
A Proposed SAT Algorithm1

Dr. Bagais A.1 and Abdullahi M.22

1 Ahmadu Bello University, Zaria-Nigeria3

Received: 11 April 2013 Accepted: 1 May 2013 Published: 15 May 20134

5

Abstract6

This paper reviews existing SAT algorithms and proposes a new algorithm that solves the7

SAT problem. The proposed algorithm differs from existing algorithms in several aspects.8

First, the proposed algorithm does not do any backtracking during the searching process that9

usually consumes significant time as it is the case with other algorithms. Secondly, the10

searching process in the proposed algorithm is simple, easy to implement, and each step is11

determined instantly unlike other algorithms where decisions are made based on some12

heuristics or random decisions. For clauses with three literals, the upper bound for the13

proposed algorithm is O(1.8171n). While some researchers reported better upper bounds than14

this, those upper bounds depend on the nature of the clauses while our upper bound is15

independent of the nature of the propositional formula.16

17

Index terms— propositional satisfiability, NP-complete, complexity, complete algorithms.18

1 Introduction19

ropositional satisfiability (SAT) is one of the classical problems in Computer Science. The importance of SAT20
comes from the fact that a large class of real-world problems can be expressed in terms of a SAT instance and21
that it was the first problem proven to be NP-Complete (Cook, 1971). The SAT problem has a wide range22
of practical real world applications (Barbour, 1992;Crawford & Baker, 1994;Devadas, 1989;Kauts & Selman,23
1992;Larrabee, 1992). Many algorithms, categorized into complete and incomplete algorithms, were proposed to24
solve this problem efficiently over the last decades.25

Complete algorithms can state whether a SAT instance is satisfiable giving the satisfying assignments or26
unsatisfiable giving a ’no’ answer. Incomplete algorithms can only give an answer of ’yes’ for satisfiable SAT27
instances only but cannot give an answer for unsatisfiable instances.28

This paper proposes a new complete algorithm that differs from the ones in the literature in the following29
aspects:30

? No backtracking during the searching process that usually consumes significant amount of time. ? Has a31
simple, deterministic and easy to implement search process, unlike other algorithms where decisions are either32
made randomly or based on some heuristics. The remainder of the paper is structured as follows. Section 233
describes the proposed algorithm with the aid of an example. Section 3 captures the algorithm in pseudo code34
while Section 4 presents the complexity analysis of the algorithm. We present related work in Section 5. Sections35
6 and 7 summarize and provide references, respectively.36

2 II.37

3 Illustrating the Proposed Algorithm38

Unlike other algorithms that make a decision on a single value (true/false) for a variable x , the proposed39
algorithms takes into consideration all satisfying assignments for a clause C and use them for the next clauses so40
that backtracking is avoided.41

Consider the following formula:4 1 5 3 1 3 2 2 4 () () () F x x x x x x x x x = ? ? ? ? ? ? ? ?42

1

Global Journals LATEX JournalKaleidoscope™
Artificial Intelligence formulated this projection for compatibility purposes from the original article published at Global Journals.
However, this technology is currently in beta. Therefore, kindly ignore odd layouts, missed formulae, text, tables, or figures.

6 INDUCTIVE HYPOTHESIS

The first clause can be satisfied by any of the following assignments 1 The algorithm tries to find assignments43
for all variables in clause while preserving at least one of the given assignments for 1 3 , x x , or 444

x in the first clause.45
In general, the process starts from the first clause 146
If the clause has k literals, then k assignments can satisfy it (as in the previous formula, the first clause has47

three assignments). In the next step, the set of assignments that satisfy the set of previous clause(s) are checked48
with all the literals of the next clause. The process continues until all the clauses in the formula are covered,49
after which the resulting set of assignments each satisfies the formula.50

When a set of assignments from previous clause(s) is checked with the literals of the current clause, each literal51
may agree, disagree or be neutral to the assignment. A literal agrees with an assignment when the assignment52
includes the literal. A literal disagrees with an assignment when the assignment includes a negation of the literal.53
A literal is neutral to an54

