
A Multicast Protocol For Content-Based Publish-Subscribe1

Systems2

Prof. Vishal Nagar1, Yashpal Singh2 and D.C. Dhubkarya33

1 CSe Jhnai-India,UPTU Lucknow-India4

Received: 10 February 2010 Accepted: 3 March 2010 Published: 15 March 20105

6

Abstract7

The publish/subscribe (or pub/sub) paradigm is a simple and easy to use model for8

interconnecting applications in a distributed environment. Many existing pub/sub systems are9

based on pre-defined subjects, and hence are able to exploit multicast technologies to provide10

scalability and availability. An emerging alternative to subject-based systems, known as11

content-based systems, allow information consumers to request events based on the content of12

published messages. This model is considerably more flexible than subject-based pub/sub,13

however it was previously not known how to efficiently multicast published messages to14

interested content-based subscribers within a network of broker (or router) machines. In this15

paper, we develop and evaluate a novel and efficient technique for multicasting within a16

network of brokers in a content-based subscription system, thereby showing that17

content-based pub/sub can be deployed in large or geographically distributed settings.18

19

Index terms— Multicast, Publishers, Subscribers, information spaces, OMG, content-based routing20

1 INTRODUCTION21

he publish/subscribe paradigm is a simple, easy to use and efficient to implement paradigm for interconnecting22
applications in a distributed environment. Pub/sub based middleware is currently being applied for application in-23
tegration in many domains including financial, process automation, transportation, and mergers and acquisitions.24
Pub/sub systems contain information providers, who publish events to the system, and information consumers,25
who subscribe to particular categories of events within the system. The system ensures the timely delivery of26
published events to all interested subscribers. A pub/sub system also typically contains message brokers that are27
responsible for routing messages between publishers and subscribers. The earliest pub/sub systems were subject-28
based. In these systems, each unit of information (which we will call an event) is classified as belonging to one29
of a fixed set of subjects (also known as groups, channels, or topics). Publishers are required to label each event30
with a subject; consumers subscribe to all the events within a particular subject. For example a subject-based31
pub/sub system for stock trading may define a group for each stock issue; publishers may post information to the32
appropriate group, and subscribers may subscribe to information regarding any issue. In the past decade, systems33
supporting this paradigm have matured significantly resulting in several academic and Yashpal Singh 1 , Vishal34
Nagar 2 , D.C.Dhubkarya 1 yash_biet@yahoo.com, vishal_biet@yahoo.com, dcd3580@yahoo.com 1.BIET Jhansi,35
2. CSE Jhansi , India industrial strength solutions [4][10] [12][13] [15]. A similar approach has been adopted36
by the OMG for CORBA event channels [11].An emerging alternative to subject-based systems is content-based37
subscription systems [6] [14]. These systems support a number of information spaces, each associated with an38
event schema defining the type of information contained in each event. Our stock trade example (shown in Figure39
??) may be defined as a single information space with an event schema defined as the tuple [issue: string, price:40
dollar, volume: integer]. A contentbased subscription is a predicate against the event schema of an information41
space, such as (issue=?IBM? & price < 120 & volume > 1000) in our example.With content-based pub/sub,42
subscribers have the added flexibility of choosing filtering criteria along as many dimensions as event attributes,43

1

Global Journals LATEX JournalKaleidoscope™
Artificial Intelligence formulated this projection for compatibility purposes from the original article published at Global Journals.
However, this technology is currently in beta. Therefore, kindly ignore odd layouts, missed formulae, text, tables, or figures.

2 THE MATCHING ALGORITHM

without requiring pre-definition of subjects. In our stock trading example, the subject-based subscriber is forced44
to select trades by issue name. In contrast, the content-based subscriber is free to use an orthogonal criterion,45
such as volume, or indeed a collection of criteria, such as issue, price and volume. Furthermore, content-based46
pub/sub removes the administrative overhead of defining and maintaining a large number of groups, thereby47
making the system easier to manage. Finally, content-based pub/sub is more general in that it can be used to48
implement subjectbased pub/sub, while the reverse is not true. While contentbased pub/sub is the more powerful49
paradigm, efficient and scalable implementations of such systems have previously not been developed. In order50
to efficiently implement a content-based pub/sub system, two key problems must be solved:51

i. The problem of efficiently matching an event against a large number of subscribers on a single message52
broker. ii.53

