
© 2023. Aryan Pratap Singh. This research/review article is distributed under the terms of the Attribution-NonCommercial-No
Derivatives 4.0 International (CC BYNCND 4.0). You must give appropriate credit to authors and reference this article if parts of
the article are reproduced in any manner. Applicable licensing terms are at https://creative commons. org/ licenses/by-nc-nd/4.0/.

Global Journal of Computer Science and Technology: B
Cloud & Distributed
Volume 23 Issue 1 Version 1.0 Year 2023
Type: Double Blind Peer Reviewed International Research Journal
Publisher: Global Journals
Online ISSN: 0975-4172 & Print ISSN: 0975-4350

Analysis of the UNIX Operating System and Improvement of
the Password Authentication Technique

By Aryan Pratap Singh

Ajeenkya DY Patil

University

Abstract- The UNIX operating system is an operating system that safeguards against illegal
access and other threats to the computer system. In this paper, the UNIX file system is analyzed,
the security weaknesses are x-rayed, an improved on-time password authentication technique is
presented, and the underlying model used for the design is described. Moreover, a password
authentication programme was designed which implements an improvement of the general one-
time password technique. Passwords, which are individually selected by users from a codebook
are now randomly selected by the system for the user in the improved programme. Real-data
entries into the programme demonstrate an enhancement of the security of the system even on
the event of the loss of the codebook.

Keywords: authentication, codebook, simulation access control, one time password technique.

GJCST-B Classification: LCC: QA76.76.O63

AnalysisoftheUNIXOperatingSystemandImprovementofthePasswordAuthenticationTechnique

Strictly as per the compliance and regulations of:

Analysis of the UNIX Operating System and
Improvement of the Password Authentication

Technique
Aryan Pratap Singh

Abstract-

The UNIX operating system is an operating system
that safeguards against illegal access and other threats to the
computer system. In this paper, the UNIX file system is
analyzed, the security weaknesses are x-rayed, an improved
on-time password authentication technique is presented, and
the underlying model used for the design is described.
Moreover, a password authentication programme was
designed which implements an improvement of the general

one-time password technique. Passwords, which are
individually selected by users from a codebook are now
randomly selected by the system for the user in the improved
programme. Real-data entries into the programme
demonstrate an enhancement of the security of the system
even on the event of the loss of the codebook.

Keywords:

authentication, codebook, simulation access
control, one time password technique.

i.

Introduction

n operating system presents the computer user
with an

equivalent of an extended machine or
virtual machine that makes it a lot

easier to
programme and make general use of the computer. This
set of

manual and automatic procedures also enable a
group of people to share

a computer installation
efficiently. Most

times people compete for use

of
physical resources such as processor time, storage
space and

peripheral devices; at other times people can
co-operate by exchanging

programmes and data on the
same installation. The operating system

makes these
activities tolerable.

An operating system must have a policy for
choosing the order in which competing users are
served and for resolving the conflicts of simultaneous
requests for the same resources; it must also have a
way of enforcing this policy in spite of the presence of
erroneous or malicious user programmes and access

(Per, 1990). The simultaneous presence of

data and
programmes belonging to different users requires that
an

operating system protect users against each other.
This task the operating

system must perform automa-
tically.

The UNIX operating system is a multitasking,
multi-user and

highly portable operating system that

provides a powerful and hospitable program
development environment. It controls the computer
resources and provides a base upon which the
application program runs. The UNIX operating system
uses a hierarchical file system that is organized as a
tree with the root node called “The Root” and
represented by a single ‘/’ (slash). The hierarchical file
system has the ‘root’ file system at the top of the
hierarchy of files and this file system is the key to the
UNIX operating system. File systems often contain
information that is highly valuable to their users.
Therefore protecting this information against
unauthorized usage is a major concern of all file
systems with UNIX inclusive.

One of the most important security features
used today are passwords. It is important to have
secure, unguessable passwords.

However secure and unguessable the
password may seem, it is pertinent to have in place a
system that can authenticate the password whenever it
is being used to log on the system.