4 D55

assignment when the assignment neither agrees nor disagrees with the literal.4 1 5 3 1 3 2 2 4 () () () F x x x56
x x x x x x = ? ? ? ? ? ? ? ? Figure 1 : Assignment Production57

In the first step, the satisfying assignments for the first clause are its literals. The assignments produced for58
the first clause are shown in the top-left rectangle in Figure ??. Each of these assignments is checked with the59
literals of the second clause,1 5 2 () x x x ? ?60

. The assignment of 161
x disagrees with the first literal of the second clause, 162
x resulting in no assignment produced. The same assignment, 163
x is checked with the second literal, 264
x . Since this literal is neutral to 165
x , a new assignment is produced by combining 166
x and 2 x , as shown in the middle rectangle in Figure ??. Next, 167
x is checked with 5 x , giving 5 168
x x , since 569
x is neutral to 1 x . Similarly, the assignments Note that each of these 18 assignments satisfies the given70

formula. Note that when an assignment agrees with the clause in consideration, the process might produce71
shorthand for 1 2 x x ? etc. We will illustrate this with the pair of clauses:1 2 3 1 4 5 () () x x x x x x ? ? ? ?72

The satisfying assignments for this pair of clauses are:1 1 1 2 1 3 1 1 4 2 4 3 4 1 5 2 5 3 5 () x x or x x x x x73
x x x x x x x x x x x x74

From this group, it can be seen that the assignments } { 1 4 1 5 2 1 3 1 , , , x x x x x x x x are subsumed in75
the first assignment 176

x . This is because each of these assignments produces the same result as 177
x .78
Thus, these assignments can be dropped to avoid redundancy. Therefore, Figure ?? can now be redrawn79

without the subsumed assignments as shown in Figure 2. x80
x Since the subsumed assignments are produced from clauses that81
have a literal in common, the proposed algorithm starts by extracting all clauses that do not share a literal. For82
a satisfiability formula with n literals each clause containing exactly k literals, the minimum number of clauses83
in which no two clauses have a common literal is 2n k4 1 3 () x x x ? ? 1 5 2 () x x x ? ? 3 2 4 () x x x ? ?. 484
1 3 2 6 5 6 5 1 2 3 4 1 6 5 42 3 () () () () ()() F x x x x x x x x x x x x x x x x x x = ? ? ? ? ? ? ? ? ? ?85
? ? ? ? ? ? ?86

For example, we need at least 4 clauses to have the 12 literals in the following formula. But because of the87
distribution of literals, we need 5 for that purpose. Therefore, the algorithm will extract the clauses that do not88
have common literals. There are two advantages in doing so: 1. The algorithm will save the time to check the89
existence of subsumed assignments which is a process that consumes an amount of time equal to the number of90
assignments. 2. The time complexity of the algorithm becomes easier to prove (see Section 4). m i m i k k i k k91
i m ? ? ? ? = ? ? ? ? ? redundant assignments.92

Proof: (By induction).93

5 Base Case94

The base case is when i m = and the total number of redundant assignments will be0 (1) (1)(1)m m k k k k95
k ? ? = ? = ? .96

Clearly, the theorem holds for i m = .97

6 Inductive Hypothesis98

Suppose the theorem holds for 2,3, 4,..., i p = for some clause 2 p m ? < . The total redundant assignments will99
be 2100

; 3m p m p k k p k k p m ? ? ? ? = ? ? ? < ? . If a literal101

2

with which an assignment agrees is in1 p + clause,102
then the total redundant assignments will be1 (1) 1 (1) 2(1) 2(1) 2(1) ; 2 (1) (1)(1)103
; 3m p m p m p m p m p m p k k k k k k i k k k k k k k i m k ? ? ? ? + ? ? ? ? + ? ? =? =? = ? ? ? ? ?104

