
P a g e |16 Vol. 10 Issue 10 Ver. 1.0 Sepetember 2010 Global Journal of Computer Science and Technology

GJCST Classification
I.2.6, K.3.2

Implementation Of A Radial Basis Function Using
VHDL

1D.C. Dhubkarya , 2Deepak Nagariya , 3Richa Kapoor

Abstract- This paper presents the work regarding the
implementation of neural network using radial basis function
algorithm on very high speed integrated circuit hardware
description language (VHDL). It is a digital implementation of
neural network. Neural Network hardware has undergone
rapid development during the last decade. Unlike the
conventional von-Neumann architecture that is sequential in
nature, Artificial Neural Networks (ANNs) Profit from
massively parallel processing. A large variety of hardware has
been designed to exploit the inherent parallelism of the neural
network models.

The radial basis function (RBF) network is a two-layer
network whose output units form a linear combination of the
basis function computed by the hidden unit & hidden unit
function is a Gaussian. The radial basis function has a
maximum of 1 when its input is 0. As the distance between
weight vector and input decreases, the output increases. Thus,
a radial basis neuron acts as a detector that produces 1
whenever the input is identical to its weight vector.
Keywords- RBF, training algorithm, weight, block RAM,
FPGA.

I. INTRODUCTION

Artificial Neural Networks (ANNs) are non-linear mapping
structures based on the function of the human brain. They
are powerful tools for modeling, especially when the
underlying data relationship is unknown. ANNs can identify
and learn correlated patterns between input data sets and
corresponding target values. ANNs imitate the learning
process of the human brain and can process problems
involving non-linear and complex data even if the data are
Imprecise and noisy. An ANN is a computational structure
that is inspired by observed process in natural networks of
biological neurons in the brain. It consists of simple
computational units called neurons, which are highly
interconnected. ANNs have become the focus of much
attention, largely because of their wide range of applicability
and the ease with which they can treat complicated
problems. ANNs are parallel computational models
comprised of densely interconnected adaptive processing
units.[1] These networks are fine-grained parallel
Implementations of nonlinear static or dynamic systems. A
very important feature of these networks is their adaptive

1D.C. Dhubkarya , UPTU, Lucknow , BIET Jhani, dcd3580@yahoo.com
2Deepak Nagariya , UPTU, Lucknow , BIET Jhansi ,
deepaknagaria@gmail.com
3Richa Kapoor, UPTU,Lucknow , SIT,Mathura, richakapoor11@gmail.com

nature, where ―learning by example‖ replaces
―programming‖ in solving problems. This feature makes
such computational models very appealing in application
domains where one has little or incomplete understanding of
the problem to be solved but where training data is readily
Available. ANNs are now being increasingly recognized in
the area of classification and prediction, where regression
model and other related statistical techniques have
traditionally been employed.

Fig. 1: Schematic representation of neural network

II. OVERVIEW OF RADIAL BASIS FUNCTION (RBF)

NETWORKS”

Radial basis function (RBF) neural network consist of three
layers, an input, a hidden and an output. It has a feed
forward structure consisting of a single hidden layer of J
locally tuned units, which are fully interconnected to an
output layer of L linear units. All hidden units
simultaneously receive the n-dimensional real-valued input
vector X .The hidden-unit outputs are not calculated using
the weighted-sum mechanism/sigmoid activation; rather
each hidden-unit output is obtained by closeness of
the input X to an n-dimensional parameter vector Cj
associated with the jth hidden unit. [13] The response
characteristics (activation function) of the jth hidden unit
(j = 1, 2, .. J) is assumed as,

The Parameter σj is the width of the receptive field in the
input space from unit j. This implies that has an

appreciable value only when the distance is
smaller than the width σj..

mailto:dcd3580@yahoo.com
mailto:deepaknagaria@gmail.com
mailto:richakapoor11@gmail.com

Global Journal of Computer Science and Technology Vol. 10 Issue 10 Ver. 1.0 Sepetember 2010 P a g e | 17

Fig2: Feed Forward Neural Network

RBF networks are best suited for approximating continuous
or piecewise continuous real-valued mapping.