The problem of efficiently multicasting events within a network of message brokers. This problem becomes54
crucial in two settings: 1) when the pub/sub system is geographically distributed and message brokers are55
connected via a relatively low speed WAN (compared to high-speed LANs), and 2) when the pub/sub system has56
to scale to support a large number of publishers, subscribers and events. In both cases it becomes crucial to limit57
the distribution of a published event to T only those brokers that have subscribers interested in that event.One of58
the strengths of subject-based pub/sub systems is that both problems are trivial to solve: the matching problem59
is solved using a mere table lookup; the multicast problem is solved by defining a multicast group per subject,60
and multicasting each event to the appropriate multicast group. For content-based pub/sub systems, however,61
previous literature does not contain solutions to either problem, matching or multicasting. In this paper we62
present the first efficient solution to the multicast problem for content-based pub/sub. In a companion paper63
[2] we present an efficient soution to the matching problem for these systems.There are two straightforward64
approaches to solving the multicasting problem for content-based systems: (1) in the match-first approach, the65
event is first matched against all subscriptions, thus generating a destination list and the event is then routed to66
all entries on this list; and (2) in the flooding approach, the message is broadcast or flooded to all destinations67
using standard multicast technology and unwanted messages are filtered out at these destinations. The match-68
first approach works well in small systems, but in a large system with thousands of potential destinations, the69
increase in message size makes the approach impractical. Further, with this approach we may have multiple70
copies of the same message going over the same network link on its way to multiple remote subscribers. The71
flooding approach suffers when, in a large system, only a small percentage of clients want any single message.72
Furthermore, the flooding technique cannot exploit locality of information requests, i.e., when clients in a single73
geographic area are, for many applications, likely to have similar requests for data.74

The central contribution of this paper is a new protocol for content-based routing, an efficient solution to75
the multicast problem for content-based pub/sub systems. With this protocol, called link matching, each broker76
partially matches events against subscribers at each hop in the network of brokers to determine which brokers to77
send the message. Further, each broker forwards messages to its subscribers based on their subscriptions. The78
disadvantages of the match-first approach are avoided since no additional information is appended to the message79
headers. Further, at most one copy of a message is sent on each link. The disadvantages of the flooding approach80
are avoided as the message is only sent to brokers and clients needing the message, thus exploiting locality. We81
illustrate, using a network simulator, that flooding overloads the network at significantly lower publish rates82
than link matching. We also describe our implementation of a distributed Java based prototype of content-based83
pub/sub brokers. The remainder of this paper is organized as follows. In section 2, we present a solution to the84
matching problem (i.e., the case when the network consists of a single broker).85

In section 3, we discuss how to extend the solution to the matching problem into a solution to the content-86
based routing problem in a multi-broker network. In section 4, we evaluate the performance of this approach and87
compare it to the flooding approach.88

II.89

2 THE MATCHING ALGORITHM90

This section summarizes a non-distributed algorithm for matching an event against a set of subscriptions, and91
returning the subset of subscriptions that are satisfied by the event. (A more detailed presentation of matching92
along with experimental and analytic measures of performance are the subject of our companion paper [2].) This93
matching algorithm is the basis of our distributed multicast protocol, presented in the following section.94

Our approach to matching is based on sorting and organizing the subscriptions into a parallel search tree95
(or PST) data structure, in which each subscription corresponds to a path from the root to a leaf. The96
matching operation is performed by following all those paths from the root to the leaves that are satisfied by the97
event. Intuitively, this data structure yields a scaleable algorithm because it exploits the commonality between98
subscriptions as shared prefixes of paths from root to leaf. Figure ?? shows an example of a matching tree for99
an event schema consisting of five attributes a1 through a5. These attributes could represent, for example, the100
stock issue, price, or volume attributes mentioned above. The root of the tree corresponds to a test of the value101
of attribute a1, the nodes at the next level correspond to a test of attribute a2, etc. The branches are labeled102
with the values of the attributes being tested. In the example, we only show equality tests (although range tests103
are also possible), so the right branch of the root represents the test a1 = 1. The left branch of the root, with104
label *, means that the subscriptions along that branch do not care about the value of the attribute. Each leaf105