= ? = ? ? ? ? ?105
That is, the theorem holds for 1 p + . By induction on p , the theorem is true for all values of i . x x x x x x106

x x x x x x x x x x x x x x x x x x 1 3 4 x x x 4 1 3 () x x x ? ? 1 5 2 () x x x ? ? 3 2 4 () x x x ? ? (D D D107
D D D D D) Year 013 2 D .108

7 Base Case109

The base case is when i m =110
and the total number of assignments will be reduced by0 1 m m k k ? = = .111
Clearly, the theorem holds for i m = .112
Inductive Hypothesis Suppose the theorem holds for 2,3, 4,..., i p = for some clause 2 p m ? < . The total113

assignments will be reduced by m p k ? . If a literal with which an assignment agrees with is in 1 p + clause,114
then the total assignments will be reduced by1 (1) m p m p m p k k k k ? ? ? ? + = =115

. That is, the theorem holds for 1 p + . There by induction on p , the theorem is true for all values of i .116

8 III.117

9 The Proposed Algorithm Pseudocode118

The most important step in any complete or incomplete SAT algorithm is the decision over the value of a given119
variable in the formula. If the decision on that variable is wrong, the algorithm will waste its time searching for120
a solution before it discovers that the value assigned to the variable does not lead to a satisfying assignment and121
consequently a backtrack is done to change that value. The problem with making a decision for a variable x using122
the heuristics is that they do not consider how this decision or assignment will affect other related variables that123
appear in the same clauses as the variable x . If the search process keeps all possible assignments that satisfy a124
clause before moving forward, then no backtrack is needed. Instead, these assignments can be used to determine125
the values of variables that satisfy the next clauses. In the case that none of the variables in the current clause126
agrees with all the assignments, then the formula is unsatisfiable. This leads to the main idea of the proposed127
algorithm for assigning values to the variables.128

10 The Algorithm129

11 Input: F[m]; //formula with m clauses130

Output : A[k m]; //Possible assignment satisfying m clauses.131

12 getDistinctClauses(F[m]); 2. For i = 1 to disticnt-132

clauses.length -1;//number of distinct clauses For j = 1133

to k //k is the number of literals in a clause LIT[i][j] :=134

disticntclauses[i];135

End for End for136

13 For i = 1 to k A[i] := LIT[1][i]; //literals of the first137

clause(initial set of satisfying substitutions) End for 4.138

For i = 2 to disticntclauses.length;//number of distinct139

clauses For j = 1 to k generateAssignment(LIT[i][j], A[],140

temp[]); //A[] contains the set of satisfying substitutions141

from previous clauses //temp[] contains assignments formed142

by combining assignments in A[] with a literal LIT[i][j] End143

for A[] := A[] + temp[];144

End for145

3

22 B) THE UPPER BOUND

14 For i = distinctclauses.length + 1 to m;//number of distinct146

clauses For j = 1 to k //k is the number of literals in a clause147

LIT[i][j] := nondistinctclauses[i]; End for End for148

For i = distinctclauses.length to m For j=1 to k149

15 generateAssignment(LIT[i][j], A[], temp); End for150

removeSubsumedAssignments(tempassignments[], array-151

subsumed[]); A[] := A[] + temp;152

End for153

16 If A[] is empty154

Output ”the formula is unsatisfiable”; Else Output the assignments in A[] as the satisfying assignments for the155
formula F.156

17 Procedure getDistinctClauses(F[m])157

Input: Formula with m clauses Output: arrayofdistinctclauses and arrayofnondistinccaluses distinctclauses [1] =158
clause [1]159

18 Procedure: removeSubsumedAssignments(tempassignments[],160

arraysubsumed[])161

Input: list of assignments containing subsumed assignments and list of assignments subsuming the subsume162
assignments. Output: list of assignments without subsumed assignments. n:=0; For i = 0 to tempassign-163
ments.length -1164

For j = 0 to arraysubsumeb.length -1 where m is some number of clauses. In step four, clauses in CLS could165
either be:166

