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Otimal Control of Time-Delay Systems
L. Keviczky α, Cs. Bányász σ & R. Bars ρ

Abstract- It is shown how the time dealy of industrial processes 
can be handled in optimal control algorithms. Comparision the 
classial and new modern algorithms is presented.
Keywords: SMITH predictor, YOULA parameterization, 
time-delay.

I. Introduction

t is clear for control engineers that handling time delay 
requires special attention from the early days of the 
control history. The time delay is an uncancelable, 

Fig.1: The Block-Scheme of the SMITHPredictor

Fig. 2: Equivalent Block-Scheme of the SMITHPredictor

It is easy to check that the SMITH predictor is 
equivalent to the scheme shown in Fig. 2. This figure 
clearly shows that the regulator C+ can be designed to 
the delay free P+, independently of the time delay Td. 
This scheme explains why the SMITH predictor is also 
called    SMITH regulator [8], [9], [10]. The   whole 
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procedure is, of course, not independent of Td, because 
the predictor scheme contains block depending on the 
delay. 

I

+ 

–

e−sTdP+C+
r y

(1)P s( ) = P+ s( ) P− s( ) = P+ s( ) e−sTd ; P = P+P− = P+ e
−sTd
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regulator quasi independently from the delay. An early 
success story was the SMITH predictor or regulator [1]. 

Consider a continuous time delay process given 
by its transfer function 

where Td is the time delay, P+ is stable and P − =e−sTd is 
the Inverse-Unstable-Unrealizable (IUU) part of the 
process, respectively. The original SMITH predictor is 
shown in Fig. 1, where r is the reference signal and y is 
the process output. 

invariant property of the process. The early goals tried to 
find design procedures which allow the selection of the 



  

 

 

Fig. 3: IMC form of the SMITHPredictor 

It is possible to redraw the SMITH predictor into 
further schemes, which allow special interpretations. Fig. 
3. shows another equivalent scheme what corresponds 
to the well knownInternal Model Control (IMC) scheme 

and principle. Fig. 4. presents the resulting closed-loop 
with the serial regulator Cs equivalent to the application 
of the SMITH predictor.  

 

Fig. 4: The Resulting Closed-Loop of the SMITHPredictor
 

 

Fig. 5: YOULA-Parameterized Closed-Loop

 

II.

 

The YoulaParameterization

 

A YOULA-parameterized (YP) closed-loop [4], 
[8] is shown in Fig. 5, where e

 

is the error, u

 

is the 
regulator output and wis

 

the output disturbance signal, 
respectively. 

 

Here the plant P

 

is stable and the All-
RealizableStabilizing (ARS) regulator is  

 

   

  

The closed-loop transfer function or 
Complementary Sensitivity Function (CSF) 

 

  

 

which is linear in the stable YOULA parameter Q. 

 

It is well known that the YP

 

regulator 
corresponds to the classical IMC

 

structure shown in Fig. 

6, where r

 

is the reference signal, u

 

is the regulator 
output, y

 

is the output signal and w

 

is the output 
disturbance signal, respectively. If there is no 
disturbance and the internal model is equal to the 
process transfer function, the signal fed back to the 
reference signal is zero, and the forward path QP

 

determines the reference signal tracking. The feedback 
loop rejects the effect of the disturbance and of the 
plant/model mismatch. 

 
 
 
 
 
 
 
 
 
 
 
 

u y r 
 

+  
 

-  

e 

w 

Q 
1 − Q P 

C 

P 

- 

y 
+ 

r C + P + e 
− sT d 

P + 1 − e 
− sT d ( ) 

C s 

- 
+ 

C = Q
1−QP

(2)

T =
C P

1 + C P
= Q P (3)
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Fig. 6: IMC
 

form of the YP Closed- Loop
 

It can also be well seen that Q+

 
in Fig.

 
3 

corresponds to the YOULA

 

parameter. For a more 
detailed comparison consider the extension of YP

 

regulator for more general case next. 
 

III.
 
