
© 2013. M.K. Sharma. This is a research/review paper, distributed under the terms of the Creative Commons Attribution-
Noncommercial 3.0 Unported License http://creativecommons.org/licenses/by-nc/3.0/), permitting all non-commercial use, distribution, 
and reproduction inany medium, provided the original work is properly cited. 
 

  
Global Journal of Computer Science and Technology 
Neural & Artificial Intelligence  
Volume 13 Issue 1 Version 1.0 Year 2013 
Type: Double Blind Peer Reviewed International Research Journal 
Publisher: Global Journals Inc. (USA) 
Online ISSN: 0975-4172 & Print ISSN: 0975-4350 

 

Efficient V-B Block Designs for CDC Method 4
 

                  By M.K. Sharma
 

                                                      University of Gondar, Gondar
 

Summary
 
-
 
Some optimal incomplete block designs for complete diallel cross method 4 are known in 

literature. These designs require several replications for each cross and thus consume more 
resources such as experimental units, experimental material, time etc. So, there is a need to evolve 
designs which require minimum possible replications of parental lines. In this paper a method of 
construction of these designs is proposed by using mutually orthogonal Latin squares. These 
designs are connected for cross effects and perform well when  compared to connected and not 
connected optimal designs reported by Dey and Midha (1996), Chai and Mukerjee (1999) and Gupta 
and Kageyama (1994), respectively.
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Efficient V-B Block Designs for CDC Method 4 
M.K. Sharma 

Summary - Some optimal incomplete block designs for 
complete diallel cross method 4 are known in literature. These 
designs require several replications for each cross and thus 
consume more resources such as experimental units, 
experimental material, time etc. So, there is a need to evolve 
designs which require minimum possible replications of 
parental lines. In this paper a method of construction of these 
designs is proposed by using mutually orthogonal Latin 
squares. These designs are connected for cross effects and 
perform well when  compared to connected and not 
connected optimal designs reported by Dey and Midha 
(1996), Chai and Mukerjee (1999) and Gupta and Kageyama 
(1994), respectively. 
Keywords : latin square, complete diallel cross, general 
combining ability, specific combining ability, mating 
design. 

I. Introduction 

rthogonal Latin squares are used for 
construction of Graeco Latin square, balanced 
incomplete block designs and square lattice 

designs. A set of p-1 orthogonal Latin square of side p 
can always be constructed if p is a positive prime or 
power of a positive prime. 

If p = 4 t +2 and t > 1, then there exits pairs of 
mutually orthogonal Latin squares of order p (Bose, 
Shrikhande and Parker (1960)). From a practical view 
point, mutually orthogonal Latin squares are important 
and an exhaustive list of these squares is available in 
Fisher and Yates (1963). In this paper we use mutually 
orthogonal Latin squares in construction of mating 
designs for the diallel cross method 4 referred to Griffing 
(1956). 

A diallel cross is a type of mating design used 
in plant breeding and animal breeding to study the 
genetic properties and potential of inbred lines or 
individuals. Let p denote the number of lines and let a 
cross between lines i and j be denoted by i × j, where 
i<j = 0, 1,  … , p-1 and p(p-1)/2 possible crosses. 
Among the four types of diallel discussed by Griffing 
(1956), method 4 is the most commonly used diallel in 
plant breeding. This type of diallel crossing includes the 
genotypes of one set of F1

,S means of the type (i × j ) = 
( j × i) , but neither the parents nor the reciprocals with 
all possible v = p(p-1)/2 crosses. This is sometimes 
referred to as the modified diallel. We shall refer to it as 
a complete diallel cross (CDC). 

The problem of finding optimal mating designs 
for   complete  diallel  cross  experiments  has   received  
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attention in recent years; see Gupta and Kageyama 
(1994), Dey and Midha (1996) and Chai and Mukerjee 
(1999). Most of the results on optimal block designs for 
diallel crosses have been derived for the general 
combining ability (gca) under the assumptions that the 
model does not include parameters representing the 
specific combining ability (sca) Gupta and Kageyama 
(1994) and Dey and Midha (1996) but with few 
exceptions Chai and Mukerjee (1999) and Choi et al. 
(2002). The designs of these authors can be used to 
estimate specific combining ability (sca) but they 
demand more resources in terms of experimental units 
and experimental material. In such a situation there is 
need for designs which require minimum possible 
number of experimental units in conducting CDC 
experiments and are equally efficient in comparison to 
optimal block designs and randomized block designs 
when the model, in addition to the block effects and 
general combining ability, includes specific combining 
ability. 

