HDFS. Indexing is built to84
access small files. To reduce the communication overhead between the client and Namenode for small file access,85
pre-fetched cache is used. With the cache, the number of RPC calls to name node is reduced. The memory86
consumption at Namenode drastically reduced in the proposed solution compared to default Hadoop Archives.87
Contents were merged without considering their content characteristics and semantic correlation. Ali et al [14]88
proposed a enhanced best fit merging algorithm to merge small files based on type and size. The merging is done89
till Hadoop block size is reached and merged file is saved to HDFS. Author found that merging improved Hadoop90
storage utilization by 64% but the file access time was higher in this work. Prasanna et al [15] compressed many91
small files into a zip file to the size of Hadoop data block and saved to disk. This increased the disk utilization92
of data nodes and name nodes. But the computational overhead in compressing stage and decompressing during93
processing is higher. Huang et al [16] addressed the small file problem for the case of images in Hadoop. A94
two level model was proposed specific to medical images. The images were grouped at first level based on series95
and next level based on examination. The grouped images are saved to data blocks in HDFS. Indexing and pre-96
fetching is done to done is reduce the access time for small image files. The pre-fetching algorithm did not have97
higher cache hit. Renner et al [17] extended the Hadoop archive to appendable file format to solve the small file98
problem. Small files are appended to existing archive data files whose block size is not completely used. Authors99
used first fit algorithm to select the data blocks. In addition indexing is done to facilitate faster access. Red black100
tree structure is used for indexing for efficient lookup. Though this scheme improved the data block utilization,101
appending is done without considering content characteristics and semantic similarity. Liu et al [18] proposed102
a file merging strategy based on content similarity. Files are converted to vector space features and correlation103
between the features is measured using cosine similarity. When cosine similarity is greater than threshold, files104
are merged. In addition authors used pre-fetching and caching to speed up the file access. Constructing a global105
feature space for streaming data is difficult and thus this approach is not suitable for streaming data.Lyu et al106
[19] proposed an optimized merging strategy to solve small file problem. The small files are merged based on107

2

size in such that way block size is fully utilized. In addition authors used pre-fetching and caching to increase108
the access speed. Only block size utilization was considered as the only criteria for merging without considering109
content characteristics and semantic relations. Similar to it Mu et al [20] proposed an optimization strategy110
to maximally fill the existing Hadoop archive by appending small files. In addition author also used secondary111
index to speed up the execution of file access. But here too merging was done without considering content112
characteristics and semantic relation. Wang et al [21] used probabilistic latent semantic analysis to determine the113
user access pattern and based on it small files are merged to a large file and placed in HDFS. In addition author114
also improved the pre-fetching hit ratio based user access transition pattern. Both the strategies improvised the115
speed of access and data block utilization. But this scheme is not suitable for multi user environment as for each116
user, a merging order must be kept and this increases the storage overhead. He et al [22] merging the small files117
based on balance of data blocks. The aim was to increase the data block utilization. Merging did not consider118
content characteristics and their semantic relation. Fu et al [23] proposed an flat storage architecture to handle119
the small files. In this scheme, both files and meta data are collocated with meta size fixed for any number of120
small files. This is facilitates by meta data having only pointer to related information in its index. But the scheme121
is not suited for Hadoop as collocation causes higher access overhead for large files. Tao et al [24] merged small122
files to large file and built a linear hash to small files to speed up access. File size was the only criteria considered123
for merging. Bok et al [25] integrated file merging and caching to solve the small file problem. Author used two124
level of cache for small files, so that access requests to - Cai et al [7] file merging algorithm based on two factors125
of distribution of the files and the correlation of the file The correlation is not based on content characteristics126
Choi et al [8] integrated combinedfileinputformat and JVM reuse to solve the small file problem memory buildup127
due to JVM reuse can crash the tasks due to inefficient memory management Peng et al [9] combined merging128
and caching techniques to solve the small file problem129

The scheme does not works well for streaming data, as the correlation model proposed in this work is not130
adaptive to streaming data Niazi et al [10] Coupling both meta data and small file together.131

The approach is not scalable as it increases the metadata storage overhead at Namenodes Jing et al [11] Files132
classified using the period classification algorithm and merged based on similarity Analyzing similarity between133
pairs is a cumbersome task for large number of files Sharma et al [12] Hash Based-Extended Hadoop Archive to134
solve the small file problem135