19 If (arraysubsumed[j] is not contained in tempassignents[i])167

arrayassignments[n++] = tempassignment[i] ; Endfor End-168

for Return arrayassignments[];169

20 Procedure: generateAssignment(lit, A[], temp[]); Input: a170

literal in a clause and a list of assignments in A[]. Output: a171

list of assignments stored in temp[] produced by combining172

lit with A[].173

1.174
2n k clauses (worst case). Because of the existence of repeated literals in Case 2, Case 1 will produce the175

maximum number of assignments (see ??heorem 3).176
We now determine the number of possible assignments, () A n , in the worst case. If the clauses in CLS have177

conflicting literals, ()m A n k ? .178
In this case, a literal in one clause will not be combined with a literal 1179
x in another clause. The number of substitutions to be eliminated is shown by Theorem 2.180
To count the exact number of assignments, the principle of inclusion-exclusion is used. The principle states181

that the number of elements that have property 1, property 2, property 3, ?, or property n is found by the182
summation.1 1 2 3 1 2 3 1 1 1183

(, , ,...,) ... (1) For any satisfiability instance, the previous quantity cannot be found. That is because184
unlike the example given earlier, the arrangement of variables or literals differs from one instance to another.185
However, there is an arrangement that will produce the highest number of variables.n n i i j i j k n i n i j n i j k n186

21 N P P P P A A A A A A A A A A187

+ ? ? ? < ? ? < < ? = ? ? + ? ? ? + ? ? ? ? ? ? ? ? If i P is188

22 b) The upper bound189

At this point, we need to prove two theorems. One that states case 1 is the worst case and the other states the190
arrangement that will produce the highest number of assignments.191

4

23 Theorem 3192

In step 5 of the algorithm, generating assignments with the least number of clauses193

24 () n k194

that include 2n literals is the worst case.195

25 Proof196

If more than 2n k clauses are needed to include the 2n literals then we must have literals that are repeated. If197
we have one additional clause, then there must be k literals repeated and this will make the set of assignments198
to be excluded more than n. Having a repeated literal means that we have three clauses of this form:1 1 2 3 1 4199
5 6 7 x x x x x x x x x ? ? ? ? ? ? .200

The two clauses that have the repeated literal 1201
x will produce the unnecessary assignments. These assignments are generated when the repeated literal is202

combined with the (1) k ? literals of the other clause.203
This means that the assignments that include{ } 1 4 1 5 1 2 1 3204
, , , x x x x x x x x are unnecessary. The only useful assignment is 1x produced from 1 1 () x x . This indicates205

that 2(1)206
k ? sets of assignments should be discarded. In addition to these assignments, the two repeated literals when207

combined with 1208
x will produce209

26 D210

The first three steps of the algorithm take polynomial time of number of clauses. Steps four and five are clearly211
the main contributors to the time complexity of the whole algorithm. These two steps rely on the number of212
assignments generated in each iteration of the for-loop. For step four, that number is determined by the clauses213
in CLS and for step five, that number is determined by the end of step four. Therefore, let us start with step214
four.215

The proof of the principle can be found in (Rosen, 1999).216
two sets of assignments of the form 1 1 () x x that are also discarded from the total number of assignments217

when we count them using the inclusion exclusion principle. Therefore, a repeated literal will result to discard218
2(1) 1 k ? + additional sets excluded.219

Writing the inclusion exclusion series with n sets plus (2(1) 1) k k ? + sets is hard because there will be220
many possibilities for the intersection of sets. The approach to show that 2n/k is the worst case is to exclude the221
additional sets first from the total number of assignments and compare that with the worst case. The number of222
assignments of the additional sets can be counted by: (1) (2(1) 1) (,)n n k k n n k k k k k n k i i i k i A k C223
k k k C k k k C k k k C k k k k C k i k ? ? ? ? + + ? + + = = ? + ? ? + + ? + ? + ? ? + = ? ? + ?224

Excluding this from the total assignments2 2 1 2 1 1 1 2 2 1 21 2() 1 (1) (2(1) 1) (,) ((1) (2(1) 1)225
(,)226