A g2dof Controller for Stable

 

LinearPlants
 

The first systematic method introducing the 
generic twodegree of freedom (G2DOF) scheme was 

presented in [5], [8], [9], [10] when the process is open-
loop stable and it is allowed to cancel the stable 
process poles, which case occurs at many practical 
tasks. 2DOF

 
in this approach means that the dynamics 

of reference signal tracking and that of disturbance 
rejecting are different. This framework and topology is 
based on the YP providing ARS

 
regulators for open-loop 

stable plants and capable to handle the plant time-
delay, too. 

 

 

The generic2DOF (G2DOF) Control System

 

A G2DOF control system is shown in Fig. 7 for 
the stable process 

 
 

   

(4)

 

 
  

 

The optimal ARS
 

regulator of the G2DOF 
scheme can be given by an explicit form 

 

  
  

where

 

 

(6)

 

is the associated optimal Y-parameter.

 

Furthermore 

 

    

(7) 

 

The YP

 

regulator (5) can be considered the 
generalization of the TRUXAL-GUILLEMIN

 

[2], [8], [9], 
[10] method for stable processes. 

 

It is interesting to see how the transfer 
characteristics of the closed-loop look like: 

 

  

(8)

 

where yt

 

is  the  tracking (servo) and yd

 

is the 
regulating (or disturbance rejection) independent 
behaviors of the closed- loop response, respectively. 
So the delay 

 

and P−cannot

 

be eliminated, 
consequently the ideal design goals Rr

 

and Rw

 

are 
biased by Gr P−

 

and GwP−. Here Rr

 

and Rw

 

are assumed 
stable and usually strictly proper transfer functions, that 
are partly capable to place desired poles in the tracking 
and the regulatory transfer functions, furthermore they 

disturbance predictors. They can even be called as 
reference models, so reasonably Rr (ω=0) =1 and 

Rw(ω=0)=1 are selected. The unity gain of Rw

 

ensures 
integral action in the regulator, which is maintained if the 
applied 

 

optimization provides 

 

GwP−(ω=0)=1.
  

The role of Rr

 
and Rw

 
(predictors or filters) is 

threefold. 
 

y r y + 
+ + 

+ 
+ 

- 
R r K r P P 

C opt 

w 
R w K w 

1 − R w K w P 

P = P+ P − = P+ P− e−sTd

Copt =
RwKw

1− RwKwP
=

Qo

1−QoP
=

RwGwP+
−1

1− RwGwP−e
−sTd

(5)

Qo = Qw = RwK w = RwGwP+
−1

Qr = R rKr = R rGr P+
−1 ; Kw = GwP+

−1 ; Kr = G r P+
−1

y = Rr Kr P yr + 1− RwKwP( ) w = RrG rP− e−sTd yr + + 1−RwGwP− e−sTd( ) w = yt + yd

e−sTd
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Fig. 7:

which is more general than what was used in (1), 
because here P+ is stable and Inverse-Stable-Realizable
(ISR), P− is Inverse-Unstable-Unrealizable (IUU). 

 
are usually referred as reference signal and output 



  

 

They prescribe the tracking and regulatory 
properties of the control loop. They influence the 
magnitude of the actuating signal and also influence the 
robustness properties of the control system.   

An interesting result was found [6] that the 
optimization of the G2DOF scheme can be performed in   
H2and H∞ norm spaces by the proper selection of the 
serial embedded filters Gr and Gw attenuating the 
influence of the invariant process factor P−

 

.  Using 

H2norm a Diophantine-equation (DE) should be solved 
to optimize these filters. If the optimality requires a H∞ 
norm, then the NEVANLINNA-PICK (NP) approximation is 
applied.   

After some straightforward block manipulations 
the G2DOF control system can be transformed to 
another form shown in Fig. 8, which is the generalized 
version of the classical IMC scheme in Fig. 6.   

