
Optimized Round Robin CPU Scheduling for Critical Processes1

Debashish Barman1, Biswajit Paul2, Swastik Bhattacharya3, Dr. Sourav De4 and Dr.2

Govind Prasad Arya53

1 Sikkim Manipal University4

Received: 1 January 1970 Accepted: 1 January 1970 Published: 1 January 19705

6

Abstract7

An operating system serves as a fundamental component of any computer system. Scheduling8

lies at the core of operating system functionality, involving the arrangement of processes to9

execute in a well-defined manner. The primary goal of scheduling is to enhance system10

efficiency and speed. Several fundamental scheduling algorithms exist, including First Come11

First Serve (FCFS), Round Robin, Priority-Based Scheduling, and Shortest Job First (SJF).12

This thesis primarily focuses on the Round Robin Scheduling algorithm and seeks to address13

certain limitations associated with it.One notable drawback of Round Robin Scheduling is the14

critical choice of the time quantum. If the time quantum is excessively large, the scheduling15

behavior closely resembles that of FCFS. Conversely, a smaller time quantum leads to a higher16

number of context switches. The central objective here is to overcome this limitation inherent17

to the traditional Round Robin scheduling algorithm, thereby maximizing CPU utilization18

and enhancing system efficiency.19

20

Index terms— CPU scheduling, round robin scheduling, priority scheduling, time quantum, waiting time,21
turnaround time.22

Abstract-An operating system serves as a fundamental component of any computer system. Scheduling lies23
at the core of operating system functionality, involving the arrangement of processes to execute in a well-24
defined manner. The primary goal of scheduling is to enhance system efficiency and speed. Several fundamental25
scheduling algorithms exist, including First Come First Serve (FCFS), Round Robin, Priority-Based Scheduling,26
and Shortest Job First (SJF). This thesis primarily focuses on the Round Robin Scheduling algorithm and seeks27
to address certain limitations associated with it.28

One notable drawback of Round Robin Scheduling is the critical choice of the time quantum. If the time29
quantum is excessively large, the scheduling behavior closely resembles that of FCFS. Conversely, a smaller30
time quantum leads to a higher number of context switches. The central objective here is to overcome this31
limitation inherent to the traditional Round Robin scheduling algorithm, thereby maximizing CPU utilization32
and enhancing system efficiency.33

In this thesis, we propose an innovative algorithm that classifies processes into two categories: high-priority34
processes and low-priority processes. This novel scheme significantly reduces the average waiting time of high-35
priority processes, regardless of the presence of low-priority processes. The overall average waiting time varies36
based on the specific set of processes under consideration. Our analysis demonstrates that the proposed scheme37
consistently outperforms previously suggested methods, resulting in reduced average waiting times for the selected38
process sets.39

1 I. Introduction40

PU scheduling is a fundamental practice in the realm of operating systems, orchestrating the execution of processes41
to efficiently utilize the CPU. This practice becomes necessary when a process must seize CPU control while42
another process is temporarily halted in a waiting state, typically due to resource unavailability, such as I/O43

1

Global Journals LATEX JournalKaleidoscope™
Artificial Intelligence formulated this projection for compatibility purposes from the original article published at Global Journals.
However, this technology is currently in beta. Therefore, kindly ignore odd layouts, missed formulae, text, tables, or figures.

CrossRef DOI of original article:

4 FIGURE 1: GANTT CHART OF EXISTING METHODOLOGY

operations. The primary objectives of CPU scheduling are to enhance system effectiveness, responsiveness, and44
fairness while maximizing CPU utilization.45

Process scheduling, an integral component of multiprogramming operating systems, involves managing the46
transition of processes in and out of the CPU based on a specific strategy. These operating systems can47
load multiple processes into executable memory concurrently, allowing them to share the CPU through time48
multiplexing.49

There are two principal categories of CPU scheduling algorithms: preemptive and non-preemptive. In50
preemptive scheduling, a process allocated to the CPU can be interrupted, and its running state may be changed51
to a waiting state. This approach is known for temporarily suspending logically runnable processes and is52
referred to as preemptive scheduling. However, frequent arrivals of high-priority processes in the ready queue53
can potentially lead to starvation for lower-priority processes. It’s important to note that preemptive scheduling54
comes with the overhead of managing these process interruptions.55

In contrast, non-preemptive scheduling ensures that once a process gains access to the CPU, it retains control56
until its execution is complete. The CPU cannot be forcibly taken away from the process until it finishes its57
execution. In this scenario, a process voluntarily releases the processor only after its task is done.58

