

Global Journal of Computer Science and Technology: D
Neural & Artificial Intelligence
Volume 23 Issue 3 Version 1.0 Year 2023
Type: Double Blind Peer Reviewed International Research Journal
Publisher: Global Journals
Online ISSN: 0975-4172 & Print ISSN: 0975-4350

Aho-Corasick Trees for Efficient Data Storage and Machine
Learning

By Mirzakhmet Syzdykov

Abstract- In this work we present to reader the novel research on account for efficiency of
compression algorithms like Lempel-Ziv Welch and Aho-Corasick trees. We use them to build the
proper storage which is called file system in a separate or generalized stream of data. These
streams weren’t adopted before for big data to be compressed and queried at a fast pace. We
will show further that this is the most efficient model for storing arrays of data on a server end for
a final file system. The efficient algorithm for Machine Learning on Aho-Corasick trees is also
presented which performs the query in linear time without getting more time on the models like
neural networks which are very hardware demanding nowadays. The data structure like trie by
Turing Award winner Alfred V. Aho and Margaret J. Corasick remain of big potential in the present
time and are subjected to extensive research in this work.

Keywords: trie, compression, storage, machine learning.

GJCST-D Classification: FoR Code: 0804

AhoCorasickTreesforEfficientDataStorageandMachineLearning

Strictly as per the compliance and regulations of:

© 2023. Mirzakhmet Syzdykov. This research/review article is distributed under the terms of the Attribution-NonCommercial-
NoDerivatives 4.0 International (CC BYNCND 4.0). You must give appropriate credit to authors and reference this article if parts of
the article are reproduced in any manner. Applicable licensing terms are at https://creative commons. org/ licenses/by-nc-nd/4.0/.

Satbayev University

Aho-Corasick Trees for Efficient Data Storage
and Machine Learning

Mirzakhmet Syzdykov

Abstract-

In this work we present to reader the novel research
on account for efficiency of compression algorithms like
Lempel-Ziv Welch and Aho-Corasick trees.

We use them to
build the proper storage which is called file system

in a
separate or generalized stream of data.

These streams weren’t
adopted before for big data to be compressed and queried at
a fast pace.

We will show further that this is the most efficient
model for storing arrays of data on a server end for a final file
system.

The efficient algorithm for Machine Learning on Aho-
Corasick trees is also presented which performs the query in
linear time

without getting more time on the models like neural
networks which are very hardware demanding nowadays.

The
data structure like trie by Turing Award winner Alfred V. Aho
and Margaret J. Corasick remain of big potential in the present
time and are subjected to extensive research in this work.

Keywords:

trie, compression, storage, machine learning.

I.

Introduction

he algorithm dated back to 1975 by Aho and
Corasick was

first proposed in [1]. The matching
algorithm which is linear in performance was

introduced in [2, 3] where the first case is about an Aho-
Corasick data stream.

The work by other authors [4]
focuses mainly on memory performance within the
multiple patterns matching

which as we know can be
done in parallel.

The simulation of Aho-Corasick machine is
presented in [5].

This work is important to learn as it was
first to use multiple pattern search – in this work the
parallel algorithm is also presented where the search is
adopted as a single thread.

Nathan et al. [6] give the application of the
memory efficient algorithms for string searching on Aho-
Corasick trees or simply tries.

The efficiency of the performance of Machine
Learning (ML) queries is first discussed in [7] where it’s
given within the BigData.

MXNet [8] is another ML library based upon the
neural network algorithms, the performance graphs are
also given in the article.

The comparison of ML libraries is presented in
[9] and as we can see the efficiency still doesn’t
converge to the final value as the most of the programs
are experimental.

Summarizing all the above we can conclude
that efficient memory storages like file systems and

Automated Machine Learning (AML) become more
demanding nowadays, thus, we have to implement
more efficient algorithms for Machine Learning Querying
(MLQ) and Compressed File System (CFS) in which the
Lempel-Ziv Welch (LZW) automaton is realized within the
Aho-Corasick tree method of compensation of the
repeated occurrences of the pattern.

We will also state the main theorems regarding
the MLQ and CFS which simplifies the definition of the
final complexity of the usage of these engines as
software packages.

As we have stated before the repeated
occurrence of pattern, which can be dualized as a single
or multiple incoming query to system, should be of the
minimal possible complexity from O(1) to O(n) where
O(n) stands for the complexity per the query of n-words,
thus giving same O(1) complexity per each of them. This
result presented in this work gives the possibility of the
assumption of the upper bound of performance for MLQ
and CFS or, at least, such definitions are to be definitely
made – we will show it and give the proofs in our next
sections.

The assumption of CFS as a modified Aho-
Corasick tree is a classical approach of giving its
definition to broad audience which consist of not only
researchers, but developers also as Application
Programming Interface (API) for these engines becomes
more available due to the free license.

