
© 2023. Debashish Barman, Biswajit Paul, Swastik Bhattacharya, Dr. Sourav De & Dr. Govind Prasad Arya. This research/review
article is distributed under the terms of the Attribution-NonCommercial NoDerivatives 4.0 International (CC BYNCND 4.0). You
must give appropriate credit to authors and reference this article if parts of the article are reproduced in any manner. Applicable
licensing terms are at https://creativecommons.org/licenses/by-nc-nd/4.0/.

Global Journal of Computer Science and Technology: H
Information & Technology
Volume 23 Issue 3 Version 1.0 Year 2023
Type: Double Blind Peer Reviewed International Research Journal
Publisher: Global Journals
Online ISSN: 0975-4172 & Print ISSN: 0975-4350

Optimized Round Robin CPU Scheduling for Critical Processes
 By Debashish Barman, Biswajit Paul, Swastik Bhattacharya, Dr. Sourav De

& Dr. Govind Prasad Arya

OptimizedRoundRobinCPUSchedulingforCriticalProcesses

Strictly as per the compliance and regulations of:

Abstract- An operating system serves as a fundamental component of any computer system.
Scheduling lies at the core of operating system functionality, involving the arrangement of
processes to execute in a well-defined manner. The primary goal of scheduling is to enhance
system efficiency and speed. Several fundamental scheduling algorithms exist, including First
Come First Serve (FCFS), Round Robin, Priority-Based Scheduling, and Shortest Job First (SJF).
This thesis primarily focuses on the Round Robin Scheduling algorithm and seeks to address
certain limitations associated with it.

One notable drawback of Round Robin Scheduling is the critical choice of the time
quantum. If the time quantum is excessively large, the scheduling behavior closely resembles
that of FCFS. Conversely, a smaller time quantum leads to a higher number of context switches.
The central objective here is to overcome this limitation inherent to the traditional Round Robin
scheduling algorithm, thereby maximizing CPU utilization and enhancing system efficiency.

Keywords: CPU scheduling, round robin scheduling, priority scheduling, time quantum, waiting
time, turnaround time.

GJCST-H Classification: ACM Code: D.4.1

Optimized Round Robin CPU Scheduling
for Critical Processes

Debashish Barman α, Biswajit Paul σ, Swastik Bhattacharya ρ, Dr. Sourav De Ѡ & Dr. Govind Prasad Arya¥

Abstract-

An operating system serves as a fundamental
component of any computer system. Scheduling lies at the
core of operating system functionality, involving the
arrangement of processes to execute in a well-defined
manner. The primary goal of scheduling is to enhance system
efficiency and speed. Several fundamental scheduling
algorithms exist, including First Come First Serve (FCFS),
Round Robin, Priority-Based Scheduling, and Shortest Job
First (SJF). This thesis primarily focuses on the Round Robin
Scheduling algorithm and seeks to address certain limitations
associated with it.

One notable drawback of Round Robin Scheduling is
the critical choice of the time quantum. If the time quantum is
excessively large, the scheduling behavior closely resembles
that of FCFS. Conversely, a smaller time quantum leads to a
higher number of context switches. The central objective here
is to overcome this limitation inherent to the traditional Round
Robin scheduling algorithm, thereby maximizing CPU
utilization and enhancing system efficiency.

In this thesis, we propose an innovative algorithm
that classifies processes into two categories: high-priority
processes and low-priority processes. This novel scheme
significantly reduces the average waiting time of high-priority
processes, regardless of the presence of low-priority
processes. The overall average waiting time varies based on
the specific set of processes under consideration. Our
analysis demonstrates that the proposed scheme consistently
outperforms previously suggested methods, resulting in
reduced average waiting times for the selected process sets.

I.

Introduction

PU scheduling is a fundamental practice in the
realm of operating systems, orchestrating the
execution of processes to efficiently utilize the

CPU. This practice becomes necessary when a process
must seize CPU control while another process is
temporarily halted in a waiting state, typically due to
resource unavailability, such as I/O operations. The
primary objectives of CPU scheduling are to enhance
system effectiveness, responsiveness, and fairness
while maximizing CPU utilization.

Process scheduling, an integral component of
multiprogramming operating systems, involves
managing the transition of processes in and out of the
CPU based on a specific strategy. These operating
systems can load multiple processes into executable
memory concurrently, allowing them to share the CPU
through time multiplexing.