However, the problem with passwords is that
they are easily transferable with the owner’s connivance
and most times unfortunately, without owner’s
permission. Therefore, though passwords have bee and
are used widely in the computer world, it is the easiest
to compromise. However, the real problem with the use
of passwords is that they are transferable and
substantially static. Users with or without agreements
can end up transferring the password to a third party
who can then pretend to be the genuine user. Indeed
the worst feature of all is the inability after the event to
prove what really happened. There exists no simple way
to determine who actually gave the password.
The vulnerability of passwords is due entirely to their
predictability. The adoption of procedures (authentic-
cation techniques) that reduce this must form the basis
of any security strategy.

a) Historical Background of Unix
The UNIX operating system was the fallout of

the quest by MTT (MASSACHUSETTS Institute of
Technology), Bell laboratories and the UNIX operating
system’s main thrust was providing a convenient
working environment for programming. In addition
to gaining wide acceptance, particularly in the academic

A

G
lo
ba

l
Jo

ur
na

l
of
 C

om
pu

te
r
Sc

ie
nc

e
an

d
T
ec

hn
ol
og

y
(
B

)
X
X
II
I
Is
su

e
I
V
er
si
on

 I

 Y
ea

r
20

23

1

© 2023 Global Journals

Author: Dept- BCA – CT, Name of Organization- Ajeenkya DY Patil
University City- Pune, Country- India.
e-mail: singh.aryan@adypu.edu.in

world UNIX has influenced the design of many modern
Operating Systems. UNIX has a long history as an open
development environment. UNIX performs the typical
operating system task, but also includes a standard set
of commands and library interfaces. The building block
approach of UNIX makes it an ideal system for
creating new applications. The traditional operating
system consists of a small kernel that runs processes

 The UNIX kernel is a solid core that changes
little from system to system, while processes are added
at the user’s discretion. This makes upgrades easier
since the entire operating system does not need to be
recompiled. (Thomas, et al 1996i)

b) Motivation
The major motivation for this work was that in

spite of the fact that the UNIX Operating System is over
thirty seven (37) years old, the UNIX operating system
has continued to attain wide spread popularity. Though
traditionally used on minicomputers and workstations in
the academic community. UNIX is now available in
personal computers. Previous PC and mainframe users
are now looking to UNIX as their operating system
solution.

Another feature of UNIX that motivated this work
is that the UNIX implementation now includes TCP/IP
and support for Ethernet. UNIX therefore provides in
one package the ability to install a powerful operating
system on a computer that lets user’s computers
through one of the most common and powerful
networking protocols in the industry.

c) Our Contribution
Our major contributions in the work include the

following.

1.

Knowledge of the security flaws in the UNIX
operating

system has been highlighted.

2.

Knowledge of the counter measures against
security weakness

of the UNIX operating system

has been gained.

3.

The UNIX password system has been improved
upon.

4.

An intrinsic knowledge of

the UNIX file system has

been

provided.

II.

Background and Literature
Review

UNIX is a trademark of AT and

T Bell
laboratories now

known as Lucent Technologies

(Waran, 1993). According to the

designers, the file

system is the key to UNIX. It offers compatible

devices,

file and inter-process input/output. In essence, the user
simply

sends and receives data. All data are treated as

strings of

bytes and no

physical structure is imposed by

the system, instead by the data. The

result is a

considerable freedom from any concern for physical
input/output (Davis, 1992).

UNIX is a multiple-user operating system in
which commands are processed by a shell that lies
between the user and the resident operating system (fig.
2.1). The shell is not really part of the operating system.
The idea of a command processor that is independent
from the operating system was an important UNIX
innovation (Sobell, 1989).

A UNIX user communicates with the system
through a shell. Essentially through a command
interpreter, the shell is treated much like an application
programme and is technically not part of the
operating system (Sobell, 1989). This allows a user to
replace the standard shell with a custom shell. The
Bourne shell can be replaced with a custom shell having
a graphic user interface (GUI) with icons or menus
replacing traditional commands (Manger, 1992).