II. Aho-Corasick Tree

These trees or simply tries are the recursive
data structures which represent the deterministic finite
automata (DFA) for the operational logics of querying
them in a separate or parallel mode where the update
operation is also supported.

Namely the tree T for arbitrary language L (A)
in alphabet A is given by the recursive function f(s) for
the query string s, which can be defined as follows:

𝑇𝑇 =< 𝐴𝐴, 𝑓𝑓: 𝑓𝑓(𝑠𝑠) = 1 ⇔ 𝑠𝑠 ∈ 𝐿𝐿(𝐴𝐴) > (1)
As we know the language can be regular and

can be given by the specially adopted operands as in
regular expression or even with the extended operators
like intersection, complement and subtraction.

The update of the tree is the building of a
same singleton within the new string s where function
f(s) becomes terminal as if we would demonstrate the
work of the same compound DFA. Thus, as we have

T

G
lo
ba

l
Jo

ur
na

l
of
 C

om
pu

te
r
Sc

ie
nc

e
an

d
Te

ch
no

lo
gy

 V

ol
um

e
X
X
III

 I
ss
ue

 I
II

V
er
sio

n
I

27

 (

)
D

Y
e
a
r

20
23

© 2023 Global Journals

Author: Satbayev University, Almaty, Kazakhstan.
e-mail: mspmail598@gmail.com
ORCID ID: https://orcid.org/0000-0002-8086-775X

shown that regular tree is a simple DFA, we can
conclude that the operational logic is the same, to be
more precise the query can be handled in O(1) per
each symbol in the alphabet A for the string s. The
update operation has the same complexity as we have
to find the terminal symbol in a tree in the same time.

As we have defined the data structure for pre-
defined operations, we can proceed to the applications
of Aho-Corasick trees for efficient computations.

III. Lempel-Ziv Welch Tree

𝑇𝑇 =< 𝐴𝐴, 𝑓𝑓: 𝑓𝑓(𝑠𝑠, 𝑐𝑐) = 1 ⇔ 𝑠𝑠 ∈ 𝐿𝐿(𝐴𝐴), (𝑠𝑠, 𝑐𝑐) 𝑛𝑛𝑛𝑛𝑛𝑛 𝑖𝑖𝑛𝑛 𝐿𝐿(𝐴𝐴) >. (2)

Thus, we have demonstrated that LZW trees
are the abstracts of the Aho-Corasick tree and have the
same performance complexity of O (1). We will
demonstrate further that this fact is the most important
to use within the efficient data storage like file system
for big amount of data which are able of compensating
both querying and update operations.

The file system built upon the LZW and Aho-
Corasick trees makes the output in the global tree
which is localized in the modern data compression
software. Thus, we extend our tree with the new set like
mark, which defines, whether this is output and of what
segment of the file:

𝑇𝑇 =< ⋯ , (𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓, 𝑖𝑖𝑖𝑖𝑑𝑑𝑑𝑑𝑑𝑑) ∈ 𝐹𝐹 >. (3)
The mark file and index in (3) gives the precise

location of the tree segment, thus allowing the multiple
files to be stored on the same LZW tree which as it was
proved before is an extended version of Aho-Corasick
tree. We define this tree globally as the total entropy of
the data becomes lower when more patterns occur or
they occur in a specific case.

From all the above we can give further
directions of applying not only LZW trees but the DFA
built upon the arbitrary regular expression which takes
place in the formation of the randomly categorized
output format like, for example, Portable Executable
(PE).

IV. Efficient Machine Learning

 In this section we demonstrate the application
of Aho-Corasick trees on the Machine Learning
querying and training which plays the role of update
operation in a tree.
Typically, the ML model can be defined as:

𝑀𝑀 =< 𝑇𝑇,𝐹𝐹,𝑂𝑂 >. (4)

where M is a model, T is a set of terminal rows, F is a
set of weighted values and O is a set of result actions
upon querying.

The expression (4) can be composed as the
limited number of rows in a file as it’s realized in

Microsoft ML .NET package. The terminals T are the
parts of query as well as the set of values F where T is
the entities and F are the weights against which this
query is to be tested within the given threshold. The set
of outputs O is the set of non-terminal symbols which
are to be queried in case of successful matching on a
model M.

We use the Aho-Corasick tree for terminals T in
our efficient and parallel algorithm and a threshold t for
the arbitrary query q:

𝑞𝑞.𝑇𝑇 = 𝑇𝑇, |𝐹𝐹 − 𝑞𝑞.𝐹𝐹| ≤ 𝑡𝑡 ⇒ 𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦 𝑂𝑂. (5)
Thus, from the expression (5) it follows that

Aho-Corasick tree can be successfully built upon the
given input and updated as well. The query operation
is given on a tree within the defined threshold and the
size of the model will be physically given in O(n) where
n is the total size of this model.