In the present paper we are proposing efficient 
variance balanced incomplete block designs for CDC 
experiments through mutually orthogonal Latin squares 
under the assumption that the model includes the 
parameter of specific combining ability. 

II. Method of Design Construction 

It is known that when p is a prime positive 
integer or a power of prime positive integer, it is possible 
to construct (p-1) orthogonal Latin squares in such a 
way that they differ only in a cyclical interchange of the 
rows from 2nd to pth. Such squares are taken for the 
construction of incomplete block designs for diallel 
crosses. For p =6, such squares cannot be 
constructed.  

Assume that there are p inbred lines and it is 
desired to find an incomplete block design for a mating 
design involving p (p-1)/2 crosses. Out of (p-1) mutually 
orthogonal Latin square (MOLS), consider any two 
MOLS of semi-standard form of order p and 
superimposed one square over the other. We obtain one 
Graeco Latin square in which each cell contains ordered 
pairs of integers (i, j) taking values from 0 to p -1 . These 
ordered pairs of integers occur once in a square. From 
Graeco Latin square remove the pairs of the type with i 
= j and considering other ordered pairs of integers as 
crosses between lines i and j and the columns as 
blocks. By doing so we get an incomplete block design 
d for diallel cross experiment method 4 with parameters 
v = p (p-1)/2, b = p, k = p-1, and r = 2. The total 
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number of experimental units to be allotted to v = p (p-
1)/2 is n = p (p-1). Henceforth d (v, b, k) will denote the 
class of all block designs with v treatments, b blocks 
and block size k. 
Example1:-  

Let us consider the mating design for CDC 
experiment method 4 for p = 5 parents. Consider two 
mutually orthogonal Latin squares L1 and L2 of semi-
standard form of order 5.  Superimposing one over the 
other square we get Graeco Latin square.  
                       L1                                L2                                                      

0 1 2 3 4  0 1 2 3 4 
1 2 3 4 0  2 3 4 0 1 
2 3 4 0 1  4 0 1 2 3 
3 4 0 1 2  1 2 3 4 0 
4 0 1 2 3  3 4 0 1 2 

 
After superimposition L2 over L1 and removing 

cross of the type i = j and considering columns as 
blocks, we obtain design d as given below: 

Design d 

B1 B2 B3 B4 B5 
1×2 2×3 3×4 4×0 0×1 
2×4 3×0 4×1 0×2 1×3 
3×1 4×2 0×3 1×4 2×0 
4×3 0×4 1×0 2×1 3×2 

III. Analysis 

For the analysis of data obtained from design d, 

we will follow Singh and Hinkelmann- (1998) two stage 
procedures for estimating gca and sca effects. The first 
stage is to consider the proposed designs to estimate 
cross effects, say,  

 τ = (τ 01, τ 02, …, τ (p-2)(p-1)/2) for design d by the 
following model.  

               y = µ1 + X τ + D β + e   (3.1)                                  

Where y is an n × 1 vector of observations, 1 is 
the n × 1 vector of ones, X is the n × v design matrix for 
treatments and D is an n × b design matrix for blocks, 
that is, the (h,u)th ((h,l)th) element of X (respectively, of D) 
is 1 if the  hth observation pertains to the uth cross ( to lth 
block), and is zero otherwise (h = 1, …, n; u = 1, …, v ; 
and 1, … , b), µ  is a general mean, τ  is a v × 1 vector 
of treatment parameters, β is a b × 1 vector of block 
parameters and e is an n × 1 vector of residuals. It is 
assumed that vector β  is fixed and e is normally 
distributed with   E(e ) = 0,  V(e) = σ2 I and Cov (β , e´ ) 
= (0),  , where I is the identity matrix of conformable 
order. 

Following Tocher (1952), Raghavarao (1971) 
and Dey (1986), the least square method for the 
analysis of a proposed designs leads to the following 
reduced normal equations for the model (3.1). 