2

is labeled with the identifiers of all the subscribers wishing to receive events matching the predicate, i.e., all the106
tests from the root to the leaf. For example, in Figure ??, the rightmost leaf corresponds to a subscription whose107
predicate is (a1 =1 & a2=2 & a3=3 & a5=3108

). Since a4 does not appear in this subscription, it is represented by a label * in the PST. Given this tree109
representation of subscriptions, the matching algorithm proceeds as follows. We begin at the root, with current110
attribute a 1 . At any non-leaf node in the tree, we find the value v j of the current attribute a j . We then traverse111
any of the following edges that apply: (1) the edge labeled v j if there is one, and (2) the edge labeled * if there112
is one. This may lead to either 0, 1, or 2 successor nodes (or more in the general case where the tests are not all113
strict equalities). We initiate parallel subsearches at each successor node. When any of the parallel subsearches114
reaches a leaf, all subscriptions at that leaf are added to the list of matched subscriptions. For example, running115
the matching algorithm with the matching tree of Figure ?? and the event a = <1, 2, 3, 1, 2> will visit all the116
nodes marked with dark circles and will match four subscription predicates, corresponding to the dark circles at117
leaf nodes.118

The way in which attributes are ordered from root to leaf in the PST can be arbitrary. In our experience,119
however, performance seems to be better if the attributes near the root are chosen to have the fewest number of120
subscriptions labeled with a *.121

In the companion paper [2], we have analytically shown that the cost of matching using the above algorithm122
increases less than linearly as the number of subscriptions increase.123

3 A. Optimizations124

A number of optimizations may be applied to the parallel search tree to decrease matching time –these125
optimizations are explained fully in [2].126

Factoring-Some search steps can be avoided, at the cost of increased space, by factoring out certain attributes.127
That is, certain attributes —preferably those for which the subscriptions rarely contain -don’t care? tests —are128
selected as indices. A separate subtree is built for each possible value (or for ranges, each distinguished value129
range) of the index attributes.130

Trivial Test Elimination-Nodes with a single child which is reached by a *-branch may be eliminated. Delayed131
Branching-Following *-branches may be delayed until after a set of tests have been applied. This optimization132
prunes paths from that *-branch which are inconsistent with the tests.133

It is worth noting that, under certain circumstances, after applying optimizations, the parallel search tree will134
no longer be a tree but instead a directed acyclic graph.135

III.136

4 THE LINK MATCHING ALGORITHM137

The previous section described a non-distributed algorithm for matching events to subscriptions. This section138
presents the central contribution of this paper –an extended matching algorithm for a network of brokers,139
publishers, and subscribers (as shown in Figure ??). The problem, in this case, is to efficiently deliver an140
event from a publisher to all distributed subscribers interested in the event.141

One straightforward solution to this problem is to perform the matching algorithm of the previous section142
at the broker nearest to the publisher, producing a destination list consisting of the matched subscribers. This143
destination list may be undesirably long in a large network with thousands of subscribers, and it may be infeasible144
to transmit and process large messages containing long destination lists throughout the network. Link matching145
is our strategy for multicasting events without using destination lists. After receiving an event, each broker146
receiving an event performs just enough matching steps to determine which of its neighbors should receive it. As147
shown in Figure ??, neighbors may be brokers or clients (this figure shows a spanning tree derived from the actual148
non-tree broker network). That is, each broker, rather than determining which subset of all subscribers is to149
receive the event, instead computes which subset of its neighbors is to receive the event, i.e., it determines those150
links along which it should transmit the message. Intuitively, this approach should be more efficient because the151
number of links out of a broker is typically much less than the total number of subscribers in the system.152

To perform link matching, we use the parallel search tree (PST) structure of the previous section, where each153
path from root to leaf represents a subscription. We augment the PST with vectors of trits, where the value of154
each trit is either -Yes,? (Y) -N o,? (N) or -M aybe? (M). We begin by annotating leaf nodes in the PST with a155
trit vector of size equal to the number of links out of that broker.156

For each link out of a broker, a position in a trit vector determines whether to send matched events down that157
link, based on whether there exists a subscription reachable via that link. Leaf annotations are then propagated158
to non-leaf nodes in a bottom-up manner. A -Yes? in a trit annotation means that (based on the tests performed159
so far) the event will be matched by some subscriber that is best reached by sending the message along the given160
link; -No ? means that the event will definitely not be matched by any subscriber along that link; and -M aybe?161
means that further searching must take place to determine whether or not there is such a subscriber. Annotations162
are described in more detail below.163