)n n k i i i k k i n k k k i i k i k i N k k C k i k N k k k C k i k + ? + + = ? + + ? = = ? ? ? + = ? ? ? +227
? ? Evaluating 21 2() 1 ((1) (2(1) 1) (,)228

)k k i i k i i k k C k i k + ? = ? ? ? + ?229
for values of k gives quantity less than2 1 k k ?230
and result to a number of assignments less than 2n k k and excluding the n sets of the form (v -v) from N231

gives a value that is less than the one in the worst case.2n k k excld(n sets) 2 2 1 21 2() 1 ((1) (2(1) 1) (,)232
)n k k k i i k i k i k k k C k i k ? + + ? = > ? ? ? + ? excld(n sets) because 2n k k 2 2 1 21 2() 1 ((1)233

(2(1) 1) (,))234
.n k k k i i k i k i k k k C k i k ? + + ? = > ? ? ? + ?235
This is for one additional clause. For i additional clauses the limit of the summation is to ik and this also will236

give the same result.237
Theorem 3 tells us that step six will not generate assignments that are more than step five. This should make238

step 5 the dominant factor for time complexity.239

27 Theorem 4240

For the worst case, the upper bound is ((1))n k k k ? Proof241
The inclusion-exclusion principle takes care of assignments that are counted more than once by considering242

the intersections between the n sets to be excluded as seen in the summation. Therefore, the least value of x243
literals:1 2 3 1 4 5 x x x x x x244

The assignments that include 1245
x and 1 x can never occur with assignments that include 2246
x and 2 x , (1) k k ? assignments, then the number of assignments will be (1)n k k k ? . c) Related Work247
Complete algorithms for SAT satisfiability problems include those algorithms that can state whether or not248

a SAT instance is satisfiable, giving a ’yes’ answer together with a satisfying assignment or a ’no’ answer as249

5

29 A. AUTARKNESS PRINCIPLE

the case may be. The first complete algorithm is the Davis Putnam procedure . This procedure is based on250
resolution rule to eliminate variables one by one till the formula is satisfied. When a variable is eliminated in each251
iteration, all resolvents are added to the set of the clauses. This algorithm requires polynomial space. It handles252
CNF formulas and it is one of the efficient SAT algorithms. (Davis, Logemann, & Loveland, 1962) Developed253
a divide-and-conquer algorithm that enhances on . This improved algorithm is the main procedure for most254
state-of-the-art SAT solvers today.255

The search space of DPLL could grow as large as 2 n which is the worst case for any complete algorithm. Due256
to the possibility of consuming huge amount of time, researchers have been focusing on mechanisms to reduce257
that and came up with more reasonable time complexities. These improvements usually come in two aspects: the258
decision to branch to next literal and the backtracking mechanism if a solution is not found in the chosen branch.259
The achievements accomplished in improving SAT algorithm in these two aspects show that the complexity could260
be reduced significantly.261

i. Branching Decisions DPLL procedure chooses any literal for branching and goes down that region in the262
search space. The procedure will spend time searching for a solution and if it discovers that the branch is not263
successful, it backtracks to the other branch and continues searching. Choosing the next literal for branching264
more carefully will allow the algorithm to save time exploring a region where a satisfying assignment cannot be265
found at all and direct the searching to regions where a solution is likely to be found. In order to accomplish266
this, several heuristics have been proposed and the most effective ones can be found in (Bruni & A., 2003 ii.267
Backtracking Mechanisms When the algorithm fails to find an answer or an empty clause (contradiction) appears268
down the path of the search tree, it backtracks to a certain point and continues searching in another part of the269
tree. The DP backtracks to the most recently untoggled (complemented) literal and tests its complement branch.270
As mentioned earlier this will cost a lot of time for DP to discover that this part of the search space does not271
have a solution and search for a solution elsewhere. For backtracking in the DP procedure, much work has not272
been done as compared to branching decision. This is due to the fact that backtracking is an essential step in any273
algorithm to prove its completeness. Nevertheless, there are a number of proposals to improve the backtracking274
in the DP procedure.275