                             Cdτ = Qd
                                (3.2) 

Where   Cd   = r δ – N k -1 N´ and Q d = (Q1d,…., 
Qvd)  = T - N k –δ B 

In the above expressions above rδ and kδ are 
diagonal matrices of order v × v and b × b with 
elements 2 and p, respectively of design d.  N = X´D is 
the v × b incidence matrix of the design d; T = X´ y and 
B = D´ y are vector of cross totals and block totals of 
order v × 1 and b × 1 for design d, respectively. 
Hence a solutions to (3.2) is given by 

                                 τ̂  = Cdˉ Q d                           (3.3)                                        

Where Cdˉ is a generalized inverses of Cd with 
property C C ˉ C = C.  The sum of squares due to 
crosses are Q´d Cdˉ Qd with degrees of freedom ( d.f.) 
= rank (Cd)  for design d and expectation and variance 
Q d is as 

            E (Q d) = Cd τ  and V (Q d) =  σ 2 Cd              (3.4)                                  

Now we will utilize the above equations to 
estimate the genetic parameters in the proposed 
design. The second stage is to utilize the fact that the 
cross effects can be expressed in terms of gca and sca 
effects. So we can write 

                       τ i j = g i + g j + s ij                          (3.5)                                               

Where g i (g j) is the gca for the ith (jth) parent, si j  
(sij = s ji) is the sca for the cross between the ith and the 
j th parent ( i< j =0, 1,  … , p-1). In matrix notation 
equation (3.5) can be written as 

                        τ = Z g + s                          (3.6)                                                   

Where  Z = ( z u i ) (u = 1, 2, …, n : i = 0, 1,  …, 
p-1) is the cross and gca relation matrix. 
 z ui = 2, if the uth cross has both parents i. 
      = 1, if the uth cross has only one parent i . 
      = 0, otherwise.  

Following the approach used in Kempthorne 
and Curnow (1961), equation (3.2) can then be written 
as 

                      Cd τ  =  Cd Z g + Cd s  
                   or E ( Qd) = Cd Z g + Cd s              (3.7)  

Since the matrix C is singular, we use the 
unified theory of least square due to Rao (1973). So we 
get estimator of g as 

                                                  ĝ  = (Z ´ Cd
 Cd

 ˉ Cd
 Z )ˉ  Z ´ Qd

 = ( Z ´ Cd
 Z ) ˉ Z ´ Qd

                                           (3.8)

Here the matrix ( Z ´Cd

 
Z )  =

 
2 p

 
(p-3)/(p-1)

 
[I p

 
-
 

p
1

1p
 
1´p].
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So ĝ = ( Z ´ Cd Z ) ˉ  Z ´ Cd τ                                                                                                                        (3.9)     
Hence ĝ   = H1 τ , where H1 =( Z ´ Cd Z ) ˉ  Z ´ Cd  
Now Cov ( ĝ ) = H 1 C d H´1 σ 2 = σ 

2 (p-1)/2 p (p-3) I p                                                                  (3.10)    

Since the covariance matrix of ĝ
 
is a constant 

times the identity matrix, therefore the proposed design 
d is variance-balanced for general combining ability 
effects. We thus have the following results. 

 
Theorem

 For a positive prime p>3, if there exits a 
mutually orthogonal Latin square of

 

order p, then there 

always exist variance-

 

balanced  incomplete block 
design for CDC experiment method 4.

 

Now substituting the estimate of g

 

in equation 
(3.6), we obtain the estimator of s.

 

ŝ = (Cd

 
ˉ

 
-

 
(p-1)/2 p (p-3)

 
Z Z ´) Qd

 
= (Cd

 
ˉ

 
-

 
(p-1)/2 p

 
(p-3)

 
Z Z´) Cd

 
τ

  

    = H2

 
τ

 
(3.11)

 

Where H2

 
= (C d

 
ˉ

 
-

 
(p-1)/2 p

 
(p-3)

 
Z Z ´ ) Cd     

 

                 Var
 

( ŝ ) = H2Cd

 
H´2

 
σ 2                                                                                                                      (3.12)            

 

Since H1

 
1v

 
= 0, H2

 
1v = 0, H1

 
H2

 
´ = 0, rank

 
(H1)

 
= p-1

 
and rank

 
(H2) = v-p.

 

It follows that g
 
and s

 
represented by treatment 

contrasts that carry p-1 and v-p
 
degrees of freedom 

respectively and that contrasts representing g
 

are 
orthogonal to those representing s. It means the 
proposed design d allows for gca and sca effects

 
to be 

estimated independently.
 

The sum of squares due to gca and sca for d 
are given by

 

           SS (gca) =  Q´d  Z (Z´ Cd

 
Z) ˉ

 
Z´

  
Qd

 
          (3.13)

                                                                  

SS (sca) = Qd

 
´ (Cd

 
ˉ
 
-(p-1)/2 p

 
(p-3)

 
Z Z ´ ) Qd

 
(3.14)

 

The ANOVA is then given in Table 1.
 