There are two principal categories of CPU
scheduling algorithms: preemptive and non-preemptive.
In preemptive scheduling, a process allocated to the
CPU can be interrupted, and its running state may be
changed to a waiting state. This approach is known for
temporarily suspending logically runnable processes
and is referred to as preemptive scheduling. However,
frequent arrivals of high-priority processes in the ready
queue can potentially lead to starvation for lower-priority
processes. It's important to note that preemptive
scheduling comes with the overhead of managing these
process interruptions.

In contrast, non-preemptive scheduling ensures
that once a process gains access to the CPU, it retains
control until its execution is complete. The CPU cannot
be forcibly taken away from the process until it finishes
its execution. In this scenario, a process voluntarily
releases the processor only after its task is done.

While various CPU scheduling algorithms exist,
some common ones include First In First Out (FIFO),
Shortest Job First (SJF), Priority Scheduling, and Round
Robin CPU Scheduling. Each of these algorithms offers
unique advantages and trade-offs in managing the
CPU's allocation to processes.

II. Literature Survey

In FCFS scheduling, jobs are executed in the
order they arrive, following a "first come, first served"
principle [1]. This algorithm can operate in both non-
preemptive and preemptive modes depending on
system requirements. It is easy to understand and
implement, relying on a First-In-First-Out (FIFO) queue.
However, FCFS suffers from the drawback of high
average waiting times, limiting its overall performance.

Shortest Job First (SJF), also known as Shortest
Job Next, prioritizes tasks based on their execution time
[3]. It can function as both a preemptive and non-
preemptive algorithm. SJF is particularly effective in
reducing waiting times, making it a preferred choice in
batch systems where CPU time requirements are known

C

 G
lo
ba

l
Jo

ur
na

l
of
 C

om
pu

te
r
Sc

ie
nc

e
an

d
T
ec

hn
ol
og

y
(
H
)
 X

X
II
I
Is
su

e
II
I
V
er
si
on

 I

 Y
ea

r
20

23

13

© 2023 Global Journals

Author α σ ρ: Department of Computer Science, Cooch Behar
Government Engineering College, Cooch Behar, West Bengal, India.
e-mails: deba.barmanjpg@gmail.com, siswajitpaul23me@gmail,
swastikbhattacharya6@gmail.com
Author Ѡ ¥: (Research Guide) Department of Computer Science &
Engg 4Cooch Behar Government Engineering College.
e-mail: govind.arya10@gmail.com

Keywords: CPU scheduling, round robin scheduling, priority
scheduling, time quantum, waiting time, turnaround time.

in advance. However, it is impractical for interactive
systems where predicting CPU time is challenging.

Priority scheduling is a non-preemptive
algorithm commonly used in batch systems [5]. Each
process is assigned a priority, with the highest-priority
process scheduled first, followed by processes of equal
priority in a first-come-first-served manner. Priorities can
be assigned based on memory, time, or other resource
requirements.

Round Robin is a preemptive scheduling
algorithm where each process is allocated a fixed time
quantum for execution [8]. When a process's time
quantum expires, it is preempted, and another process
is allowed to execute for its allocated time period.
Context switching is necessary to manage preempted
processes effectively.

Multiple-level queues are a manual scheduling
algorithm [15] that leverages various existing algorithms
to categorize jobs based on common characteristics.
Multiple queues are maintained for processes with
similar attributes, each with its specific scheduling
algorithm [8]. Priorities are assigned to each queue,
enabling effective organization. For instance, OS-bound
jobs can be grouped in one queue, while I/O-bound
jobs reside in another. The Process Scheduler selects
jobs from each queue based on the algorithm
associated with that queue. Multi-level queue
scheduling was developed for scenarios where
processes naturally belong to different groups.

III. Shortcomings of Existing
Algorithm

We have evaluated the conventional Round
Robin (RR) algorithm as our baseline scheduling

approach. The RR algorithm is generally considered
efficient because it ensures that all processes in the
process set have an equal opportunity for execution.
However, our research has identified that our system
comprises both critical processes with high priority and
normal (low-priority) processes. A significant limitation of
the RR algorithm is its lack of consideration for process
priorities, which we regard as a major drawback.

To address this limitation, we have proposed a
novel methodology aimed at enhancing the RR
algorithm's effectiveness.

Let's now consider the following set of
processes with a fixed time quantum of 4.

Table 1: For the Existing Methodology, Processes in the
Ready Queue

Process Name Priority Burst Time
P0 0 5
P1 1 3
P2 1 12
P3 0 9

P4 0 8

Round Robin scheduling is known for its ability
to ensure a fair chance for every process in the set to
execute. Consequently, Figure 1 illustrates the Gantt
chart and waiting times for the given set of processes.