While various CPU scheduling algorithms exist, some common ones include First In First Out (FIFO), Shortest59
Job First (SJF), Priority Scheduling, and Round Robin CPU Scheduling. Each of these algorithms offers unique60
advantages and trade-offs in managing the CPU’s allocation to processes.61

2 II. Literature Survey62

In FCFS scheduling, jobs are executed in the order they arrive, following a ”first come, first served” principle [1].63
This algorithm can operate in both nonpreemptive and preemptive modes depending on system requirements.64
It is easy to understand and implement, relying on a First-In-First-Out (FIFO) queue. However, FCFS suffers65
from the drawback of high average waiting times, limiting its overall performance.66

Shortest Job First (SJF), also known as Shortest Job Next, prioritizes tasks based on their execution time67
[3]. It can function as both a preemptive and nonpreemptive algorithm. SJF is particularly effective in reducing68
waiting times, making it a preferred choice in batch systems where CPU time requirements are known C in69
advance. However, it is impractical for interactive systems where predicting CPU time is challenging.70

Priority scheduling is a non-preemptive algorithm commonly used in batch systems ??5]. Each process is71
assigned a priority, with the highest-priority process scheduled first, followed by processes of equal priority in a72
first-come-first-served manner. Priorities can be assigned based on memory, time, or other resource requirements.73

Round Robin is a preemptive scheduling algorithm where each process is allocated a fixed time quantum for74
execution ??8]. When a process’s time quantum expires, it is preempted, and another process is allowed to75
execute for its allocated time period. Context switching is necessary to manage preempted processes effectively.76

Multiple-level queues are a manual scheduling algorithm [15] that leverages various existing algorithms to77
categorize jobs based on common characteristics. Multiple queues are maintained for processes with similar78
attributes, each with its specific scheduling algorithm ??8]. Priorities are assigned to each queue, enabling79
effective organization. For instance, OS-bound jobs can be grouped in one queue, while I/O-bound jobs reside in80
another. The Process Scheduler selects jobs from each queue based on the algorithm associated with that queue.81
Multi-level queue scheduling was developed for scenarios where processes naturally belong to different groups.82

3 III. Shortcomings of Existing Algorithm83

We have evaluated the conventional Round Robin (RR) algorithm as our baseline scheduling approach. The RR84
algorithm is generally considered efficient because it ensures that all processes in the process set have an equal85
opportunity for execution. However, our research has identified that our system comprises both critical processes86
with high priority and normal (low-priority) processes. A significant limitation of the RR algorithm is its lack of87
consideration for process priorities, which we regard as a major drawback.88

To address this limitation, we have proposed a novel methodology aimed at enhancing the RR algorithm’s89
effectiveness.90

Let’s now consider the following set of processes with a fixed time quantum of 4. Round Robin scheduling91
is known for its ability to ensure a fair chance for every process in the set to execute. Consequently, Figure ??92
illustrates the Gantt chart and waiting times for the given set of processes.93

4 Figure 1: Gantt chart of Existing Methodology94

The average waiting time (AWT) for processes with both low and high priorities is presented in Figure 2 below.95

2

5 Optimized Round Robin CPU Scheduling for Critical Pro-96

cesses97

6 Global Journal of Computer Science and Technology (H)98

XXIII Issue III Version I99

Year 2023100

7 IV. Proposed Method101

The Round Robin algorithm operates under the premise of treating all jobs with equal priority, executing processes102
one at a time for a specific duration known as the Time Quantum (TQ). A process can continue running until103
either its time quantum (TQ) is exhausted or it completes its CPU burst time. Within the system, processes have104
varying priorities, distinguishing between high-priority critical tasks, which demand immediate CPU attention,105
such as shutting down the computer due to overheating or issuing alerts for unauthorized access, and normal-106
priority processes, which encompass all other standard tasks.107

8 V. Proposed Algorithm108

Our proposed algorithm is given below.109
Step 1: Input process details, including the process name, priority, and burst time.110
Step 2: Save the collected information in a queue labeled as ”READYQ.”111
Step 3: Establish two distinct queues: ”HIGHPQ” for high-priority processes and ”LOWPQ” for regular-112

priority processes.113
Step 4: Repeat steps 5 to 11 until the remaining CPU burst times for processes in both ”HIGHPQ” and114