Among its resident modules, UNIX contains an
input/output control system, a file system, and routines
to swap segments, handles interrupts, schedules the
processor’s time, manages memory space and
allocates peripherals device (Bourne, 1983).
Additionally, the operating system maintains several
tables to track the system’s status. Routines that
communicate directly with the hardware are
concentrated in a relatively small kernel (Fig 2.1). The
kernel is hardware dependent and varies from system to
system. However, the interface to the kernel is generally
consistent across implementation. UNIX is a time-
sharing system with programme segments swapped in
an out of memory as required (Bourne, 1983). To ensure
reasonable response tune, processor access is limited
by time slicing. Segmentations is the most addressing
scheme, and most UNIX systems implement virtual
memory techniques (Sobell, 1989).

The key to the UNIX operating system is the file.
UNIX handles files as it has done since its inception in
1969, namely by allowing users’ access to them from
the command line. Secondly the new graphical user
interface that sits atop the UNIX allows the handling of
files graphically through the use of icons (Southerton.,
1993).

a) General Feature of Unix File System
The UNIX file system manages all the data

stored on the System’s mass strong devices. UNIX
provides a built-in protection system against unauthori-
zed access to file by allowing the root or super user to
assign permission to file (Southerton, 1993). From the
command line, the user can determine the permission
level of a file by using the “is” command (list command)
to list the file and examine a coded format (Andrew,
1990).

Hierarchical Structure: The UNIX system organizes the
file using an upside-down hierarchical tree structure. All
files will have a ‘parent’ file, apart from a directory called

Analysis of the UNIX Operating System and improvement of the Password Authentication Technique

G
lo
ba

l
Jo

ur
na

l
of
 C

om
pu

te
r
Sc

ie
nc

e
an

d
T
ec

hn
ol
og

y
(
B

)
X
X
II
I
Is
su

e
I
V
er
si
on

 I

 Y
ea

r
20

23

2

© 2023 Global Journals

such as user applications and services.

the ‘root’ directory, which is the parent of all file on the
system. The hierarchical component also adds to the
dynamic flexibility of the filesystem.

Structureless Files: Files are also said to be structure
less, since the utility that creates the file normally
dictates the internal format of that file.

Dynamic File Expression: The file-system structure
is dynamic. Its size is not determined by any rule other
than the amount of disk storage that is available on the
system. A file size can be changed at will by the user at
any time.

Security: Files are protected using file ownership
mechanism. This allows only a specific class of users to
access certain files.

b) The Shell and Shell Scripts
The UNIX Shell is a customized command line

interpreter. UNIX commands are processed by a shell,
usually, the shell starts a command as soon as it is
entered and then waits for it to terminate
before displaying the next prompt. The idea of a custom
shell was an important UNIX innovation (Sobell, 1989).
When a user logs on, the shell overlays the login,
process text and data segment, but the system data
segment is not affected. Thus the shell standard input,
output and error files are open. The result is that the
user can begin issuing commands without opening
these standard files (Bourne, 1983).

Many data processing applications are run
daily, weekly or at other regular intends. Some are
repeated many times for example a programme treat.
When such applications are run, a set of command
must issued repeating the application means repeating
the commands. Retyping the same commands
repeatedly can be frustrating and error prone. The
option is to write a shell script a shell scripts is to write
a shell script is to write a shell script. A shell script is a
file that consists of series of commands. The shell is
actually a highly sophisticated interpretive programming
language, with its now variables, expressions,
sequence, decision and repetitive structure (Southern,
1993).

c) Security Issues
In the ever-changing world of global data

communication, inexpensive Internet connection and
fast paced software development, security is becoming
more and more an issue. Security is now a basic
requirement because global computing is inherently
insecure. Unintended individuals may gain access to a
computer and maliciously intercept, alter or transform
data into something not intended.