In order to build the model we have to give its
total height as O (|T| + |F|) – within these bounds it
can be seen more practical for the business
development of MLQ.

The main theorem which we state and prove is
that the size of the model as well as the number of steps
required for the querying and update of the arbitrary
structured data like set of patterns or ML model is linear
within the actual size. This follows from the main proofs
to the Aho-Corasick trees.

V. Conclusion

We have demonstrated the power of data
structure like tries or Aho-Corasick trees within the
implementation of fully functional and efficient data
storage based on the file system. Our research was
also focused on the efficiency of non-neural models of
operation for effective ML. We have obtained linear
results which are most efficient to the present day.

Our main goal was to develop the unary data
structures and the main ideas are given in the sections
of this work. The results can be addressed to the Big
Data where the performance plays vital role and, thus,

These types of trees are sub-domains of Aho-
Corasick trees as they were first adopted for the

compressed streams where update operation is
necessary for the purpose of building the efficient Aho-
Corasick tree in compression algorithms. These
algorithms provide the logic of reassembling it in the
final output stream within the first appearance of the
character which doesn’t belong to the tree, later this
character is added to the tree and all the necessary
output is done like the pair of output index of the state
and the character value itself. This can be better
generalized by the following relation:

© 2023 Global Journals

G
lo
ba

l
Jo

ur
na

l
of
 C

om
pu

te
r
Sc

ie
nc

e
an

d
Te

ch
no

lo
gy

 V

ol
um

e
X
X
III

 I
ss
ue

 I
II

V
er
sio

n
I

 28

 (

)
Y
e
a
r

20
23

D
Aho-Corasick Trees for Efficient Data Storage and Machine Learning

is to be of minimal possible value of O (n), where n is
the number of input data.

For this purpose, we give non-neural and non-
consumptive solutions for both data storage and the
ML usage in systems with big amount of data and
where the parallel computations are made as per
demand of the users of the system.

Acknowledgements

The author expresses gratitude to the A. M.
Turing Award winner Alfred V. Aho and Margaret J.
Corasick for the implementation of the most efficient
data structure for multiple queries and updates as well
as to all the Association for Computing Machinery
(ACM) for advancement in an algorithmic field.

Funding

References Références Referencias

1. Aho, Alfred V., and Margaret J. Corasick. "Efficient
string matching: an aid to bibliographic search."
Communications of the ACM 18.6 (1975): 333-340.

2. Tao, Tao, and Amar Mukherjee. "Multiple-Pattern
Matching In LZW Compressed Files Using Aho-
Corasick Algorithm." DCC. 2005.

3. Aldwairi, Monther, Abdulmughni Y. Hamzah, and
Moath Jarrah. "MultiPLZW: A novel multiple pattern
matching search in LZW-compressed data."
Computer Communications 145 (2019): 126-136.

4. Liangxu, Sun, and Li Linlin. "Improve Aho-Corasick
algorithm for multiple patterns matching memory
efficiency optimization." J. Convergence Inf.
Technol. (JCIT) 7 (2012): 19.

5. Kida, Takuya, et al. "Multiple pattern matching in
LZW compressed text." Proceedings DCC'98 Data
Compression Conference (Cat. No. 98TB100225).
IEEE, 1998.

6. Tuck, Nathan, et al. "Deterministic memory-efficient
string matching algorithms for intrusion detection."
IEEE INFOCOM 2004. Vol. 4. IEEE, 2004.

7. Al-Jarrah, Omar Y., et al. "Efficient machine learning
for big data: A review." Big Data Research 2.3
(2015): 87-93.

8. Chen, Tianqi, et al. "Mxnet: A flexible and efficient
machine learning library for heterogeneous
distributed systems." arXiv preprint arXiv:1512.01274
(2015).

9. Nguyen, Hoang, et al. "Efficient machine learning
models for prediction of concrete strengths."
Construction and Building Materials 266 (2021):
120950.

G
lo
ba

l
Jo

ur
na

l
of
 C

om
pu

te
r
Sc

ie
nc

e
an

d
Te

ch
no

lo
gy

 V

ol
um

e
X
X
III

 I
ss
ue

 I
II

V
er
sio

n
I

29

 (

)
D

Y
e
a
r

20
23

© 2023 Global Journals

Aho-Corasick Trees for Efficient Data Storage and Machine Learning

This work was fully supported by an educational
grant of MES RK.

	Aho-Corasick Trees for Efficient Data Storage and Machine Learning
	Author
	Keywords
	I. Introduction
	II. Aho-Corasick Tree
	III. Lempel-Ziv Welch Tree
	IV. Efficient Machine Learning
	V. Conclusion
	Acknowledgements
	References Références Referencias