The link matching algorithm consists of the following three steps. First, at each broker, the parallel search164
tree is annotated with a trit vector encoding link routing information for the subscriptions in the broker network.165

3

7 C. MATCHING EVENTS

Second, an initialization mask of trits must be computed at each broker for each spanning tree used for message166
routing.167

(Collectively, the masks for a single spanning tree across all the brokers encode the spanning tree in the168
network.) Third, at match time the initialization mask for a given spanning tree (based on the publisher) is169
refined until the broker can determine whether or not to send a message on each link, that is, until all values170
in the mask are either Yes or No. These three steps are described in detail in the following three subsections171
respectively.172

5 A. Annotating the PST173

Each broker in the network has a copy of all the subscriptions, organized into a PST as discussed in the previous174
section, and illustrated in Figure ??. Note that the approach we describe here for computing tree annotations175
is limited to trees with only equality tests and don’t care branches. A more general solution requires the use of176
a parallel search graph and is not described here to conserve space.Each broker annotates each node of the PST177
with a trit vector annotation. This annotation vector contains m trits, one per outgoing link from the broker. As178
mentioned earlier, the trit is Yes when a search reaching that node is guaranteed to match a subscriber reachable179
through that link, No when a search reaching that node will have no subsearch leading to a subscriber reachable180
through that link, and Maybe otherwise.Annotation is a recursive process starting with the leaves of the parallel181
search tree, which represent the subscriptions. We label each leaf node trit in link position l with Y if one of that182
leaf node’s subscribers is located at a destination reached through link l, and N otherwise. After all the leaves183
have been annotated, we propagate the annotations back toward the root of the PST using two operators: An184
example is shown in Figure ??.185

6 B. Computing The Initialization Mask186

We assume that each broker knows the topology of the broker network as well as the best paths between each187
broker and each destination. To simplify the discussion, we ignore alternative routes for load balancing or recovery188
from failure and congestion. Instead, we assume that events always follow the shortest path. From this topology189
information, each broker constructs a routing table mapping each possible destination to the link which is the190
next hop along the best path to the destination. We also assume that the broker knows the set of spanning trees,191
only one of which will ever be used by each publisher.192

In the case where the broker network is acyclic (Figure ??), computation of the spanning tree is straightforward.193
If the broker topology is not a tree, then computing the spanning tree is more complex. However, even in this194
case, there will be a relatively small set of different spanning trees. At worst, there will be one spanning tree for195
each broker that has publisher neighbors and in most practical cases, where the broker network is -t ree-like?,196
there will be significantly fewer spanning trees. Using these best paths and spanning trees, each broker computes197
the downstream destinations for each spanning tree. A destination is downstream from a broker when it is a198
descendant of the broker on the spanning tree. Based upon the above analysis, each broker associates each unique199
spanning tree with an initialization mask, one trit per link. The trit at link l has the value Maybe if at least200
one of the destinations routable via l is a descendant of the broker in the spanning tree; and No if none of the201
destinations routable via l are descendants of the broker 1 . The significance of the mask is that an event arriving202
at a broker should only be propagated along those links leading to descendant destinations –that is, those links203
whose mask bit is M and will eventually be refined to a Y via matching, described below.204

7 C. Matching Events205

When an event originating at a publisher is received at a broker, the following steps are taken using the annotated206
search tree:207

i. A mask is created and initialized to the initialization mask associated with the publisher’s spanning tree. ii.208
Starting with the root node, the mask is refined using the trit vector annotation at the current node. During209

refinement, any M in the mask is replaced by the corresponding trit vector annotation. If the mask is now fully210
refined —that is, it has no M trits —then the search terminates, returning the refined mask. Otherwise, step 3211
is executed. iii.212

The designated test is performed and, 0, 1, or 2 children are found for continuing the search as mentioned in213
Section 2. A subsearch is executed at each such child using a copy of the current mask.214

On the return of each subsearch, all Maybe trits in the current mask for which a Yes trit exists in the subsearch215
mask, are converted to Yes trits. After all the children have been searched, the remaining Maybe trits in the216
current mask are made No trits. The current mask is returned. iv.217

The top-level search terminates and sends a copy of the event to all links corresponding to Yes trits in the218
returned mask.219