Figure 1: Gantt chart of Existing Methodology

The average waiting time (AWT) for processes with both low and high priorities is presented in Figure 2 below.

Optimized Round Robin CPU Scheduling for Critical Processes

G
lo
ba

l
Jo

ur
na

l
of
 C

om
pu

te
r
Sc

ie
nc

e
an

d
T
ec

hn
ol
og

y
(
H
)
 X

X
II
I
Is
su

e
II
I
V
er
si
on

 I

 Y
ea

r
20

23

14

© 2023 Global Journals

Figure 2: Waiting Time Analysis of Existing Methodology

IV. Proposed Method

The Round Robin algorithm operates under the
premise of treating all jobs with equal priority, executing
processes one at a time for a specific duration known as
the Time Quantum (TQ). A process can continue
running until either its time quantum (TQ) is exhausted
or it completes its CPU burst time. Within the system,
processes have varying priorities, distinguishing
between high-priority critical tasks, which demand
immediate CPU attention, such as shutting down the
computer due to overheating or issuing alerts for
unauthorized access, and normal-priority processes,
which encompass all other standard tasks.

V. Proposed Algorithm

Our proposed algorithm is given below.

Step 1: Input process details, including the process
name, priority, and burst time.

Step 2: Save the collected information in a queue
labeled as "READYQ."

Step 3: Establish two distinct queues: "HIGHPQ" for
high-priority processes and "LOWPQ" for regular-priority
processes.

Step 4: Repeat steps 5 to 11 until the remaining CPU
burst times for processes in both "HIGHPQ" and
"LOWPQ" reach zero.

Step 5: Choose the next process from "HIGHPQ" or
"LOWPQ" alternatively, with the initial selection favoring
"HIGHPQ" to give higher-priority tasks precedence.

Step 6: If the selected process has a remaining CPU
burst time greater than or equal to the time quantum,
proceed to step 7; otherwise, go to step 8.

Step 7: Execute the chosen process for the duration of
the time quantum.

Step 8: Continue executing the selected process until its
remaining burst time reaches zero.

Step 9: Update the remaining CPU burst time of the
corresponding process in the respective queue.

Step 10: Record the process's IN-TIME and OUT-TIME
in a table known as the GANTTCHART.

Step 11: If the previous process was selected from
"HIGHPQ," switch the next turn to "LOWPQ," and vice
versa.

In this study, I have introduced an approach
that ensures high-priority processes receive precedence
in execution. The methodology I've suggested involves
granting alternating opportunities to both high and low
priority processes. It begins by selecting a process from
the high-priority queue, followed by the selection of the
next process from the low-priority queue. The following
steps outline the proposed methodology.

HIGHPQ- This queue contains the processes of high
priority.

Process Name

Priority

Burst Time

P1

1

3

P2

1 12

LOWPQ- This queue contains the processes of low
priority.

Process Name

Priority

Burst Time

P0

0

5

P3

0

9

P4

0 8

Below, in Figure 3, you can observe the Gantt
chart and waiting times for the processes listed in Table
1, using a time quantum of 4.

Optimized Round Robin CPU Scheduling for Critical Processes

G
lo
ba

l
Jo

ur
na

l
of
 C

om
pu

te
r
Sc

ie
nc

e
an

d
T
ec

hn
ol
og

y
(
H
)
 X

X
II
I
Is
su

e
II
I
V
er
si
on

 I

 Y
ea

r
20

23

15

© 2023 Global Journals

Figure 3: Working of Proposed Methodology

VI. Result and Analysis

The figure below illustrates the application of the
proposed algorithm, resulting in an average waiting time
for high-priority processes of approximately 7.5. This
value is nearly half of the average waiting time observed

when using the existing algorithm. Furthermore, the
overall waiting time for the process set is significantly
reduced through the implementation of the proposed
algorithm.

Figure 4: Result Analyses of Existing Vs Proposed Methodology

The same result can be analyzed using bar chart shown in figure 5.