Additionally, unauthorized access to the system
may be obtained by an intruder, known as crackers,
who then use advanced knowledge to impersonate,
steal information or even deny the legitimate user
access. Through the need to ensure security of a

system is worthy, however it should be noted that no
computer system can ever be completely secure. All
that can be done is to make it increasingly difficult for a
security compromise to occur.

Unfortunately, UNIX was not designed with
security is mind, but a UNIX system can be made
secure if the correct procedures are adopted. The
problem of Security is UNIX’s flexibility as an
operating system (Pfleeger, 1989). Its versatile file-
system structure allows users to browse extensively
through many of the systems file. It is also commonly
found that non-privileged user have access to
administrative tools simply because the correct access
permissions is not set on the relevant file. The issues is
UNIX security can be viewed as two categories; Issues
related to protecting the system from the user/owner/any
multi-user system requires real security among other
things protect user from greenhorns.

The most important way to safeguard a system
is to limit access to dangerous functions (Wood, et al.,
1983). This can be achieved by login as root only as root
only when absolutely necessary and by creating
administrative logins for each of the system adminis-
tration functions (Southernton, 1993). Equally important
is the need to ensure that the root password is known to
only trusted persons.

d) File System Security
Despite very good efforts at establishing and

implementing a good security strategy, the operating
system can still be broken into. A cracker’s goal is to
ensure continued access once access has been gained
by breaking a user’s password it could be charged to
something more secure. Another way the cracker might
ensure continued access is to install new accounts on
the computer. If access is gained by breaking a user’s
password it could be changed to something more
secure. A good file system security helps prevent or
detect these modifications and discovery from a break
in (Lane, 1993). System configuration files may be
writable by users other than the root. Also device files
may have insecure file permission and programmes,
furthermore, configuration files may even be owned by
user other than root.

Configuration files writable by non-root account
may allow a cracker to alter or changes system memory
to gain more privileges, snoop terminals, or by pass the
normal UNIX files protection to read files from or alter
information on deal or tape storage (Smith, 1994). A
cracker can alter account. This is one of the reasons
most breaches of UNIX security take place at the file
level because access permission settings are not set
correctly when the system is installed or because file
permission settings are inevitable changes a time for
various reasons (Manager, 1992). The failure to reset the
permission correctly leads to all kinds of security
breaches. For instance the “chimed” (change mode)

Analysis of the UNIX Operating System and improvement of the Password Authentication Technique

G
lo
ba

l
Jo

ur
na

l
of
 C

om
pu

te
r
Sc

ie
nc

e
an

d
T
ec

hn
ol
og

y
(
B

)
X
X
II
I
Is
su

e
I
V
er
si
on

 I

 Y
ea

r
20

23

3

© 2023 Global Journals

command is used to alter access permission settings of
a particular file or group of files. The syntax is Chimed
[options] <mode> <file…..> (*).

It is ideal that a UNIX system mountains proper
file system security (intension prevention), and also a
means to detect unauthorized file system changes
(intrusion detection).

e) File Permissions
Security in UNIX is centered on the UNIX unified

file system concept. This is a concept, which treats
device drivers, text files, and communications channels
are being streams of data accessible via a file mane in
the directory. Each UNIX file has a set of three
permissions. Via:

- Owner (U) Rights the owner has to access the file.
- Group (g) Rights the owner’s group have to access

the file.
- World (o) Rights other users have to access file.

This information is stored as a series of flags
together with the numeric ID of the owner and group of
the files in a structure known as the “inode” associated
with each other.

f) User Authentication
Many protection schemes are based on the

assumption that the system knows the identity of each
user. The problems of identifying users when they log in
is called User Authentication, most authentication
methods are based on identifying something the user
knows, something the user has, or something the user
is.

One of the most important security features
used today are passwords. Passwords are widely used
form of authentication in which the user is require to
type a set of alphanumeric characters which is then
mapped by the system before login is permitted.
Password protection is easy to understand and easy to
implement. In UNIX it works like this. The login
programme asks the user his name and password.
The passwords are immediately encrypted. The login
programme then reads the password file until it finds the
line containing the user’s login name. If the encrypted
password contained in this line matches the
encrypted password just computed, the logins is
permitted, otherwise it is refused.