Table 1 :
 
Analysis of variance for design d

 

Source of variation
 

Degrees
 
of Freedom

 
Sum of squares

 

Block
 

p-1
 

B ´ B/p –
 
G 2/ p

 
(p-1)

 

Crosses (adjusted for 
blocks)

 rank (Cd)
 

Q ´d

 
Cdˉ

 
Q d

 

gca
 

rank (H1)
 

Q´d  Z
 (Z´ Cd

 
Z) ˉ

 
Z´

  
Qd

 

sca
 

rank (H2)
 

Qd

 
´(Cd

 
ˉ
 
-(p-1)/2p(p-3)

 
Z Z´) Qd

 

Residual
 

(n-1) –
 
rank (Cd) –

 
rank 

(H1) –
 
rank

 
(H2)

 y ´y -
 
G 2/ p(p-1) -

 
B ´ B/p –

 

Q ´d

 
Cdˉ

 
Q d

 

Total
 

n-1
 

y ´y -
 
G 2/ p(p-1)

 

                     
  
G = grand total of all n observations

 

IV.
 

Efficiency Factor
 

If instead of the proposed design d, one adopts 
a randomized complete block design with 2 blocks and 
each block contains p

 
(p-1)/2 crosses, the CR-

 
matrix

 

can easily shown to be
  

                         CR

 
= 2 (p

 
-2) ( Ip

 
–
 
1/p Jp)                 (4.1)                            

 

 
Where Ip

 
is a identity matrix of order p and Jp

  
is 

a matrix of 1’s
 

. So that the variance of best linear 
unbiased estimate (BLUE) of any elementary contrast 
among the gca effects is σ

 
1

 
2
 
/ (p-2), where σ

 
1

 
2
 
is the 

per observation variance in the case of randomized 
block experiment. It is clear from (3.10) that using 
design d each BLUE of any elementary contrast among 
gca effects is estimated with variance σ

 
2
 
(p-1)

 

/ p
 
(p-3). . 

Hence efficiency factor E of design d as compared to 
randomized block design under the assumption of 
equal intra block variances is 

 

          E = ( σ
 
1

 
2
 
= σ

 
2)  is p

 
(p-3)/(p-1) (p-2)            (4.2)

 

In Tables 2, 3, and 4 , we are presenting the 
efficiency factors of CDC by Gupta and Kageyama 
(1994) , universally optimal and efficient block designs 
reported by Dey and Midha (1996) and design d in 
relation to randomized block design, respectively.

 

Table 2
 
:
 
Efficiency of GK designs and designs d in 

comparison
 
to RBD

 

S.No.
 

p
 

n
 

r
 

2k
 

EGK

 
Ed

 

1
 

4
 

6
 

3
 

4
 

1.00
 

0.66
 

2
 

5
 

10
 

4
 

4
 

0.83
 

0.83
 

3
 

7
 

21
 

6
 

6
 

0.93
 

0.93
 

4
 

8
 

28
 

7
 

8
 

1.00
 

0.95
 

5
 

8
 

28
 

7
 

4
 

0.66
 

0.95
 

6
 

9
 

36
 

8
 

8
 

0.96
 

0.96
 

7
 

9
 

36
 

8
 

6
 

0.85
 

0.96
 

8
 

10
 

45
 

9
 

10
 

1.00
 

0.98
 

9
 

10
 

45
 

9
 

6
 

0.83
 

0.98
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10 11 55 10 10 0.97 0.98 
11 12 66 11 12 1.00 0.97 
12 12 66 11 6 0.80 0.98 
13 12 66 11 4 0.60 0.98 
14 13 78 12 12 0.98 0.99 
15 13 78 12 6 0.78 0.99 
16 13 78 12 4 0.59 0.99 
17 14 91 13 14 1.00 0.99 
18 15 105 14 14 0.98 0.99 
19 15 105 14 6 0.77 0.99 

         GK denotes Gupta and Kageyama 

 

Table 3 : Efficiency of Optimal DM designs and designs 
d in comparison to RBD 

S.No. Ref. 
No. 

p n1
 EDM

 n2
 Ed

 

1 T2 5 30 0.83 20 0.83 
2 T3 5 60 0.83 20 0.83 
3 T4 5 90 0.83 20 0.83 
4 T8 7 210 0.70 42 0.93 
5 T22 7 210 0.93 42 0.93 
6 T40 8 280 1.00 56 0.95 
7 T41 9 252 0.96 72 0.96 
8 T54 10 315 1.00 90 0.98 