28 iii. Upper Bounds276

The improvements made in backtracking and branching heuristics are of practical interests. However, the277
experimental analysis of these improvements indicates that satisfiability could be solved in time less than 2278
n . A number of people gave lower bounds for this problem but most of them rely on a certain structure or279
property that exists in the formula. The following are some of the achievements made to find an upper bound280
that is better than the trivial one.281

29 a. Autarkness Principle282

The first attempt to achieve a non-trivial upper bound for SAT was done by (Monien & Speckenmeyer, 1985).283
They introduced the notion of autarks which are partial assignments of variables. If all clauses that include the284
variables in the assignment are satisfied, then that assignment is an autark. They proved that the time complexity285
of their algorithm is When dealing with 3-SAT problem, the clauses with 2 literals help in reducing the search286
space. Schiermeyer was the first to make use of the number of clauses with 2 literals after the resolution step is287
made (Schiermeyer, 1993). He said that for the next branch, a 2-clause is chosen such that it produces at least288
one new 2-clause in every branch that follows. With the help n). (Kullmann, 1999) showed that the algorithm289
of Schiermeyer can perform better through a new concept called blocked clauses. A clause C is blocked for a290
literal l if every clause C’ containing l has also another literal that is complemented with C. By making use of291
these blocked clauses, Kullmann proved that the algorithm in (Schiermeyer, 1993) 1 2 3292

1© 2013 Global Journals Inc. (US) Global Journal of Computer Science and Technology
2Communications of the ACM, 5, (pp. 394-397).
3© 2013 Global Journals Inc. (US)

6

4

Figure 1: 3 x and 4 x

7

29 A. AUTARKNESS PRINCIPLE

8

.1 2

respectively where m is the number of clauses and L is the length of the formula. An improvement was made293
to the second algorithm in (Hirsch, 2000) to become O(0.10299L294

.1 2295

).296
e. Covering Codes (Danstin, et al., 2002) proposed a deterministic algorithm that is based on covering codes.297

This algorithm can be seen as a derandomization of (Schoning, 1999) algorithm that uses random walk model.298
The search space is divided into group of assignments say balls of some radius r. Each group or ball represents299
some assignment a and all assignments that differ with it in r variables. The algorithm checks in each ball if300
there is a satisfying assignment and if there is none in any ball then the formula is unsatisfied. The authors of301
(Danstin, et al., 2002) showed that the time complexity of this V.302

.2 Conclusion and Future Work303

The proposed does not require the clauses or the formula to have any specific structure to achieve a competitive304
upper bound which is a significant advantage over the existing algorithms in the literature where they derive305
their time complexity based on a property that must exist in the formula. The algorithm gives a new insight306
towards solving SAT. Most of the other algorithms are based on the classical rule of splitting the search space307
into regions and search for a solution in each one. The new perspective of the algorithm has the potential to308
design further effective SAT algorithms that outperforms the existing ones in theory and practice.309

The implementation of the proposed algorithm will be considered in future work. The algorithm proposed310
here can also be improved. The time complexity of the proposed algorithm is based on preprocessing of clauses311
in the formula. This arrangement is so unlikely to exist in all clauses considered. That means that there exists312
a tighter upper bound for the algorithm but to achieve that the order in which clauses are considered should313
be more intelligent. To show that such an upper bound exists, many cases have to be covered and counted.314
Parallelisation of the proposed algorithm is also a potential future work.315

[Marques-Silva and Sakallah ()] , J P Marques-Silva , K A Sakallah . IEEE Transactions on Computers. GRASP-316
A Search Algorithm for Propositional Satisfiability 1999. p. .317

[Bruni ()] ‘A Complete Adaptive Algorithm for Propositional Satisfiability’. R Bruni , S . Discrete Applied318
Mathematics 2003. p. 127.319