Morris and Thompson (1979) made a study of
passwords on UNIX systems. They compiled a list of
likely password: First names, Last names, street names,
city names, words from a moderate – sized dictionary,
valid license plate numbers, words spelled backwards
and short strings of random characters.

Each of them were then encrypted using know
password encryption algorithm and checked to see if
any of the encrypted passwords matched entries in their
list. Order 86 percent of all passwords turned up in their
list. Therefore it is important that passwords should be

as secure and unguessable as possible one way this
can be achieved is to require/encourage users to pick
better passwords and by having the computer offer
advice. Some computer have a programme that
generate random easy to pronounce nonsense words
that can be used as passwords. Eg fotally, garbuNgy or
BipItry (some with upper case and special characters).
The most extreme form of password security measures
is the one-time password. When onetime passwords,
are used, the user gets a book containing a list of
passwords. Each login uses the next password in the
list. If an intruder ever discovers a password, it will not
do him any good, since next time a different password
must be used. The real problem with the use of
password is that they are transferable and substantially
static. User with or without agreements can end
up transferring the password to a third party who can
then purport to be the genuine user.

It goes almost without saying that while a
password is being type in, computer should not display
the typed in, the computer should not display the typed
characters to keep them from prying eyes near the
terminal, unencrypted in the computer and even
computer center management should not have
unencrypted password copies.

Hence, we distinguish this paper by the
following contributions.

The standard login command improves password
security in two ways:

• Incorrect login name response does not cause
immediate errors, thus preventing a remote hacker
from rapidly determining that a certain login name is
valid on the machine.

• Password entries are not echoed (printed) by UNIX.
UNIX.

Analysis of the UNIX Operating System and improvement of the Password Authentication Technique

G
lo
ba

l
Jo

ur
na

l
of
 C

om
pu

te
r
Sc

ie
nc

e
an

d
T
ec

hn
ol
og

y
(
B

)
X
X
II
I
Is
su

e
I
V
er
si
on

 I

 Y
ea

r
20

23

4

© 2023 Global Journals

UNIX password are stored in encrypted from in
the/etc/password file. While it is difficult to invert the
cipher and procedure the plaintext version of a
password, it is comparatively easy to encrypt a selection
of possible password and compare them against the
encrypted string in/etc/passwd, a favourite crackers
ploy. UNIX attempt to lesson the severity of this attack
by using a seed value produced at the time of password
change to modify the standard DES algorithm
to frustrate the use of hardware DES chipsets. This seed
is stored with the encrypted password in/etc/password.
Thus two users may have identical passwords, but due
to differences in seeds may have different encrypted
forms. Hence plaintext search may break one
user’s password but give no due to the fact that the
other user’s password is identical.

On recent version of UNIX, the programme/etc/
pwck (password validation) checks the password file for
any inconsistencies (Ferbrache, et al, 1992). The check
include validation of the number of fields, login name,
user ID, and whether the login directory and

III. Research Methodology

a) General One Time Password Aging
The general one time password aging

mechanism requires the user to access the system with
a new password during login depending on the
password life span. Usually the user is issued with a
codebook containing a list of password that are used
serially and each used password crossed off the list.
The next password is then used at the next login. The
major drawback of this technique is the requirement to
use the password list serially and cross off. This makes
it easy for password sniffers, hacker (in the case of loss
of the codebook) to determine which password is to be
used next.

A model to imitate the implementation of an
improved administrative technique, which protects
against this drawback, is created.

b) Simulation Models
4.0 In our work, we created models which

formed the basis of the design used for this work.
This one-time password aging technique

modelled above is an improvement on the general one-
time password aging mechanism. In this model the new
user (A) is made to undergo an identification procedure
with the system administrator (B). After the identi-
fication procedure is completed, a list of serially
numbered passwords is generated and printed out for
the new authorized user (C) in the form of a codebook.
The user (C) uses the first randomly chosen password in
his codebook at first long-in. simultaneously the user
account (D) demands the serial number for the next
login password from the system administrator randomly
picks a password serial number, which it sends to the
user account (D). As user (C) log’s out, the user account
(D) gives a prompt, which displays the next password
login serial number before log-out is completed.