The files were merged without considering the content characteristics and their semantics.136
Wang et al [13] combined merging and caching to solve the small file problem Contents were merged without137

considering their content characteristics and semantic correlation Ali et al [14] enhanced best fit merging algorithm138
to merge small files based on type and size. file access time was higher in this work139

Huang et al [16] A two level model was proposed specific to medical images140
The pre-fetching algorithm did not have higher cache hit Renner et al [17] Small files are appended to existing141

archive data files Appending is done without considering content characteristics and semantic similarity Liu et al142
[18] File content based merging Constructing a global feature space for streaming data is difficult and thus this143
approach is not suitable for streaming data Lyu et al [19] optimized merging strategy to solve small file problem.144

Only block size utilization was considered as the only criteria for merging without considering content145
characteristics and semantic relations Wang et al [21] probabilistic latent semantic analysis to determine the146
user access pattern and based on it small files are merged to a large file scheme is not suitable for multi user147
environment as for each user, a merging order must be kept and this increases the storage overhead He et al [22]148
merging the small files based on balance of data blocks149

Merging did not consider content characteristics and their semantic relation Fu et al [23] flat storage150
architecture collocating metadata and file in same object the scheme is not suited for Hadoop as collocation151
causes higher access overhead for large files Tao et al [24] merged small files to large file and built a linear hash152
to small files to speed up access File size was the only criteria considered for merging Bok et al [25] integrated153
file merging and caching to solve the small file problem154

The merging was based only on size without considering the content characteristics and semantic similarity155
Caching on global context can provide better performance for some users and can give worst performance for other156
users. To solve this access time discrepancy among the users, personalized caching strategy must be employed.157

Steaming Support: Most of the merging schemes does not handle the steaming data effectively. Streaming158
data content similarity cannot be computed effectively using vector space modeling and their merging can become159
ineffective. Merging based on streaming arrival patterns has not been considered in earlier works.160

3 IV. Research Directions161

Based on the open issues identified, a prospective framework for further research is presented in Figure ??.162
The framework addresses three problem areas of context specific merging, personalized access and streaming163

support.164
Context Specific Merging: It can be facilitated and made adaptive using machine learning. Based on the165

application contexts and inherent data characteristics the files to be merged can be found. Blocks can be166
categorized based on context and small files can be categorized based on context. Context based merging is the167
realized to merge files and blocks based on context similarity. Instead of flat context, hierarchical context can be168

3

4 V. CONCLUSION

learnt automatically from file summarization. File summarization strategies specific to file types can be proposed169
to identify the context to be associated with files and blocks.170

Personalized Access: User can be clustered based on their content access patterns over a temporal duration171
and multiple caches can be maintained for each user group. Also the cache item management can be based on172
multi criteria optimization instead of LRU mechanisms. The items to pre-fetch can be identified based on context173
associated with files. By this way access speed up can be increased and optimized specific to each user group.174

Streaming Support: To support streaming data, the context must be learnt dynamically in a light weight175
manner and association of small file to blocks must be done based on context. To learn context in a light weight176
manner, the streaming data characteristics and their arrival patterns must be used.177

4 V. Conclusion178

This survey made a critical analysis of existing solutions for small file problem in Hadoop. The solutions were179
analyzed in four categories of file merging solutions, file caching solutions, optimizing Hadoop cluster structure180
and Map task optimizations. Based on the survey, three open issues of context specific merging, personalized181
access and streaming support are identified. Prospective solutions to these three open issues were identified and182
a solution roadmap for further exploration in this area was documented. 1

Critical Analysis of Solutions to Hadoop Small File Problem
Year 2023
25
Volume XXIII Issue II Version I
() C
Global Journal of Computer Science and Technology
Figure 1: Research direction framework
© 2023 Global Journals

Figure 1: Context based Block Categorization Machine learning based Context identification
Small files Context based file to block association Context attested Small files Context attested
Blocks User profiling Context based cache for user group 1 User access request User clustering
Context based cache for user group 2 Context based cache for user group n Context based
prefetching multi criteria optimization based caching

1

Work Solution for Small file Problem Gap
Merging was done only based on file types

Ahad et
al [4]

dynamic merging strategy
based on the file type

without considering the context and their

semantic relation
small files are merged only based on size,

Siddiqui
et al [5]

cache based block management
technique

without considering the semantic rela-
tions
and content characteristics

Zhai et
al [6]

a index based archive file
with order preserving hash for
speedup

Does not support streaming

Figure 2: Table 1 :
183

1 © 2023 Global Journals

4

1

Critical Analysis of Solutions to Hadoop Small File Problem
Year 2023
Volume XXIII Issue II Version I
() C
Global Journal of Computer Science and Technology
© 2023 Global Journals

Figure 3: Table 1 .