[Davis and Putnam ()] ‘A Computing Procedure for Quantification Theory’. M Davis , H Putnam . Journal of320
Association for Computing Machinery 1960. p. .321

[Davis and Putnam ()] ‘A Computing Procedure for Quantification Theory’. M Davis , H Putnam . Journal of322
Association for Computing Machinery 1960. p. .323

[Danstin et al. ()] ‘A Deterministic (2-2 / k+1)n Algorithm fork-SAT based on Local Search’. E Danstin , A324
Goerdt , E A Hirsch , R Kannan , J Kleinberg , C Papadimitriou . Theoretical Computer Science 2002. p. .325

[Davis et al. ()] A Machine Program for Theorem Proving, M Davis , G Logemann , D Loveland . 1962.326

[Schoning ()] ‘A Probabilistic Algorithm for k-SAT and Constraint Satisfaction Problems’. U Schoning .327
Proceedings of the 40th Annual Symposium on Foundations of Computer Science (FOCS), (the 40th Annual328
Symposium on Foundations of Computer Science (FOCS)) 1999. IEEE. p. .329

[Hooker and Vinay ()] Branching Rules for Satisfiability. GSIA Working Paper 1994-09. Pennsylvania: Graduate330
School of Industrial Administration, J N Hooker , V Vinay . 1994. Pittsburgh. Carnegie-Mellon University331

[Lynce and Marques-Silva ()] ‘Building Stateof-The-Art SAT Solver’. I Lynce , J Marques-Silva . Proceedings of332
the European Conference on Artificial Intelligence (ECAI), (the European Conference on Artificial Intelligence333
(ECAI)) 2002. p. 105.334

[Pretolani ()] ‘Efficient and Stability of Hypergraph SAT Algorithms’. D Pretolani . Proceedings of DIMACS335
Challenge II Workshop, (DIMACS Challenge II Workshop) 1993.336

[Moskewicz et al. ()] ‘Engineering an Efficient SAT Solver’. M Moskewicz , C Madigan , Y Zhao , L Zhang , S337
Malik . Proceedings of the Design Automation Conference, (the Design Automation Conference) 2001.338

[Crawford and Baker ()] Experimental Results on the Application of Satisfiability Algorithms to Scheduling339
Problems, J M Crawford , A B Baker . 1994. AAAI-94.340

[Stallman and Sussman ()] ‘Forward Reasoning & Dependencydirected Backtracking in A System for Comput-341
eraided Circuit Analysis’. R M Stallman , G J Sussman . Artificial Intelligence 1977. 9 p. . (Artificial342
Intelligence 9)343

[Li and Anbulagan ()] ‘Heuristics Based on Unit Propagation for Satisfiability Problems’. C M Li , Anbulagan344
. Proceedings of 15th International Joint Conference on Artificial Intelligence, (15th International Joint345
Conference on Artificial IntelligenceNagoya, Japan) 1997. 1 p. .346

[Freeman ()] Improvements to Propositional Satisfiability Search Algorithms, J W Freeman . 1995. Computer347
and Information Science, University of Pennsylvania (Ph. D. Dissertation. Department of)348

9

29 A. AUTARKNESS PRINCIPLE

[Kullmann ()] ‘New Methods for 3-SAT Decision and Worst Case Analysis’. O Kullmann . Theoretical Computer349
Science 1999. p. .350

[Hirsch ()] ‘New Worst Case Upper Bounds for SAT’. E Hirsch . Journal of Automated Reasoning 2000. 24 p. .351

[Devadas ()] ‘Optimal Layout via Boolean Satisfiability’. S Devadas . Proceedings of ICCAD 89, (ICCAD 89)352
1989. p. .353

[Kauts and Selman ()] ‘Planning as Satisfiability’. H Kauts , B Selman . Proceedings of the 10th European354
Conference on Artificial Intelligence (ECAI 92, (the 10th European Conference on Artificial Intelligence355
(ECAI 92) 1992.356