Table 4 : Efficiency of DM efficient designs and designs d in comparison to RBD 

S.No. Ref. p n1 EDM n2 Ed S.No. Ref p n1 EDM n2 Ed 
1 T12 5 60 0.84 20 0.83 9 T58 5 60 0.84 20 0.83 
2 T13 5 90 0.92 20 0.83 10 T60 5 60 0.97 20 0.83 
3 T33 5 40 0.94 20 0.83 11 T94 7 210 0.84 42 0.93 
4 T34 5 80 0.80 20 0.83 12 T95 7 210 0.91 42 0.93 
5 T37 5 100 0.87 20 0.83 13 T77 8 196 0.98 56 0.95 
6 T44 5 30 1.00 20 0.83 14 T85 9 252 1.00 72 0.96 
7 T45 5 60 0.84 20 0.83 15 T91 10 405 0.92 90 0.98 
8 T57 5 30 0.84 20 0.83        

DM denotes Dey and Midha , Ref means the design number reported by Dey and Midha(1996), n1 and n2 are 
number of experimental units required by Dey and Midha’s designs and design d , respectively. EGK, EDM and Ed are 
the efficiencies of GK, DM and design d in comparison of RCBD, respectively. 

V. Discussion 

In Table 2, we find that  for p = 4, 5, 8, 9, 10, 
11, 12, 13, and 15 parental lines , the design d perform 
well in comparison to optimal diallel cross Gupta and 
Kageyama (1994). In Table 3, for p = 5, 7 and 9 the 
performance of design d is more or less same in 
comparison to optimal design Dey and Midha (1996). In 
Table 4, for p = 5, 7, 8 and 10 the design perform well in 
comparison to efficient designs. Since design d requires 
minimum possible experimental units, therefore, design 
d can be used in place of GK and DM designs for 
estimating gca and sca effects.  

VI. Illustration 

We show the essential steps of analysis of a 
diallel cross experiment, using an incomplete block 
design proposed in this paper. For this purpose, we 
take data from an unpublished experiment conducted 
by Dr. Terumi Mukai on Drosophila melanogaster 
Cockerham and Weir (1977) on page 203.  For the 
purpose of illustration, we take data of relevant crosses 
from this experiment. Each cross is replicated twice. The 
layout and observations in parentheses are given below. 
 
 
 
 
 
 

B1
 B2

 B3
 B4

 B5
 

1×2 
(21.0) 

2×3 
(16.8) 

3×4 
(13.8) 

4×0 
(18.8) 

0×1 
(16.5) 

2×4 
(15.2) 

3×0 
(16.2) 

4×1 
(12.2) 

0×2 
(31.8) 

1×3 
(13.0) 

3×1 
(11.4) 

4×2 
(15.4) 

0×3 
(17.8) 

1×4 
(13.6) 

2×0 
(30.4) 

4×3 
(15.2) 

0×4 
(14.6) 

1×0 
(15.4) 

2×1 
(23.0) 

3×2 
(16.3) 

The following are the vector of treatment total, 
block total and adjusted treatment total, respectively. 

T = (31.9, 62.2, 34.0, 33.4, 44.0, 24.4, 25.8, 33.10, 30.6, 
29.0) ΄ 

B = (62.8, 63.0, 59.2, 87.2, 76.2) ΄ 

Q = (-1.95, 21.35, 3.45, -4.15, 6.50, -10.35, -10.80, -
1.70, -0.85, -1.50) ΄ 

ANOVA, estimates of gca, and sca along with 
their standard errors are shown in Tables 5, 6 and 7. 

          Table 5 : Analysis of variance of the data  

Source
 

D.F
 

Sum of 
squares

 
Mean 

sum of 
square 

F
 

Blocks 4 137.81   

Crosses 9 418.92 46.54 53.70 

g.c.a 4 341.70 85.42 98.56 

s.c.a 5 77.20 15.44 17.81 

Intra block error 6 5.2 0.86  

Total 19 561.93   
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Table 6 : Estimates of the general combining ability and their estimated standard error 

Parent Estimates of (gca ) ± S E 
0 -1.24 0.4147 
1 -0.65 0.4147 
2 -2.16 0.4147 
3. 2.58 0.4147 
4. 1.47 0.4147 

Table 7 : Estimates of sca effects and their estimated standard error 

SCA Estimate of (sca) ± S E SCA Estimate of (sca) ± S E 

s01 -0.63 0.4818 s13 -5.29 0.4818 
s02 8.65 0.4818 s14 -5.61 0.4818 
s03 3.13 0.4818 s23 -1.26 0.4818 
s04 -3.04 0.4818 s24 0.52 0.4818 
s12 2.58 0.4818 s34 0.95 0.4818 
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