This concludes the description of the link matching algorithm.220
IV.221

4

8 IMPLEMENTATION AND PERFORMANCE222

We have implemented the matching algorithms described above and tested them on a simulated network topology223
as well as on a real LAN, as explained in the following two subsections respectively.224

9 A. Simulation Results225

The goals of our simulations were twofold i.226
To measure the network loading characteristics of the link matching protocol and compare it to that of the227

flooding protocol. ii.228
To measure the processing time taken by the link matching algorithm at individual broker nodes and compare229

it to that of centralized matching (i.e., the non-trit matching algorithm described in Section 2).230

10 i. Simulation Setup231

The simulated broker network topology is shown in Figure ??. The topology has 39 brokers and 10 subscribing232
clients per broker, each client with potentially multiple subscriptions. In addition, there is an unspecified number233
of publishing clients –three of these publishers, shown as P1, P2, and P3 in the figure, publish events that are234
tracked by the simulator and the rest simply load the brokers by publishing messages that take up CPU time235
at the brokers. As shown in Figure ??, the 39 brokers form three trees of 13 brokers each. The root of each of236
these three trees are connected to the roots of the other two. Also, as shown, there are a small number of lateral237
links between non-root nodes in the trees to allow messages from some publishers to follow a different path than238
other publishers. This topology is intended to model a real-world wide-area network with each of the three rooted239
trees distributed far _____________________________from each other (intercontinental), but the240
brokers within a tree closer to each other (interstate). The top-level brokers are modeled to have a one-way hop241
delay of about 65 ms, links from them to their next level neighbors is 25ms, the third level hop delay is about242
10ms, and the hop delay to clients is 1ms.243

The broker network simulates an information space with several control parameters, such as the number of244
attributes in the event schema, the number of values per attribute and the number of factoring levels (i.e., the245
preferred attributes of Section 2.1). Subscriptions are generated randomly, but one of the control parameters is246
the probability that each attribute is a * (i.e., don’t care). For non-* attributes, the values are generated according247
to a zipf distribution. In addition, we simulate -l ocality of interest? in subscriptions by having subscribers within248
each subtree of the broker topology have similar distributions of interested values whereas subscriptions across249
from the other two subtrees have different distributions.250

Events are also generated randomly, with attribute values in a zipf distribution. Events arrive at the publishing251
brokers according to a Poisson distribution. The mean arrival rate of published events, which is a key parameter,252
is controlled by a user specified parameter.253

In the simulation, time is measured in -t icks? of a virtual clock, with each tick corresponding to about 12254
microseconds. The virtual clock, used only for simulation purposes, is implemented as synchronized brokers’255
clocks.256

Each event carries with it its -current? virtual time from the beginning of the simulation. An event spends257
time traversing a link (-hop delay?), waiting at an incoming broker queue, getting matched, and being sent258
(software latency of the communication stack).259

ii.260

11 Network Loading Results261

As mentioned earlier, the purpose of this simulation run was to determine, for the link matching and the flooding262
protocols, the event publish rate at which the broker network becomes -ov erloaded? (or congested), for a varying263
number of subscriptions. A broker is overloaded when its input message queue is growing at a rate higher than264
the broker processor can handle. This simulation run was performed with the following parameters. The event265
schema has 10 attributes (with 2 attributes used for factoring), and each attribute has 5 values. The subscriptions266
are generated randomly in such a way that the first attribute is non-* with probability 0.98, and this probability267
decreases at the rate of 85% as we go from the first to the last attribute. This means that subscriptions are very268
selective –on average, each event matches only about 0.1% of subscriptions. The number of events published is269
500.270

The results from the simulation run are shown in Chart 1.271
The chart shows that a broker network running the flooding protocol saturates at significantly lower event272

publish rates than the link matching protocol for any number of subscriptions. In particular, when each event is273
destined to only a small percentage of all clients, link matching dramatically outperforms flooding. In the case274
where events are distributed quite widely, the difference is not as great, since most links are used to distribute275
events in the link matching protocol. This result illustrates that link matching is well-suited to the type of276
selective multicast that is typical of pub/sub systems deployed on a WAN.277