[Rosen ()] K H Rosen . Discrete Mathematics and Its Applications, 1999. McGraw Hill. (4th Edition ed.)357

[Barbour ()] ‘Solutions to The Minimization Problem of Fault-Tolerant Logic Circuits’. A E Barbour . IEEE358
Transactions on Computers 1992. 41 (4) p. .359

[Schiermeyer ()] ‘Solving 3-Satisfiability in less than 1.579n’. I Schiermeyer . Selected papers from Computer360
Science Logic 12, 1993. 702 p. .361

[Jeroslow and Wang ()] ‘Solving Propositional Satisfiability Problems’. R G Jeroslow , J Wang . Annals of362
Mathematics & Artificial Intelligence 1990. 1 p. .363

[Monien and Speckenmeyer ()] ‘Solving Satisfiability in less than 2n steps’. B Monien , E Speckenmeyer . Discrete364
Applied Mathematics 1985. p. .365

[Larrabee ()] ‘Test Pattern Generation Using Boolean Satisfiability’. T Larrabee . IEEE Transactions Computer366
Aided Design 1992. 1 p. .367

[Cook ()] ‘The Complexity of Theorem Proving Procedures’. S Cook . Proceedings of the 3rd Annual ACM368
Symposium on Theory of Computing, (the 3rd Annual ACM Symposium on Theory of Computing) 1971. p. .369

[Lynce and Silva ()] The Effect of Nogood Recording in MAC-CBJ SAT Algorithms, I Lynce , J P Silva .370
RT/4/2002. 2002. (Technical Report)371

[Hirsch ()] ‘Two New Upper Bounds for SAT’. E Hirsch . Proceedings of 9th Annual ACM Siam Symposium on372
Discrete Algorithms, (9th Annual ACM Siam Symposium on Discrete Algorithms) 1998. p. .373

10

	1 Introduction
	2 II.
	3 Illustrating the Proposed Algorithm
	4 D
	5 Base Case
	6 Inductive Hypothesis
	7 Base Case
	8 III.
	9 The Proposed Algorithm Pseudocode
	10 The Algorithm
	11 Input: F[m]; //formula with m clauses
	12 getDistinctClauses(F[m]); 2. For i = 1 to disticntclauses.length -1;//number of distinct clauses For j = 1 to k //k is the number of literals in a clause LIT[i][j] := disticntclauses[i];
	13 For i = 1 to k A[i] := LIT[1][i]; //literals of the first clause(initial set of satisfying substitutions) End for 4. For i = 2 to disticntclauses.length;//number of distinct clauses For j = 1 to k generateAssignment(LIT[i][j], A[], temp[]); //A[] contains the set of satisfying substitutions from previous clauses //temp[] contains assignments formed by combining assignments in A[] with a literal LIT[i][j] End for A[] := A[] + temp[];
	14 For i = distinctclauses.length + 1 to m;//number of distinct clauses For j = 1 to k //k is the number of literals in a clause LIT[i][j] := nondistinctclauses[i]; End for End for
	15 generateAssignment(LIT[i][j], A[], temp); End for removeSubsumedAssignments(tempassignments[], arraysubsumed[]); A[] := A[] + temp;
	16 If A[] is empty
	17 Procedure getDistinctClauses(F[m])
	18 Procedure: removeSubsumedAssignments(tempassignments[], arraysubsumed[])
	19 If (arraysubsumed[j] is not contained in tempassignents[i]) arrayassignments[n++] = tempassignment[i] ; Endfor Endfor Return arrayassignments[];
	20 Procedure: generateAssignment(lit, A[], temp[]); Input: a literal in a clause and a list of assignments in A[]. Output: a list of assignments stored in temp[] produced by combining lit with A[].
	21 N P P P P A A A A A A A A A A
	22 b) The upper bound
	23 Theorem 3
	24 () n k
	25 Proof
	26 D
	27 Theorem 4
	28 iii. Upper Bounds
	29 a. Autarkness Principle
	.1 2
	.2 Conclusion and Future Work