 

Fig. 8: The generalized IMC form of the G2DOF control system 

IV. Smith Predictor as a Subclass of 
g2dof Controllers 

The previous two sections clearly show that the 
SMITH predictor is a special subclass of the G2DOF 
controllers with a YP parameterized regulator  

 (9)  

 
 

 
(10)

 

 

 

 
 

It is also easy to see that the resulting serial 
regulator of the SMITH predictor in Fig. 4 is  

 (11)  

This formula presents the possible way of 
realization for a continuous-time (CT) case. Here KS

 

denotes a serial factor modifying the original C+
 

regulator of the SMITH
 
predictor 

 

    
(12) 

 
 

At the stability limit cross over frequency ωc, 
where L+ =−1 the factor KS

 
takes a considerable 

positive phase advance into the closed-loop 
 

 

(13)

  

 

 

  

 

original idea of SMITH
 
was that a classical design of T+

 

is necessary for the proper application. One must know 
that the YOULA

 
parameterization and its application for 

regulator design was unknown for Otto SMITH
 
when he 

invented his predictor. 
 

V.
 

The
 
Discrete-Time Version of 
g2dof Controllers

 

Although (11) suggests a proper way how to 
realize the SMITH

 
regulator, it is not realistic to build any 

regulator containing the e−sTd delay element for 
continuous-time case. In the practice only the discrete-
time (DT) version can be applied by computer 

Q+ =
C+

1 + C +P+
=

C+ P+
1 + C+ P+

P+
−1 =

L+
1 + L+

P+
−1 = R+P+

−1

T+ = R+ =
L+

1 + L+

KS =
1

1 + −1( ) 1− e−sTd( ) =
1

1− 1 + e−sTd
= esTd

ωc
= e jωcTd

Cs =
Q+

1−Q+ P+ e−sTd
=

C+

1 + C+ P+ 1− e−sTd( ) = C + KS

KS =
1

1 + C +P+ 1− e−sTd( ) =
1

1 + L+ 1− e−sTd( )

This is the simple physical explanation of the 
success of the SMITH predictor [3]. 

Some early evaluations state that unfortunately 
the SMITH predictor is only good for tracking and not for 
disturbance rejection. This evaluation is wrong. The 
SMITH regulator was proposed for a one-degree of 
freedom (1DOF) closed-loop, so it is naturally not for 
2DOF purposes. The real problem of the SMITH
regulator is that it allows the design of the closed-loop 
only via an indirect way by selecting R+ =T+, while the 
design procedure of the G2DOF scheme gives a direct 
procedure to design the independent tracking and 
disturbance rejection properties. This means that the 
original idea of SMITH was that a classical design of T+
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Otimal Control of Time-Delay Systems

characterizing the closed-loop in Fig. 2 is the reference 
model R+ and L+ =C+P+ is its loop transfer function. 

if C+ is stabilizing P+, i.e., the delay free part of the 
process. Here the special CSF



  

 

realization. Consider the DT model of the CT process in 
the form of its pulse transfer function given by  

 
 

(14) 
   

where G+  is stable and ISR, G−  is  IUU  and  
corresponds to the discrete time-delay, where d is the 
integer multiple of the sampling time. (In a practical case 
the factor G− can incorporate the underdamped zeros 
and the neglected poles providing realizability, too). The 
optimal ARS regulator of the G2DOF scheme can be 
given now by 

 
 

 

  
(16)

  Because the optimization of the embedded 
filters Gr

 
and Gw

 
requires special knowledge and 

practice of getting the solution from a DE
 

and 
NPapproximation, suboptimal design is mostly applied 
assuming Gr =Gw=1. In such cases the influence of the 
invariant process factors are not attenuated at all, so 

they appear in the closed-loop characteristics (15) 
directly. Such G2DOF

 
control scheme is shown in Fig. 9. 

 It follows from the above discussion that it is not 
necessary to apply the classical SMITH

 
predictor 

principle, instead it is more effective to use the regulator 
design procedure of the G2DOF

 
controller scheme. 