5

4 V. CONCLUSION

6

[Sharma et al. ()] ‘A Dynamic Repository Approach for Small File Management With Fast Access Time on184
Hadoop Cluster: Hash Based Extended Hadoop Archive’. V S Sharma , A Afthanorhan , N C Barwar , S185
Singh , H Malik . IEEE Access 2022. 10 p. .186

[Renner et al. ()] ‘Addressing Hadoop’s Small File Problem With an Appendable Archive File Format’. Thomas187
Renner , Johannes Müller , Lauritz Thamsen , Odej Kao . Proceedings of the Computing Frontiers Conference188
(CF’17), (the Computing Frontiers Conference (CF’17)New York, NY, USA) 2017. Association for Computing189
Machinery. p. .190

[Wang et al. (2015)] ‘An effective strategy for improving small _le problem in distributed file system’. T Wang191
, S Yao , Z Xu , L Xiong , X Gu , X Yang . Proc. 2nd Int. Conf, (2nd Int. Conf) Apr. 2015. p. .192

[Bok et al. (2017)] ‘An efficient distributed caching for accessing small files in HDFS’. K Bok , H Oh , J Lim , Y193
Pae , H Choi , B Lee , J Yoo . Cluster Comput Dec. 2017. 20 (4) p. .194

[Cai et al. ()] An optimization strategy of massive small files storage based on HDFS, Xun Cai , Chen , & Cai ,195
Yi Liang . 10.2991/jiaet-18.2018.40. 2018.196

[Dong et al. ()] ‘An optimized approach for storing and accessing small files on cloud storage’. Bo Dong , Qinghua197
Zheng , Feng Tian , Kuo-Ming Chao , Rui Ma , Rachid Anane . Journal of Network and Computer Applications198
2012. 2012. Elsevier. 35 p. .199

[Jing et al. ()] ‘An optimized method of HDFS for massive small files storage’. Weipeng & Jing , Tong ,200
Guangsheng & Danyu & Chen , Chuanyu Zhao , Liangkuan Zhu . 15.21-21.10.2298/CSIS171015021J.201
Computer Science and Information Systems 2018.202

[Lyu et al. (2017)] ‘An optimized strategy for small files storing and accessing in HDFS’. Y Lyu , X Fan , K Liu203
. Proc. IEEE Int. Conf. CSE, IEEE Int. Conf. EUC, (IEEE Int. Conf. CSE, IEEE Int. Conf. EUC) Jul. 2017.204
p. .205

[Ahad and Biswas ()] ‘Dynamic Merging based Small File Storage (DM-SFS) Architecture for Efficiently Storing206
Small Size Files in Hadoop’. Mohd Ahad , Ranjit Biswas . 1626-1635.10.1016/j.procs.2018.05.128. Procedia207
Computer Science 2018. 132.208

[Ali et al. ()] ‘Enhanced best fit algorithm for merging small files’. A Ali , N M Mirza , M K Ishak . Computer209
Systems Science and Engineering 2023. 46 (1) p. .210

[Zhai et al. ()] ‘Hadoop Perfect File: A fast and memory-efficient metadata access archive file to face small files211
problem in HDFS’. Yanlong & Zhai , Jude & Tchaye-Kondi , Kwei-Jay & Lin , Zhu , & Liehuang , Tao212
, & Wenjun , Du , Mohsen Xiaojiang & Guizani . 156.10.1016/j.jpdc.2021.05.011. Journal of Parallel and213
Distributed Computing 2021.214

[Huang et al. ()] ‘Hadoop-Based Medical Image Storage and Access Method for Examination Series’. Xin Huang215
, Wenlong Yi , Jiwei Wang , Zhijian Xu . Mathematical Problems in Engineering 2021. 2021. (Article ID216
5525009, 10 pages)217

[Choi et al. ()] ‘Improved performance optimization for massive small files in cloud computing environment’. C218
Choi , C Choi , J Choi . Ann Oper Res 2018. 265 p. .219

[Tao et al. (2019)] ‘LHF: A new archive based approach to accelerate massive small _les access performance in220
HDFS’. W Tao , Y Zhai , J Tchaye-Kondi . Proc. 5th IEEE Int. Conf. Big Data Service Appl, (5th IEEE Int.221
Conf. Big Data Service Appl) Apr. 2019. p. .222