As an added security measure, the user who
owns the codebook is advised not to cross off used
passwords. This feature is employed so that if the book
falls into the hands of unauthorized persons, they will
have a hard time guessing which password has been
used or which hasn’t. The system is programmed to
shut down if a wrong password is entered up to three
times.

IV. System Design

The one-time password aging mechanism was
originally designed in a way that authorized users

serially picked their passwords from a list of numbered
passwords were crossed off.

In this system designed, passwords are not
picked by the individual user, but instead they are
randomly chosen by the system administrator for the
user’s use. Coding of this mechanism would require the
in-corporation of a number of modules.

a) Password Generator
This module generates passwords using a

combination of permissible characters e.g. upper and
lower case letters, digits, punctuation characters, control
to form a password list of a specified length. Password
generated have keys i.e. serially numbered,
generated passwords are stored is a codebook.

b) Random Number Generator
This generator generates passwords characters

randomly to from passwords which make up the
password list. This generator also randomly picks or
generates password keys, which belong to
specific passwords. Passwords generated are allocated
to user for subsequent logins.

c) Allocator
This module makes use if the random number

generator to generate a password key by which belongs
to a password from the password list. Chosen
passwords are screened to verify if passwords have
already been used. If yes, another password key is
generated until an unused password is gotten. The
password is then allocated to the user.

d) Merits of the Improved One-Time Password
The improved one-time password has a number

of merits and advantages over the general one time
password.

In the improved one time password mechanism
passwords are randomly chosen or selected by the
system from the codebook for the user to use, whereas
in the general one time password mechanism the
passwords are chosen by the user himself for use. After
use, the user crosses off the used password from the
list of serially number passwords in the codebook. The
loophole in this technique is that if a user misplaces his
codebook or the codebook happens to be stolen, a
malicious user or even a hacker can easily log into the
system easily without any sweat by simply following the
password sequence using password next to the last
crossed off password. The hacker gains continued
access to the system since he now has the codebook
and the system sees him as a legitimate user.

However, in the improved one time password
technique, the password sequence is not known
although it is serially numbered. User are also advised
not to cross off used passwords as an added
advantage. The legitimate user or a hacker does not
know the order in which the passwords are chosen

Analysis of the UNIX Operating System and improvement of the Password Authentication Technique

G
lo
ba

l
Jo

ur
na

l
of
 C

om
pu

te
r
Sc

ie
nc

e
an

d
T
ec

hn
ol
og

y
(
B

)
X
X
II
I
Is
su

e
I
V
er
si
on

 I

 Y
ea

r
20

23

5

© 2023 Global Journals

the programme/etc/grpck checks entries in the group
files. The checks include validation of the number of
fields; group name, ID and whether all login names
appear in the password file. These programmes
should be run whenever a change is made to the
password or group file (Ferbrache, et al, 1992).

since they are randomly selected by the system from the
codebook for use.

Note: The system also has a copy of the codebook. If
by chance the codebook is misplaced or stolen, the
hacker will have a big problem deciding which pass-
words have been used and which passwords have not
been used as well as not knowing which is the next valid
password for login.

If the hacker keys in the wrong password thrice
in an attempt to grind out the password selection
sequence or the next valid password, the system
automatically logs out and deactivates that
particular account.