 
 

 
Fig. 9: Discrete-Time G2DOFControl System for the Suboptimal Gr =Gw=1 case 

VI. Simple Examples 

Example 1  
Consider a very simple first order time-delay process  
 

      
(17) 

 
The tracking and disturbance rejection 

reference models are  

 

  (18)  

Here P− =1, therefore Gr= Gw= 1 is the optimal 
selection for the embedded filters.   
Design a YOULA-paramererized optimal regulator.  
 

 

      

and the optimal serial compensator is  
 

 (20)  
 

Both transfer functions are realizable. 
Because Copt (s=0) =∞ the regulator is integrating 

obtained from the condition Rw(s=0)=1. The optimal 

are realizable in this scheme it is very unrealistic that the 
real CT models of the true process are applied in a 
practical application. Here the real difficulty is the 
realization of the time-delay. So this example stands 
only to represent the YP

 

based G2DOF

 

design 
procedure. 

 
 

It is easy to check that the closed-loop characteristics is -

 

 

  
 

 

according to the general theory. 

 
 
 
 
 

G z−1( ) = G+ z−1( ) G − z−1( ) = G+ z−1( )G− z−1( )z−d G = G+ G − = G+ G− z−d

Co =
RwKw

1−RwKwS
=

Qo
1−QoG

=
RwGwG+

−1

1− RwGwG−z
−d (15)z−d

y = RrKrGyr + 1− RwKwG( )w = RrGrG− z
−d yr + + 1− RwGwG− z

−d( )w = yt + yd

� 
P =

1
1 + 10s

e−5s ; P+ =
1

1 +10s
; P − = e−5s ; P− = 1

� 

Rr =
1

1 + 4s
     and     Rw =

1
1 + 2s

Copt =
RwGwP+

−1

1− RwGwP−e
−sTd

= 1

1− Rwe
−sTd

RwP+
−1 = = 1

1− 1 e−5s

1+ 10s
1+ 2s

=
1+ 2s( ) 1+ 10s( )
1+ 2s − e−5s

(19) 

RrKr = RrGrP+
−1 = RrP+

−1 = 1+ 10s
1+ 4s

(21)
 yopt = Rre

− sTd yr + 1− Rwe− sTd( ) w = = 1
1 + 4s

e−5s yr + 1− 1
1 + 2s

e−5s⎛
⎝
⎜ ⎞

⎠
⎟w
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Otimal Control of Time-Delay Systems

final closed-loop is shown in Fig. 10. Although all blocks 

which corresponds to the CT case of (5), furthermore (6) 
and (7) are formally exactly the same for DT case. The 
transfer characteristics of the closed-loop is now 



  

 

 

 

Fig. 10: The Designed Optimal Closed-Loop of the Example 

Example 2  
 Consider the DT model of a very simple first order timedelay process  
 

   
 

  
(22) 

 
 
It is required to speed up the process by a closed-loop.  
Design a YP  controller. Select the reference models  
 

 (23)  
     

Because G− =1, there is no optimization task, so the selections Gr =1 and Gw=1 are optimal. The optimal 
regulator is  

        
       
 

 (24)  
 
and the serial compensator is  

          (25)  
 
The optimal final closed-loop is shown in Fig. 11. Observe that Copt (z =1) =∞ , i.e. the regulator is an integrating 

one, which follows from the condition Rw(z=1)=1.  
 

 
 

The designed optimal closed-loop of the example
 

The closed-loop characteristics is   

   

  
(26) 

 
 

which exactly corresponds to our design goals.  

This example shows that there is no applicability 
problem for DT regulator design. These filters are easy 
to be realized in a computer controlled system.  

Example
 
3. 