[Wang et al. ()] ‘MOSM: An approach for efficient storing massive small files on Hadoop’. K Wang , Y Yang ,223
X Qiu , Z Gao . 2017 IEEE 2nd International Conference on Big Data Analysis (ICBDA), (Beijing, China)224
2017. p. .225

[Prasanna and Kumar (2016)] ‘Optimization Scheme for Storing and Accessing Huge Number of Small Files on226
HADOOP Distributed File System’. L Prasanna , Kumar . International Journal on Recent and Innovation227
Trends in Computing and Communication Feb. 2016. 4 (2) p. .228

[He et al. (2016)] ‘Optimization strategy of Hadoop small_le storage for big data in healthcare’. H He , Z Du ,229
W Zhang , A Chen . J. Supercomput Aug. 2016. 72 (10) p. .230

[Peng et al. (2018)] Jian-Feng & Peng , Wen-Guo & Wei , Hui-Min & Zhao , Dai , Gui-Yuan & Qing-Yun &231
Xie , Jun Cai , Kejing He . Proceedings.10.1007/978-3-030-00563-4_50. Hadoop Massive Small File Merging232
Technology Based on Visiting Hot-Spot and Associated File Optimization: 9th International Conference,233
(Xi’an, China) 2018. 2018. July 7-8, 2018.234

[Fu et al. (2015)] ‘Performance optimization for managing massive numbers of small files in distributed file235
systems’. S Fu , L He , C Huang , X Liao , K Li . IEEE Trans. Parallel Distrib. Syst Dec. 2015. 26 (12) p. .236

[Siddiqui et al. ()] Pseudo-Cache-Based IoT Small Files Management Framework in HDFS Cluster. Wireless237
Personal Communications, Isma & Siddiqui , Nawab Qureshi , Muhammad Faseeh & Chowdhry , Bhawani ,238
Mohammad Uqaili . 113.10.1007/s11277-020-07312-3. 2020.239

7

http://dx.doi.org/10.2991/jiaet-18.2018.40
http://dx.doi.org/15.21-21.10.2298/CSIS171015021J
http://dx.doi.org/1626-1635.10.1016/j.procs.2018.05.128
http://dx.doi.org/156.10.1016/j.jpdc.2021.05.011
http://dx.doi.org/Proceedings.10.1007/978-3-030-00563-4_50
http://dx.doi.org/113.10.1007/s11277-020-07312-3

4 V. CONCLUSION

[Niazi et al. ()] Size Matters : Improving the Performance of Small Files in Hadoop’, presented at the240
Middleware’18, S Niazi , M Ronström , S Haridi , J Dowling . 2018. Rennes, France: ACM. p. 14.241

[Small size problem in Hadoop] http://blog.Cloudera.com/blog/2009/02/242
the-small-files-problem/ Small size problem in Hadoop,243

[Solving Small size problem in Hadoop] Solving Small size problem in Hadoop, https://pastiaro.244
wordpress.com/2013/06/05/solving-the-small-files-problem-in-apache-hadoop-appending-and-merging-in-hdfs/245

[Liu ()] ‘Storage-Optimization Method for Massive Small Files of Agricultural Resources Based on Hadoop’. Jun246
Liu . 23.634-640.10.20965/jaciii.2019.p0634. Journal of Advanced Computational Intelligence and Intelligent247
Informatics 2019.248

[Mu et al. (2015)] ‘The optimization scheme research of small files storage based on HDFS’. Q Mu , Y Jia , B249
Luo . Proc. 8th Int. Symp. Comput. Intell. Design, (8th Int. Symp. Comput. Intell. Design) Dec. 2015. p. .250

8

http://blog.Cloudera.com/blog/2009/02/the-small-files-problem/
http://blog.Cloudera.com/blog/2009/02/the-small-files-problem/
http://blog.Cloudera.com/blog/2009/02/the-small-files-problem/
https://pastiaro.wordpress.com/2013/06/05/solving-the-small-files-problem-in-apache-hadoop-appending-and-merging-in-hdfs/
https://pastiaro.wordpress.com/2013/06/05/solving-the-small-files-problem-in-apache-hadoop-appending-and-merging-in-hdfs/
https://pastiaro.wordpress.com/2013/06/05/solving-the-small-files-problem-in-apache-hadoop-appending-and-merging-in-hdfs/
http://dx.doi.org/23.634-640.10.20965/jaciii.2019.p0634

	1 I. Introduction
	2 II. Survey
	3 IV. Research Directions
	4 V. Conclusion