”LOWPQ” reach zero.115
Step 5: Choose the next process from ”HIGHPQ” or ”LOWPQ” alternatively, with the initial selection favoring116

”HIGHPQ” to give higher-priority tasks precedence.117
Step 6: If the selected process has a remaining CPU burst time greater than or equal to the time quantum,118

proceed to step 7; otherwise, go to step 8.119
Step 7: Execute the chosen process for the duration of the time quantum.120
Step 8: Continue executing the selected process until its remaining burst time reaches zero.121
Step 9: Update the remaining CPU burst time of the corresponding process in the respective queue.122
Step 10: Record the process’s IN-TIME and OUT-TIME in a table known as the GANTTCHART.123
Step 11: If the previous process was selected from ”HIGHPQ,” switch the next turn to ”LOWPQ,” and vice124

versa.125
In this study, I have introduced an approach that ensures high-priority processes receive precedence in126

execution. The methodology I’ve suggested involves granting alternating opportunities to both high and low127
priority processes. It begins by selecting a process from the high-priority queue, followed by the selection of the128
next process from the low-priority queue. The following steps outline the proposed methodology.129

HIGHPQ-This queue contains the processes of high priority.130

9 Process Name131

Priority Burst Time Below, in Figure 3, you can observe the Gantt chart and waiting times for the processes132
listed in Table 1, using a time quantum of 4.133

10 Optimized Round Robin Scheduling for Critical Processes134

11 Global Journal of Computer Science and Technology (H)135

XXIII Issue III Version I136

Year 2023137

12 VI. Result and Analysis138

The figure below illustrates the application of the proposed algorithm, resulting in an average waiting time for139
high-priority processes of approximately 7.5. This value is nearly half of the average waiting time observed when140
using the existing algorithm. Furthermore, the overall waiting time for the process set is significantly reduced141
through the implementation of the proposed algorithm.142

13 Figure 4: Result Analyses of Existing Vs Proposed Method-143

ology144

The same result can be analyzed using bar chart shown in figure 5.145

3

16 VII. CONCLUSION

14 Optimized Round Robin CPU Scheduling for Critical Pro-146

cesses147

15 Global Journal of Computer Science and Technology (H)148

XXIII Issue III Version I149

Year 2023150

16 VII. Conclusion151

In this study, I’ve maintained the core principle of traditional round-robin scheduling, which aims to ensure that152
all processes receive an equal opportunity to execute within a specific time quantum. The innovation lies in153
the strategic placement of high-priority processes at the rear of the ready queue, preventing them from being154
excessively delayed by late arrivals. The proposed approach is expected to reduce the average waiting time for155
high-priority processes, but it may lead to an increase in the average waiting time for normal priority processes.156
The overall average waiting time for all processes within the ready queue may exhibit improvement or remain157
unchanged, contingent on the specific mix of processes.158

Although the proposed algorithm demonstrates enhanced performance for high-priority processes, there159
remains an ongoing drive for continued improvement. In the future, these results could potentially be refined160
by introducing variable time quantum strategies. Furthermore, optimizing the algorithm’s execution can be161
accomplished by leveraging more efficient data structures. 1

2

Figure 1: Figure 2 :
162

1 © 2023 Global Journals

4

3

Figure 2: Figure 3 :

5

Figure 3: Figure 5 :

5

16 VII. CONCLUSION

Figure 4:

Figure 5:

1

Ready Queue
Process Name Priority Burst Time
P0 0 5
P1 1 3
P2 1 12
P3 0 9
P4 0 8

Figure 6: Table 1 :

6

[Varma (2013)] ‘A FINEST TIME QUANTUM FOR IMPROVING SHORTEST REMAINING BURST ROUND163
ROBIN (SRBRR) ALGORITHM’. P Surendra Varma . Journal of Global Research in Computer Science March164
2013. 4 (3) p. .165

[Abdulrahim et al. ()] ‘A New Improved Round Robin (NIRR) CPU Scheduling Algorithm’. Abdulrazak Abdul-166
rahim , E Saleh , Abdullahi , B Junaidu , Sahalu . International Journal of Computer Applications 2014. 90167
(4) p. .168

[Behera et al. (2010)] ‘A New Proposed Dynamic Quantum with Re-Adjusted Round Robin Scheduling Algo-169
rithm and Its Performance Analysis’. H S Behera , R Mohanty , D Nayak . International Journal of Computer170
Applications August 2010. 5 (5) p. .171