, where n is sufficiently small. These
approximation problems include classification problems as a
special case. In the present work we have used a Gaussian
basis function for the hidden units. RBF networks have been
successfully applied to a large diversity of applications
including interpolation, chaotic time-series modeling,
system identification, control engineering, electronic device
parameter modeling, channel equalization, speech
recognition, image restoration, shape- from-shading, 3-D
object modeling, motion estimation and moving object
segmentation etc [7].

III. TRAINING OF RBF NEURAL NETWORKS

By means of training, the neural network models the
underlying function of a certain mapping. In order to model
such a mapping we have to find the network weights and
topology. There are two categories of training algorithms:
supervised and unsupervised. In supervised learning, the
model defines the effect one set of observations, called
inputs, has on another set of observations, called outputs. In
other words, the inputs are assumed to be at the beginning
and outputs at the end of the causal chain. The models can
include mediating variables between the inputs and outputs.
In unsupervised learning, all the observations are assumed to
be caused by latent variables, that is, the observations are
assumed to be at the end of the causal chain. In practice,
models for supervised learning often leave the probability
for inputs undefined.[1]
RBF networks are used mainly in supervised applications. In
a supervised application, we are provided with a set of data
samples called training set for which the corresponding
network outputs are known.
RBF networks are trained by

i. deciding on how many hidden units there should be
ii. deciding on their centres and the sharpnesses

(standard deviation) of their Gaussians
iii. Training up the output layer.

In training phase, a set of training instances is given. A
feature vector typically describes each training instances. It
is further associated with the desired outcome, which is
further represented by a feature vector called output vector.
Starting with some random weight setting, the neural net is
trained to adapt itself by changing weight inside the network
according to some learning algorithm. When the training
phase is complete the weights are fixed. The network
propagates the information from the input towards the
output layer. When propagation stops, the output units carry
the result of the inferences.

Fig 3: Block Diagram

Learning law describes the weight vector for the ith
processing unit at time instant (t+1) in
terms of the weight vector at time instant (t) as follows;
 w i (t 1) w i (t) w i (t) ,
Where w i (t) is the change in the weight vector. The
Networks adapt change the weight by an amount
proportional to the difference between the desired output
and the actual output. As an equation:
∆ Wi = η * (D-Y).Xi
Here E=D-Y
The perceptron learning rule can be written more succinctly
in terms of the error E and the change to be made to the
weight vector Wi
 CASE 1- If E = 0, then make a change W equal to 0.
CASE 2- If E = +, then make a change

w i (t 1) w i (t) w i (t)
CASE 3-. If E = -1, then make a change

w i (t 1) w i (t) w i (t) ,
Where η is the learning rate, D is the desired output, Y is the
actual output, and Ii is the ith input. The weights in an ANN,
similar to coefficients in a regression model, are adjusted to
solve the problem presented to ANN. Learning or training is
term used to describe process of finding values of these
weights. Two types of learning with ANN are supervised
and unsupervised learning. An important issue concerning
supervised learning is the problem of error convergence, i.e.
the minimization of error between the desired and computed
unit values. The aim is to determine a set of weights which
minimizes the error.

IV. IMPLEMENTATION
Parameter

η=0.8;
Weight vector=8;

P a g e |18 Vol. 10 Issue 10 Ver. 1.0 Sepetember 2010 Global Journal of Computer Science and Technology

Input Vector=8;
Target value=1;

Fig: 4 Neuron Model

Since in the transfer function the u is squared, the square-
root in u is unnecessary (especially in the hardware), and the
function becomes

(The || dist || box in this figure accepts the input vector
p and the single row input weight matrix.

 Fig 5: Radial Basis Function
we can understand how this network behaves by following
an input vector p through the network to the output a. we
present an input vector to such a network, each neuron in the
radial basis layer will output a value according to how close
the input vector is to each neuron's weight vector. Thus,
radial basis neurons with weight vectors quite different from
the input vector p have outputs near zero. These small
outputs have only a negligible effect on the linear output
neurons.
In contrast, a radial basis neuron with a weight vector close
to the input vector p produces a value near 1. If a neuron has
an output of 1, its output weights in the second layer pass
their values to the linear neurons in the second layer.
In fact, if only one radial basis neuron had an output of 1,
and all others had outputs of 0's (or very close to 0), the
output of the linear layer would be the active neuron's output
weights. This would, however, be an extreme case.
Typically several neurons are always firing, to varying
degrees. if it‘s output is not 1 then weight is adjusted
according to training algorithm used & weight is updated till
desired valued matched with target value.