 

The continuous first order plant with significant 
time delay is given by the transfer function 

 
 

  
(27) 

 
 
   

The plant is sampled with sampling time Ts =5 
sec and a zero order hold is applied at its input. Let us 
design a PI controller eensuring about 60° of phase 
margin, a Smith predictor and a YOULA-parameterized 
controller. Compare the reference signal tracking and 

� 

� 
G = 0.2z−1

1− 0.8z−1
z−3 = 0.2z−4

1− 0.8z−1
; G+ = 0.2z−1

1− 0.8z−1
and              G− = 1

Rr = 0.8z−1

1− 0.2z−1
    and    Rw = 0.5z−1

1− 0.5z−1

Copt =
RwGwG+

−1

1− RwGwG−z
−d

= 1
1− Rw z

−d
RwG+

−1 = = 1

1− 0.5z−1

1− 0.5z−1
z−3

0.5z−1

1− 0.5z−1
1− 0.8z−1

0.2z−1
= =

2.5 1− 0.8z−1( )
1− 0.5z−1 − 0.5z−4

RrG+
−1 = 0.8z−1

1− 0.2z−1
1− 0.8z−1

0.2z−1
=

4 1− 0.8z−1( )
1− 0.2z−1

yopt = Rr z
−d yr + 1− Rw z

−d( )w = 0.8z−1

1− 0.2z−1
z−3yr +

� 

+ 1− 0.5z−1

1− 0.5z−1
z−3⎛

⎝
⎜

⎞

⎠
⎟ w

� 
= 0.8z−4

1− 0.2z−1
yr + 1− 0.5z−4

1− 0.5z−1

⎛

⎝
⎜

⎞

⎠
⎟ w

P s( ) = 1
1+ 10s

e−30s
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Fig. 11:



  

 

output disturbance rejection behaviour of the three 
control systems. Demonstrate the effect of time delay 
mismatch.  
The pulse transfer function of the plant is  

   (28)   
 

 
The pulse transfer function of the PI controller 

[7] applying pole cancellation with a gain ensuring the 
required phase margin is  

 
 

(29) 
 

The SMITH predictor controller C+ is designed 
for the delay free process as a PI controller and it is 
obtained as  

 
 

(30) 
 

 
Then it is transformed to the SMITH predictor 

form according to the discretized version of (11).  

 

 

  

(31) 

 In the case of the YOULAparameterized 
controller let us choose the disturbance filter 

 
 

 
(32) 

 
 and rhe reference filter as 

 
 

 
(33) 

 
whose pulse transfer functions are  
 

 
 

(34) 
 

 
 

 

 

Fig. 12: Step response and disturbance rejection dynamics of the PI, SMITH and YOULA controllers 

 The YOULA parameter supposing Gr= Gw= 1 is 
 

 
  

Figure 12 shows the step response and a 
shifted step disturbance rejection of the three 
controllers. 

 
It is seen that in case of significant time delay 

SMITH

 

predictor and the YOULA parameterized 
controllers ensure significant acceleration compared to 
the PI

 

controller. 

 
Figure 13 demonstrates the effect of time delay 

mismatch in the case of the SMITH

 

and the 
YOULA controllers. The time delay of the model is 30, 
while the time delay of the process is 33.  

 
It is seen that the YOULA parameterized 

controller tolerates much better the inaccuracy of the 
parameter than the SMITH

 

predictor. While the SMITH

 
predictor is very sensitive to the inaccuracies in the 
parameters (it is not robust), the filters in the 
YOULA parameterized controller can be designed for 
robust behaviour [11]. 

 
 
 
 
 
 
 
 

G z( ) = 0.3935
z − 0.6065

z−6

CPI z( ) = 0.204 z − 0.6065
z −1

C+ z( ) = 2.5 z − 0.6065
z −1

Cs z( ) = 2.5z7 −1.516z6

z7 − 0.01636z6 − 0.9837

Rw s( ) = 1
1+ 5s

Rr s( ) = 1
1+ 8s

Rw z( ) = 0.6321
z − 0.3679

and Rr z( ) = 0.4647
z − 0.5353

,

Q z( ) = Rw z( )G+
−1 z( ) = 0.6321

z − 0.3679
⋅ z − 0.6065

0.3935
(35)
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Fig. 13: The Effect of Time Delay Mismatch in Case of the SMITH and the YOULA Controllers

 These are, of course, very simple examples 
standing only to present the simplicity of the G2DOF

 
controller scheme, which should replace the classical 
approach of a SMITH

 

predictor. 