5

14 RELATED WORK

12 iii. Matching Time Results278

As mentioned earlier, the purpose of this simulation run was to measure the cumulative processing time taken by279
the link matching algorithm and the centralized (non-trit) matching algorithm. The processing time taken per280
event in the link matching algorithm is the sum of the times for all the partial matches at intermediate brokers281
along the way from publisher to subscriber. This simulation run was performed with the following parameters.282
The event schema has 10 attributes (with 3 attributes used for factoring), and each attribute has 3 values. The283
subscriptions are generated randomly in such a way that the first attribute is non-* with probability 0.98, and284
this probability decreases at the rate of 82% we go from the first to the last attribute. Again, this means that285
subscriptions are very selective –on average, each event matches only about 1.3% of subscriptions. The number286
of events published is 1000.287

The results from the simulation run are shown in Chart 2.288
For the link matching algorithm, six lines, -LM 1 hop? through -LM 6 hops?, are shown –these correspond to289

the number of hops an event had to traverse on its way from a publishing broker to a subscriber. On the Y axis,290
the chart shows the number of -m atching steps? performed on average. A matching step is the visitation of a291
single node in the matching tree. Although our current implementation has traded off time efficiency in favor of292
space efficiency, we estimate that a time efficient implementation can execute a matching step in the order of a293
few microseconds.294

The chart shows that the cumulative matching steps for up to four hops using the link matching algorithm is295
not more than the number of matching steps taken by the centralized algorithm. For more than four hops the link296
matching algorithm takes more matching steps, however the link matching protocol is still a better choice over297
the centralized algorithm because (1) the extra processing time for link matching (of the order of much less than298
1ms) is insignificant compared to network latency (of the order of tens of ms), (2) the gain in latency to regional299
publishers and subscribers obtained by distributing brokers is significant, and (3) for really large numbers of300
subscribers (i.e., much beyond 10000), the slopes of the lines in Chart 2 indicate that centralized matching may301
take more steps than link matching.302

13 B. System Prototype303

We have implemented the matching algorithms in a network of broker nodes where brokers are connected using a304
specified topology. A broker network may implement multiple information spaces by specifying an event schema305
(one per information space) defining the type of information contained in each event. Clients subscribe to an306
information space by first connecting to a broker node, then providing subscription information which includes307
a predicate expression of event attributes. This section describes the implementation of such a broker node. As308
illustrated in Figure ??, each broker node consists of a matching engine, client and broker protocols, a connection309
manager and a transport layer. The matching engine which implements one of the matching algorithms described310
earlier, consists of a subscription manager, and an event parser. A subscription manager receives a subscription311
from a client, parses the subscription expression, and adds the subscription to the matching tree. An event parser312
first parses a received event, then un-marshals it according to the pre-defined event schema. The matchine engine313
then uses the implemented matching algorithm to get a list of subscibers interested in the un-marshaled event.314

The broker to client protocol is implemented by the client protocol object, whereas the broker to broker315
protocol is implemented using the broker protocol object. These protocol objects are robust enough to handle316
transient failures of connections by maintaining an event log per client. Once a client re-connects after a failure,317
the client protocol object delivers the events received while the client was dis-connected. A garbage collector318
periodically cleans up the log. The connection manager object maintains the connections to clients and the other319
brokers in the network.320

The transport layer sends and receives messages to and from clients and other brokers in the network. To321
improve scalability, it implements an asynchronous -sen d? operation by maintaining a set of outgoing queues,322
one per connection.323

A broker thread sends a message by en-queueing it in the appropriate queue. A pool of sending threads is324
responsible for monitoring these queueues for outgoing messages, and sending them to destinations using the325
underlying network protocol.326

Currently, broker nodes are implemented in Java using TCP/IP as the network protocol. In an experimental327
setup where a 200 MHz pentium pro PC is used as a broker node, and low end PCs (using 133 MHz pentium328
processors) are used as clients connected using a 16MB token ring network, the current implementation of the329
broker can deliver upto 14,000 events/sec. Also, as shown in Chart 3 for the pure matching algorithm, brokers can330
perform matching very quickly, at the rate of about 4ms for 25,000 subscribers. In fact, our matching algorithms331
are so efficient that the transport system and network costs of a broker outweigh the cost of matching at a broker.332

V.333

14 RELATED WORK334

As mentioned earlier, alternatives to the link matching approach were either to (1) first compute a destination335
list for events by matching at or near the publisher and then distributing the event using the distribution list, or336
(2) to multicast the event to all subscribers which would then filter the event themselves.337