V. SIMULATION RESULTS

The proposed design was coded in VHDL. It was
functionally verified by writing a test bench and simulating
it using ISE simulator and synthesizing it on Spartan 3A
using Xilinx ISE 9.2i.

Fig 6: Simulation Results

Fig 7 : RTL Schematic

HDL Synthesis Report

Output File Name ―neural"
Output Format: NGC
Target Device: xc3s50-5-pq208
Number of Slices: 1000 out of 768
Number of Slice F/F: 211 out of 1536
Number of 4 input LUTs: 1713 out of 1536
Number of IOs: 58
Number of bonded IOBs: 58 out of 124
Number of GCLKs: 1 out of 8 12%

VI. REFERENCES

1) Adrian G. Bors ―Introduction of the Radial Basis
Function (RBF) Networks‖ Department of
Computer Science University of York YO10 5DD,
UK.

2) Broomhead, D. S., Jones, R., McWhirter, J. G.,
Shepherd, T. J., (1990) ―Systolic array for
nonlinear multidimensional interpolation using
radial basis functions,‖ Electronics Letters, vol.
26, no. 1, pp. 7-

3) Bors, A.G., Pitas, I., (1996) ―Median radial basis
functions neural network,‖ IEEE Trans. on Neural
Networks, vol. 7, no. 6, pp. 1351-1364.

4) Casdagli, M. (1989) Nonlinear prediction of
chaotic time series,‖ Physica D, vol. 35, pp. 335-
356.

Global Journal of Computer Science and Technology Vol. 10 Issue 10 Ver. 1.0 Sepetember 2010 P a g e | 19

5) Chen, S., Cowan, C. F. N., Grant, P. M. (1991)
―Orthogonal least squares learning Algorithm for
radial basis function networks,‖ IEEE Trans. On
Neural Networks, vol. no. 2, pp. 302-309.

6) Douglas L Perry (2006), ―VHDL Programming by
Example‖, McGraw- Hill.

7) F. Belloir, A. Fache and A. Billat (1998), ―A New
Construction Algorithm of efficient Radial Basis
Function Neural Net Classifier and its Application
to codes Identification‖,Ardenne, B.P. 1039,
51687.

8) Igelnik, B., Y.-H. Pao, (1995) ―Stochastic choice of
radial basis functions in adaptive function
approximation and the functional-link net,‖ IEEE
Trans. on Neural Networks, vol. 6, no. 6, pp. 1320-
1329.

9) Karayiannis,N.B.(1999) Reformulated radial basis
neural networks trained by gradient descent,‖

IEEE Trans. on Neural Networks, vol. 10, no. 3,
pp. 657-671.

10) Kohonen,T.K.,(1989)Self-organization and
associative memory. Berlin: Springer- Verlag.

11) Karen Parnell & Nick Mehta (2002),
―Programmable Logic Design Quick Start Hand
Book‖, Xilinx.

12) Musavi, M.T., Ahmed, W., Chan, K.H., Faris,K.B.,
Hummels, D.M., (1992) ―On the training of radial
basis function classifiers,‖ Neural Networks, vol.
5, pp. 595-603.

13) P. Venkatesan* and S. Anitha,― Application of a
radial basis function neural network for diagnosis
of diabetes mellitus‖ Tuberculosis Research
Centre, ICMR, Chennai 600 031, India

14) Satish Kumar ―Neural Networks ―A classroom
approach, TMH.

15) Yuehui Chen1, Lizhi Peng1, and Ajith Abraham
(2004),‖ Hierarchical Radial Basis Function
NeuralNetworks for Classification Problems‖
International Journal of Neural Systems, 14(2):125-
137.

	Implementation Of A Radial Basis Function Using VHDL
	Authors
	Abstract
	I. INTRODUCTION
	II. OVERVIEW OF RADIAL BASIS FUNCTION (RBF) NETWORKS
	III. TRAINING OF RBF NEURAL NETWORKS
	IV. IMPLEMENTATION
	V. SIMULATION RESULTS
	VI. REFERENCES