Optimized Round Robin CPU Scheduling for Critical Processes

G
lo
ba

l
Jo

ur
na

l
of
 C

om
pu

te
r
Sc

ie
nc

e
an

d
T
ec

hn
ol
og

y
(
H
)
 X

X
II
I
Is
su

e
II
I
V
er
si
on

 I

 Y
ea

r
20

23

16

© 2023 Global Journals

Figure 5: Result Analysis of Existing Vs Proposed Methodology Using Bar chart

VII. Conclusion

In this study, I've maintained the core principle
of traditional round-robin scheduling, which aims to
ensure that all processes receive an equal opportunity
to execute within a specific time quantum. The
innovation lies in the strategic placement of high-priority
processes at the rear of the ready queue, preventing
them from being excessively delayed by late arrivals.
The proposed approach is expected to reduce the
average waiting time for high-priority processes, but it
may lead to an increase in the average waiting time for
normal priority processes. The overall average waiting
time for all processes within the ready queue may exhibit
improvement or remain unchanged, contingent on the
specific mix of processes.

Although the proposed algorithm demonstrates
enhanced performance for high-priority processes, there
remains an ongoing drive for continued improvement. In
the future, these results could potentially be refined by
introducing variable time quantum strategies.
Furthermore, optimizing the algorithm's execution can
be accomplished by leveraging more efficient data
structures.

References Références Referencias

1. Sanjay Kumar Panda and Saurav Kumar Bhoi, “An
Effective Round Robin Algorithm using Min-Max
Dispersion Measure”, International Journal on
Computer Science and Engineering, 4 (1), pp. 45-
53, January 2012.

2. Abraham Silberschatz, Peter Baer Galvin, Greg
Gagne, “Operating System Concepts”, Sixth
Edition.

3. Rakesh Mohanty, H. S. Behera, Khusbu Patwari,
Monisha Dash, “Design and Performance
Evaluation of a New Proposed Shortest Remaining
Burst Round Robin (SRBRR) Scheduling Algorithm”,
Proc. of International Symposium on Computer
Engineering & Technology 2010, Vol 17, pp. 126-
137, 2010 .

4. Abdulrazak Abdulrahim, Salisu Aliyu, Ahmad M
Mustapha & Saleh E. Abdullahi, (2014) “An
Additional Improvement in Round Robin (AAIRR)
CPU Scheduling Algorithm”, International Journal of
Advanced Research in Computer Science and
Software Engineering, Vol. 4, Issue 2, pp 601-610.

5. Improvised Round Robin (CPU) Scheduling
Algorithm. Sirohi, Abhishek; Pratap, Aseem;
Aggarwal, Mayank // International Journal of
Computer Applications;Aug2014, Vol. 99, p40.

6. Pallab Banerjee, Probal Banerjee, Shweta Sonali
Dhal, “Comparative Performance Analysis of
Average Max Round Robin Scheduling Algorithm
(AMRR) using Dynamic Time Quantum with Round
Robin Scheduling Algorithm usingStatic Time
Quanmtum”, International Journal of Innovative
Technology and Exploring Engineering, 1(3), pp. 56-
62,August 2012.

7. P.Surendra Varma, “A Finest Time Quantum for
Improving Shortest Remaining Burst Round Robin
(SRBRR) Algorithm”, Journal of Global Research in
Computer Science, 4 (3), pp. 10-15, March 2013.

8. Two Queue based Round Robin Scheduling
Algorithm for CPU Scheduling. Jindal, Srishty;
Grover, Priyanka // International Journal of
Computer Applications;Nov2014, Vol. 105 Issue 1-
18, p21.

9. A 2LFQ Scheduling with Dynamic Time Quantum
using Mean Average. Lenka, Rakesh K.; Ranjan,
Prabhat // International Journal of Computer
Applications;6/1/2012, Vol. 47, p15.

10. Raman, Dr. Pradeep Kumar Mittal, “An Efficient
Dynamic Round Robin CPU Scheduling Algorithm
(EDRR)”, International Journal of Advanced
Research in Computer Science and Software
Engineering, 4 (5), pp. 907-910, May 2014.

11. Silberschatz, A., P.B. Galvin and G. Gagne,
Operating Systems Concepts. 7th Edn., John Wiley
and Sons, USA., ISBN:13: 978-0471694663, pp.
944.

Optimized Round Robin CPU Scheduling for Critical Processes

G
lo
ba

l
Jo

ur
na

l
of
 C

om
pu

te
r
Sc

ie
nc

e
an

d
T
ec

hn
ol
og

y
(
H
)
 X

X
II
I
Is
su

e
II
I
V
er
si
on

 I

 Y
ea

r
20

23

17

© 2023 Global Journals

12. An Effective Round Robin Algorithm using Min-Max

Dispersion Measure. Panda, Sanjaya Kumar; Bhoi,
Sourav Kumar // International Journal on Computer
Science & Engineering; Jan2012, Vol. 4 Issue 1,
p45.