[Singh (2012)] ‘A Priority based Round Robin CPU Scheduling Algorithm for Real Time Systems’. Ishwari Singh172
, Rajput . IJIET)International Journal of Innovations in Engineering and Technology 3 Oct 2012. 1.173

[Abdulrahim et al. ()] An, Abdulrazak Abdulrahim , Salisu Aliyu , Ahmad M Mustapha , & Saleh , E Abdullahi174
. 2014.175

[Panda et al. ()] ‘An Effective Round Robin Algorithm using Min-Max Dispersion Measure’. Sanjaya Panda ,176
Sourav Kumar; Bhoi , Kumar . International Journal on Computer Science & Engineering Jan2012. 4 (1) p.177
45.178

[Kumar and Kumar (2012)] ‘An Effective Round Robin Algorithm using Min-Max Dispersion Measure’. Sanjay179
Kumar , Panda , Saurav Kumar , Bhoi . International Journal on Computer Science and Engineering January180
2012. 4 (1) p. .181

[Kumar and Khan ()] ‘An Improved Round Robin CPU Scheduling Algorithm’. Journal of Global Research in182
Computer Science Manish Kumar , Mishra , Abdul Kadir Khan (eds.) 2012. 3 (6) p. .183

[Kumar Yadav et al. ()] ‘An Improved Round Robin Scheduling Algorithm for CPU Scheduling’. Rakesh Kumar184
Yadav , K Abhishek , Navin Mishra , Himanshu Prakash , Sharma . IJCSE) International Journal on185
Computer Science and Engineering 2010. 02 (04) p. .186

[Singh et al. ()] ‘An Optimized Round Robin Scheduling Algorithm for CPU Scheduling’. Ajit Singh , Priyanka187
Goyal , Sahil Batra . IJCSE) International Journal on Computer Science and Engineering 2010. 02 (07) p. .188

[Rakesh Mohanty et al. ()] ‘Design and Performance Evaluation of a New Proposed Shortest Remaining Burst189
Round Robin (SRBRR) Scheduling Algorithm’. H S Rakesh Mohanty , Khusbu Behera , Monisha Patwari ,190
Dash . International Symposium on Computer Engineering & Technology (ISCET), 2010. 17.191

[Rakesh Mohanty et al. ()] ‘Design and Performance Evaluation of a New Proposed Shortest Remaining Burst192
Round Robin (SRBRR) Scheduling Algorithm’. H S Rakesh Mohanty , Khusbu Behera , Monisha Patwari193
, Dash . Proc. of International Symposium on Computer Engineering & Technology, (of International194
Symposium on Computer Engineering & Technology) 2010. 2010. 17 p. .195

[Designing Various CPU Scheduling Techniques using SCILAB Saini ()] ‘Designing Various CPU Scheduling196
Techniques using SCILAB’. Saini, (Mona) 2014. 5 p. 2918.197

[Kumar Bhoi et al. (2011)] ‘Enhancing cpu performance using subcontrary mean dynamic round robin (smdrr)198
scheduling algorithm’. Sourav Kumar Bhoi , Sanjaya Kumar Panda , Debashee Tarai . JGRCS December199
2011. 2 (12) p. .200

[Silberschatz et al.] Operating System Concepts, Abraham Silberschatz , Peter Baer Galvin , Greg Gagne . (Sixth201
Edition)202

[Oyetunji and Oluleye ()] ‘Performance Assessment of Some CPU Scheduling Algori-thms’. E O Oyetunji , A E203
Oluleye . Research Journal of Information Techno-logy 2009. 1 (1) p. .204

[Matarneh ()] ‘Seif-Adjustment Time Quantum in Round Robin Algorithm Depending on Burst Time of the205
Now Running Proceses’. R J Matarneh . American Journal of Applied Sciences 2009. 6 (10) p. .206

[Rami and Matarneh ()] ‘Self-Adjustment Time Quantum in Round Robin Algorithm Depending on Burst Time207
of Now Running Processes’. J Rami , Matarneh . American J. of Applied Sciences 2009. 6 (10) p. .208

[Self-Adjustment Time Quantum in Round Robin Algorithm Depending on Burst Time of the Now Running Processes. Matarneh, Rami j ()]209
Self-Adjustment Time Quantum in Round Robin Algorithm Depending on Burst Time of the Now Running210
Processes. Matarneh, Rami j, 2009. 6 p. 1831.211

7