As an added advantage when the system
randomly picks and gives out a password, it does not
give out the password itself but the password number or
key. The user knows which number of key belongs to
which password using his codebook. Onlookers or
spies will find it difficult knowing which is the actual
password attached to the number seen since they do
not have the codebook.

e) Simulation of the Password Generator
The password generator was simulated using

the C++ programming language. The major modules of
this simulated programme were;

1. A codebook generator
2. A sample log in test utility
3. An exit option

f) Using the Codebook Generator
The codebook generator creates a user

codebook consisting of five passwords. To generate a
codebook, select the ‘Generate new codebook’ option
from the main menu by entering a 1 at the
menu prompt. A codebook is created for the specified
user. The codebook created for the user is named in the
following format; (user name) code bktxt, and is stored
in the current working directory (usually the directory in
which the programme was execute), where the system
administrator can access it.

g) Using the ‘Login’ Test Utility
The ‘Log in’ test utility is part of the password

generator programme, it provides the user with a
platform to test the access control operations of the
password generator making use of the passwords
generated for a given user by the book generator.

To utilize these features, select the “Log in”
option from the programme main menu by entering a 2
at the menu prompt. The test utility prompts for a
username, which should be the name of a user with an
existing codebook. Following the user password to be
provided must come from the codebook that was
generated for that user.

Note: Once a password is used, it cannot be reused
(For this reason, they are called one-time passwords).

The test utility allocates a password key to the
user through which the user determines the next
password to use in the next “Login” session. Also, if all
password needs to be generated for that user.

The “Long in” test utility allows a maximum of
three login attempts before a user with an invalid
password is denied access.

h) To Ext the Password Generator Programme
Select the ‘Exit’ option from the main menu

display and a user is automatically logged out.

V. Results and Discussion

a) Creating a Codebook for a user
When a user name has been specified, the

generate subroutines of the password generator invoke
the create Random Password routine repeatedly to
create a list of unique passwords. This list of passwords
is passed on to the Save Passwords routine of the File
Handler module which saves the passwords to a
codebook and then invokes the encode routine of the
File Handler module to encrypt the codebook. An
unencrypted copy of the codebook is also stored for
use by the system administrator.

b) Logging in a user
When a user attempts to log in by providing a

user name and password. The Allocator module is given
the user name, which it uses to locate the user’s
codebook and this loads the password in the user’s
codebook through a call to the File Handler module’s
getPasswords routine. The check Password routine of
the Allocator module is invoked with the user password
as an argument. This routine (that is, the check
Password routine) invokes the finPassword routine of
the searcher module to locate the specified password
from the list of passwords in the user codebook. On
successful location of the password, the deAllocate
routine of the masker module is invoked to mark the
password as used. The allocate Password routine of
the Allocator module is invoked to allocate a new
password key to the user. This routine starts by getting a
count of valid passwords left in the codebook through a
call to the search module’s gatecount routine. If any
valid passwords are available, the random index
pointing to any password in the user codebook. The
crosscheck routine of the searcher module is called to
confirm that the password at the randomly picked index
is valid, if not valid, the process is repeated by invoking
the random number generate again. On matching the
index with a valid password, the allocatPassword routine
assigns the index value to the user as the key to the next
password.

VI. Conclusion

The UNIX operating system is a portable
multiuser and rugged operating system that provides a

Analysis of the UNIX Operating System and improvement of the Password Authentication Technique

G
lo
ba

l
Jo

ur
na

l
of
 C

om
pu

te
r
Sc

ie
nc

e
an

d
T
ec

hn
ol
og

y
(
B

)
X
X
II
I
Is
su

e
I
V
er
si
on

 I

 Y
ea

r
20

23

6

© 2023 Global Journals

powerful programme development environment. Inspite
of the ruggedness of the UNIX operating system, this
paper highlights the glairs of its password authentication
system, gives an overview of the UNIX file

systems,

proposes on improved password authentic-
cation technique, provides a

framework for the
implementation of this technique and demonstrates

a
simulation of this technique.