6

Computing a destination list is a good approach for small systems involving only a few subscribers. For these338
cases, the matching algorithm presented in section 2 provides a good solution. However, scalability is essential if339
contentbased systems are to fill the same infrastructure requirements as subject-based publish/subscribe systems.340
In cases where destination lists may grow to include hundreds or thousands of destinations, the match-first341
approach becomes impractical. Multicasting an event and then filtering also has its disadvantages. Lack of342
scalability and an inability to exploit locality was shown for the flooding approach for event distribution. Flooding343
is a good approximation of the broadcast approach since most WAN multicast techniques require the use of a344
series of routers or bridges connecting LAN links. IP multicast [5][1] allows subscriptions to a subrange of345
possible IP addresses known as class D addresses. Subscriptions to these groups is propagated back through346
the network routers implementing IP. Pragmatic General Multicast [16] has been proposed as an internetwide347
multicast protocol with a higher level of service. This protocol is an extension of IP multicast that provides348
-TC P-like? reliability, and therefore is also reliant on multicastenabled routers. A mechanism for multicast349
in a network of bridge-connected LANs is proposed in [7]. In this approach, members of a group periodically350
broadcast to an all-bridge group their membership in a multicast group. Bridges note these messages and update351
entries in a multicast table, including an expiration time.352

The content-based subscription systems that have been developed do not yet address wide-area, scaleable353
event distribution, i.e. although they are content-based subscription systems, they are not content-based routing354
systems. SIENA allows content-based subscriptions to a distributed network of event servers (brokers) [6]. SIENA355
filters events before forwarding them on to servers or clients. However, a scaleable matching algorithm for use356
at each server has not been developed. The Elvin system [14] uses an approach similar to that used in SIENA.357
Publishers are informed of subscriptions so that they may -qu ench? events (not generate events) for which there358
are no subscribers. In [14], plans are discussed for optimizing Elvin event matching by integrating an algorithm359
similar to the parallel search tree. This algorithm, presented in [8], converts subscriptions into a deterministic360
finite automata for matching. However, no plans for optimizations for broker links (such as our optimization361
through trit annotation) are discussed. Another algorithm for optimizing matching is discussed in [9]. At analysis362
time, one of the tests aij of each subscription is chosen as the gating test; the remaining tests of the subscription363
(if any) are residual tests. At matching time, each of the attributes aj in the event being matched is examined.364
The event value vj is used to select those subscriptions i whose gating tests include aij = vj. The residual tests365
of each selected subscription are then evaluated: if any residual test fails, the subscription is not matched; if366
all residual tests succeed, the subscription is matched. Our parallel search tree performs this type of test for367
each attribute, not just a single gating test attribute. One outlet for the work presented in this paper could368
be through Active Networks [17]. Active Networks have been touted as a mechanism for eliminating the strong369
dependence of route architectures on Internet standards. Active Networks allow the dynamic inclusion of code370
either at routers or by replacing passive packets with active code. The SwitchWare project [3] follows the former371
approach and is most appropriate to the type of router customization proposed in this paper. With SwitchWare,372
digitally signed type-checked modules may be loaded into network routers.373

Our matching and multicasting component could be one such module.374

15 VI. CONCLUSIONS375

In this paper, we have presented a new multicast technique for content-based publish/subscribe systems known376
as link matching. Although several publish/subscribe systems have begun to support content-based subscription,377
the novel contribution of link matching is that routing is based on a hop-by-hop partial matching of published378
events. The link matching approach allows distribution of events to a large number of information consumers379
distributed across a WAN without placing an undo load on the network. The approach also exploits locality of380
subscriptions. We evaluate how an implementation of content-based routing protocol performs by showing that a381
broker network stays up while running the link matching algorithm whereas brokers get overloaded for the same382
event arrival rate running the flooding algorithm, since brokers have larger numbers of events to process in the383
flooding case. We also describe a broker implementation that can handle message loads of up to 14000 events per384
second on a 200 MHz Pentium PC. This shows that content-based routing using link matching supports a more385
general and flexible form of publish-subscribe while admitting a highly efficient implementation. Future work is386
concentrating on further validation of our approach to content-based routing. We are currently working to deploy387
our content-based routing brokers on a large private network. This will allow us to conduct system tests under388
actual application loads. Sample applications will include some from the financial trading and process control389
domains. In addition to these system tests, we are also continuing work with our simulator to examine different390
types of messaging loads. In particular, since many publish/subscribe applications exhibit peak activity periods,391
we are examining how our protocol performs with bursty message loads. VII. 1392

1In some cases, where some destinations reachable through a link downstream on some spanning trees and are
not on others, the search may be optimized by splitting the link into two or more ”virtual” links.