 VII.

 

Conclusions

 The SMITH

 

predictor is a classical method of 
handling time-delay in closed-loop control design. It is 
shown that this method is a subclass of the YP

 

based 
G2DOF

 

control scheme. An obvious drawback of the 
SMITH

 

predictor is that the closed-loop properties can 
not be designed directly using simple algebraic 
methods, which is possible in the G2DOF

 

structure. The 
G2DOF

 

scheme allows even the optimal attenuation of

 
the invariant process factors. The appropriate choice 
and design of the filters allows to influence such 
important properties as performance and robustness. 
So the paper suggests to use the newer methodology to 
design DT controllers for time-delay processes.  

 
The role of the SMITH

 

predictor remains 
important in the history of control engineering, because 
it was one of the first, easy to use and widely applied 
method to simply eliminate the influence of the delay in 
the design of closed-loop control properties. 
Nevertheless this method is sensitive to the accurate 
knowledge of the time delay. 

 
The recent theoretical developments and easily 

applicable algebraic design methods allow to use more 
effective and more general controller design 
procedures. 

 

 

 
 

 
 

    
 

 
 

 
 

 
 

 

  
 

 
 

 
 

 
 

 
  
 

 
 

© 2023   Global Journals

G
lo
ba

l 
Jo

ur
na

l 
of
 C

om
pu

te
r 
Sc

ie
nc

e 
an

d 
Te

ch
no

lo
gy

  
  

  
 V

ol
um

e 
X
X
III

 I
ss
ue

 I
I 
V
er
sio

n 
I 

  
  
 

  

24

  
 (

)
Y
e
a
r

20
23

G
 

Otimal Control of Time-Delay Systems

References RéférencesReferencias

1. Smith, O.J.M. Closed control of loops with dead 
time. Chem. Eng. Proc., 53, p.217, 1957. 

2. Horowitz, I.M. Synthesis of Feedback Systems, 
Academic Press, New York, 1963 

3. Åström, K.J. and B. Wittenmark. Computer 
Controlled Systems. Prentice-Hall, p. 430, 1984.

4. J.M. Maciejowski. Multivariable Feedback Design, 
Addison Wesley, 1989. 

5. L. Keviczky. "Combined identification and control: 
another way", (Invited plenary paper.) 5th IFAC 
Symp. on Adaptive Control and Signal Processing, 
ACASP'95, Budapest, H, 13-30, 1995. 

6. L. Keviczky, Cs. Bányász. "Optimality of twodegree 
of freedom controllers in H2- and H∞-norm space, 
their robustness and minimal sensitivity", 14th IFAC 
World Congress, F, 331-336, Beijing, PRC, 1999. 

7. Tan, N., Computation of stabilizing PI and PID 
controllers for process with time delay. ISA 
Transaction, 44, 213-223, 2005. 

8. Keviczky, L. and Cs. Bányász. Two-Degree-
of Freedom Control Systems (The Youla 
Parameterization Approach), Elsevier, Academic 
Press, 2015. 

9. Keviczky, L., R. Bars, J. Hetthéssy and Cs. Bányász. 
Control Engineering. Springer, 2018. 

10. Keviczky, L., R. Bars, J. Hetthéssy and Cs. Bányász. 
Control Engineering: MATLAB Exercises, Springer, 
2018. 

11. Bányász, Cs., L. Keviczky and R. Bars. Influence of 
Time Delay Mismatch for Robustness and Stability, 
IFAC TDS, Budapest, H, 248-253, 2018 


	Otimal Control of Time-Delay Systems
	Author
	Keywords
	I. Introduction
	II. The Youla Parameterization
	III. Ag2dof Controller for Stable Linear Plants
	IV. Smith Predictor as a Subclass of g2dof Controllers
	V. TheDiscrete-Time Version of g2dof Controllers
	VI. Simple Examples
	VII. Conclu sions
	References Références Referencias