Analysis of the UNIX Operating System and improvement of the Password Authentication Technique

G
lo
ba

l
Jo

ur
na

l
of
 C

om
pu

te
r
Sc

ie
nc

e
an

d
T
ec

hn
ol
og

y
(
B

)
X
X
II
I
Is
su

e
I
V
er
si
on

 I

 Y
ea

r
20

23

7

© 2023 Global Journals

Shell

Kernel

Hardware

Resident

New User

(A)

System (B)

Administrator

Authorized User

)C(

Identification procedures

List of numbered passwords

Gives next password number

during log-out

User

Account

Log-in

Fig. 2.1: Shell between the user and the Resident Operating System

Fig. 3.1: Simulation Model of the one-time Password Aging with an Improved Authentication Technique

References Références Referencias

1. Adrain, R. Warman: (1993). “COMPUTER SECURITY
WITHIN ORGANISATIONS”, The Macmillan Press
Ltd. – London. Andrew, S. T. (1990). “OPERATING
SYSTEMS: DESIGN AND IMPLEMENTATION”,
Prentice – HALL INTERNATIONAL INC. LONDON.

2. Bourne, S. R. (1983) “THE UNIX SYSTEM”, Addison
Wesley Publishing.

3. Davies, D. W. and Price, W. L.: (1989) “SECURITY
FOR COMPUTER NETWORKS”, John Wiley and
Sons Canada. Second Edition.

4. Davies, S. W. (1992). “OPERATING SYSTEMS:- A
SYSTEMATIC VIEW”, The Benjamin/Cumming
publishing company. New York.

5. Ferbrache, D. and Shearer, G. (1992). UNIX
SYSTEM SECURITY”, Butterworth-Heinemann Ltd
Oxford.

6. Lane, V. P.: (1993) “SECURITY OF COMPUTER
BASED INFORMATION SYSTEMS”, Macmillan
Press Ltd.

London.

Analysis of the UNIX Operating System and improvement of the Password Authentication Technique

G
lo
ba

l
Jo

ur
na

l
of
 C

om
pu

te
r
Sc

ie
nc

e
an

d
T
ec

hn
ol
og

y
(
B

)
X
X
II
I
Is
su

e
I
V
er
si
on

 I

 Y
ea

r
20

23

8

© 2023 Global Journals

7. Manager, J. J.: (1992). “UNIXTM – THE COMPLETE
BOOK

8. GUIDE FOR THE PROFESSIONAL USER”, Sogma
Press. Wilmslow England.

9. Per, B. H. (1990). “OPERATING SYSTEM
PRINCIPLES”, Prentice-Hall, Inter-Inc. London.

10. Pfleeger, C. P. (1989). “SECURITY IN
COMPUTING”, Prentice Hall Inter. Inc. New York.

11. Sobell, M. G. (1989) “A PRACTICAL GUIDE TO THE
UNIX SYSTEM”, The Benjamin/comings Publishing
Company California.

12. Southerton, A.: (1983). “MODERN UNIX”, John
Wiley and Sons Inc., Canada.

13. Smith, J. (1994). “UNIX UNLEASHED” Sams
Publishing Inc. Indianapolis.

14. Thomas, Rebecca and J Yates, User Guide to Unix,
2nd Edn. McGraw Hill (Asian Edition), 1996.

15. Williams, S. D. (1992). “OPERATING SYSTEMS: A
SYSTEMATIC VIEW”, The Benjamin/Cumming

16. Publishing Company, New York.
17. Wood, P. H. and Kocham, S. G. (1983). “UNIX

SYSTEM SECURITY”, Hayden Books.

	Analysis of the UNIX Operating System and Improvement of the Password Authentication Technique
	Author
	Keywords
	I. Introduction
	a) Historical Background of Unix
	b) Motivation
	c) Our Contribution

	II. Background and Literature Review
	a) General Feature of Unix File System
	b) The Shell and Shell Scripts
	c) Security Issues
	d) File System Security
	e) File Permissions

	III. Research Methodology
	a) General One Time Password Aging
	b) Simulation Models

	IV. System Design
	a) Password Generator
	b) Random Number Generator
	c) Allocator
	d) Merits of the Improved One-Time Password
	e) Simulation of the Password Generator
	f) Using the Codebook Generator
	g) Using the ‘Login’ Test Utility
	h) To Ext the Password Generator Programme

	V. Results and Discussion
	a) Creating a Codebook for a user
	b) Logging in a user

	VI. Conclusion