7

15 VI. CONCLUSIONS

Figure 1:

Figure 2:

8

Figure 3:

9

15 VI. CONCLUSIONS

10

[Hanson et al. ()] ‘A predicate Matching Algorithm for Database Rule Systems’. Eric N Hanson , Moez Chaabouni393
, Chang-Ho Kim , Yu-Wang Wang . SIGMOD 1990, May 23-25 1990. p. .394

[Tennenhouse et al. (1997)] A Survey of Active Network Research,? IEEE Communications Magazine, J395
Tennenhouse , W D Smith , D Sincoskie , G Wetherall , Minden . January, 1997. 35 p. .396

[Birman (1993)] K P Birman . T he process group approach to reliable distributed computing,? pages, Dec. 1993.397
36 p. .398

[Mishra et al. (1991)] Consul: A Communication Substrate for Fault-Tolerant Distributed Programs, Dept. of399
computer science, Shivakant Mishra , Larry L Peterson , Richard D Schlichting . TR 91-32. Nov. 1991. The400
University of Arizona401

[CORBA services: Common Object Service Specification (1998)] CORBA services: Common Object Service402
Specification, July 1998. Object Management Group ; Object Management Group (Technical report)403

[Aguilar ()] ‘Datagram Routing for Internet Multicasting’. Lorenzo Aguilar . ? ACM Computer Communications404
Review 1984. 14 (2) p. .405

[Deering ()] Stephen E Deering . M ulticast Routing in InterNetworks and Extended LANs, 1988. 18 p. .406

[Carzaniga et al.] Desi gn of a Scalable Event Notification Service: Interface and Architecture, Antonio Carzaniga407
, David S Rosenblum , Alexander L Wolf . http://www.cs.colorado.edu/users/carzaniga/siena/408
index.html409

[Segall and Arnold (1997)] El vin has left the building: A publish/subscribe notification service with quenching,?410
Proceedings of AUUG97, Bill Segall , David Arnold . September, 1997. Brisbane, Austrailia.411

[Gough and Smith ()] John Gough , Glenn Smith . Eff icient Recognition of Events in a Distributed System,?412
Proceedings of ACSC-18, (Adelaide, Australia) 1995.413

[Powell Guest Editor (1996)] Group Communication?, David Powell, (Guest Editor (ed.) April 1996. 39 p. .414

[Aguilera et al. ()] ‘Matching Events in a Content-Based Subscription System’. Marcos Aguilera , Rob Strom ,415
Daniel Sturman , Mark Astley , Tushar Chandra . http://www.research.ibm.com/gryphon Upcoming416
IBM Technical Report 1998.417

[Oki et al. (1993)] Brian Oki , Manfred Pfluegl , Alex Siegel , Dale Skeen . T he Information Bus -An Architecture418
for Extensible Distributed Systems,? pages, Dec. 1993. 27 p. .419

[Speakman et al. (1998)] Tony Speakman , Dino Farinacci , Steven Lin , Alex Tweedly . PGM Reliable Transport420
Protocol,? IETF Internet Draft, August 24. 1998.421

[Alexander (1998)] Th e SwitchWare Active Network Architecture,? IEEE Network Special Issue on Active and422
Controllable Networks, Scott Alexander . July 1998. 12 p. .423

[Uyless Black. TCP/IP Related Protocols ()] Uyless Black. TCP/IP & Related Protocols, 1995. McGraw-Hill.424
p. . (Second Edition)425

[Skeen] Vitria’s Publish-Subscribe Architecture: Publish-Subscribe Overview, Dale Skeen . http://www.426
vitria.com/427

11

http://www.cs.colorado.edu/users/carzaniga/siena/index.html
http://www.cs.colorado.edu/users/carzaniga/siena/index.html
http://www.cs.colorado.edu/users/carzaniga/siena/index.html
http://www.research.ibm.com/gryphon
http://www.vitria.com/
http://www.vitria.com/
http://www.vitria.com/