13. Designing Various CPU Scheduling Techniques
using SCILAB. Saini, Mona // International Journal
of Computer Science & Information Technolo; 2014,
Vol. 5 Issue 3, p2918.

14. Self-Adjustment Time Quantum in Round Robin
Algorithm Depending on Burst Time of the Now
Running Processes. Matarneh, Rami j. // Ameri- can
Journal of Applied Sciences;2009, Vol. 6 Issue 10,
p1831.

15. R. J. Matarneh, “Seif-Adjustment Time Quantum in
Round Robin Algorithm Depending on Burst Time of
the Now Running Proceses”, American Journal of
Applied Sciences, 6(10), pp. 1831-1837, 2009.

16. H. S. Behera, R. Mohanty, and D. Nayak, “A New
Proposed Dynamic Quantum with Re-Adjusted
Round Robin Scheduling Algorithm and Its
Performance Analysis”, International Journal of
Computer Applications, 5 (5), pp. 10-15, August
2010.

17. E. O. Oyetunji, A. E. Oluleye,” Performance
Assessment of Some CPU Scheduling Algori-thms”,
Research Journal of Information Techno-logy,1(1):
pp 22-26, 2009

18. Ajit Singh, Priyanka Goyal, Sahil Batra,” An
Optimized Round Robin Scheduling Algorithm for
CPU Scheduling”, (IJCSE) International Journal on
Computer Science and Engineering Vol. 02, No. 07,
2383-2385, 2010.

19. Rami J. Matarneh.“Self-Adjustment Time Quantum
in Round Robin Algorithm Depending on Burst Time
of Now Running Processes”, American J. of Applied
Sciences 6 (10):1831-1837, 2009.

20. Abdulrazak Abdulrahim, Saleh E. Abdullahi &
Junaidu B. Sahalu, (2014) “A New Improved Round
Robin (NIRR) CPU Scheduling Algorithm”,
International Journal of Computer Applications, Vol.
90, No. 4, pp 27-33.

21. Sourav Kumar Bhoi, Sanjaya Kumar Panda,
Debashee Tarai, “Enhancing cpu performance
using subcontrary mean dynamic round robin
(smdrr) scheduling algorithm” ,JGRCS, Volume 2,
No. 12, December 2011, pp.17-21.

22. Rakesh Mohanty, H. S. Behera, Khusbu Patwari,
Monisha Dash, “Design and Performance
Evaluation of a New Proposed Shortest Remaining
Burst Round Robin (SRBRR) Scheduling Algorithm”,
International Symposium on Computer Engineering
& Technology (ISCET), Vol 17, 2010

23. Ishwari Singh Rajput,” A Priority based Round Robin
CPU Scheduling Algorithm for Real Time Systems”,
(IJIET)International Journal of Innovations in

Engineering and Technology Vol. 1 Issue 3 Oct
2012.

24. Manish Kumar Mishra & Abdul Kadir Khan, (2012)
“An Improved Round Robin CPU Scheduling
Algorithm”, Journal of Global Research in Computer
Science, Vol. 3, No. 6, pp 64-69.

25. P.Surendra Varma , “A FINEST TIME QUANTUM
FOR IMPROVING SHORTEST REMAINING BURST
ROUND ROBIN (SRBRR) ALGORITHM” Journal of
Global Research in Computer Science, 4 (3), March
2013, 10-15.

26. Rakesh Kumar Yadav, Abhishek K Mishra, Navin
Prakash, Himanshu Sharma,” An Improved Round
Robin Scheduling Algorithm for CPU Scheduling”,
(IJCSE) International Journal on Computer Science
and Engineering Vol. 02, No. 04, 1064-1066, 2010.

Optimized Round Robin CPU Scheduling for Critical Processes

G
lo
ba

l
Jo

ur
na

l
of
 C

om
pu

te
r
Sc

ie
nc

e
an

d
T
ec

hn
ol
og

y
(
H
)
 X

X
II
I
Is
su

e
II
I
V
er
si
on

 I

 Y
ea

r
20

23

18

© 2023 Global Journals

	Optimized Round Robin CPU Scheduling for Critical Processes
	Author
	Keywords
	I. Introduction
	II. Literature Survey
	III. Shortcomings of Existing Algorithm
	IV. Proposed Method
	V. Proposed Algorithm
	VI. Result and Analysis
	VII. Conclusion
	References Références Referencias

