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5

Abstract6

The effort invested in a software project is one of the most challenging task and most analyzed7

variables in recent years in the process of project management. Software cost estimation8

predicts the amount of effort and development time required to build a software system. It is9

one of the most critical tasks and it helps the software industries to effectively manage their10

software development process. There are a number of cost estimation models. Each of these11

models have their own pros and cons in estimating the development cost and effort. This12

paper investigates the use of Back-Propagation neural networks for software cost estimation.13

The model is designed in such a manner that accommodates the widely used COCOMO14

model and improves its performance. It deals effectively with imprecise and uncertain input15

and enhances the reliability of software cost estimates. The model is tested using three16

publicly available software development datasets. The test results from the trained neural17

network are compared with that of the COCOMO model. From the experimental results, it18

was concluded that using the proposed neural network model the accuracy of cost estimation19

can be improved and the estimated cost can be very close to the actual cost.20

21

Index terms— artificial neural networks, back-propagation networks, COCOMOmodel, project management,22
soft computing techniques, software effort estimation.23

1 Introduction24

oftware cost estimation is one of the most significant activities in software project management. It refers to the25
predictions of the likely amount of effort, time and staffing levels required to build a software system. The effort26
prediction aspect of software is made at an early stage during project development, when the costing of the27
project is proposed for approval. It is concerned with the prediction of the person hour required to accomplish28
the task. However, estimates at the early stages of the development are the most difficult to obtain because very29
little is known about the project and the product at the beginning. So, estimating software development effort30
remains a complex problem and it continues to attract research attention. There are several cost estimation31
techniques proposed and they are grouped into two major categories: (1) Parametric models or Algorithmic32
models, which uses a mathematical formula to predict project cost based on the estimates of project size, the33
number of software engineers, and other process and product factors [1]. These models can be built by analysing34
the costs and attributes of completed projects and finding the closest fit formula to actual experience. (2) Non35
Parametric models or Non algorithmic models which are based on fuzzy logic (FL), artificial neural networks36
(ANN) and evolutionary computation (EC). In this paper, we focus on non parametric cost estimation models37
based on artificial neural networks, and particularly Back-Propagation networks. Neural networks have learning38
ability and are good at modelling complex nonlinear relationships. They also provide more flexibility to integrate39
expert knowledge into the model. There are many software cost estimation models that have been developed using40
neural networks over the years. The use of radial basis function neural networks for software effort estimation41
is well described by many researchers ??2, 3 and 4]. The clustering algorithms used in those designs are the42
conventional algorithms.43
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3 PROPOSED WORK

K. Vinay Kumar et al. [5] Uses wavelet neural networks for predicting software development cost. B. Tirimula44
Rao et al. [6] provided a novel neural network approach for software cost estimation using functional link45
artificial neural network. G. Witting and G. Finnie [7] uses back propagation learning algorithms on a multilayer46
perceptron in order to predict development effort. N. Karunanitthi et al. [8] reports the use of neural networks47
for predicting software reliability including experiments with both feed forward and Jordan networks. N. Tadayon48
[9] also reports the use of neural network with a back propagation learning algorithm. However it was not clear49
how the dataset was divided for training and validation purposes. T.M. Khoshgoftaar et al. [10] presented50
a case study considering real time software to predict the testability of each module from source code static51
measures. Ch. Satyananda Reddy and KVSVN Raju [11] proposed a cost estimation model using multi layer52
feed forward neural network. Venkatachalam [12] also investigated the application of artificial neural network53
(ANN) to software cost estimation.54

Artificial neural networks are the promising techniques to build predictive models. So, there is always a scope55
for developing effort estimation models with better predictive accuracy. The COCOMO model, is the best known56
algorithmic cost model published by Barry Boehm in 1981 [1]. It was developed from the analysis of sixty three57
software projects. It is a hierarchy of software cost estimation models, which includes Basic, Intermediate and58
Detailed sub models. It was the most cited and plausible of all the traditional cost estimation models. COCOMO59
II is the revised version of the original COCOMO and is tuned to the life cycle practices of the 21 st century.60
It also provides a quantitative analytic framework, and set of tools and techniques for evaluating the effects of61
software technology improvements on software life cycle costs and schedules. It consists of three sub models and62
they are: 1 lists COCOMO II cost drivers along with their multipliers. Scale factor is a particular characteristic63
of the software development that has an exponential effect of increasing or decreasing the amount of development64
effort and they are Precedentness, Development flexibility, Architecture/Risk resolution, Team cohesion and65
Process maturity. These factors are rated on a six point scale i.e., very low, low, nominal, high, very high and66
extra high as given in Table 2. COCOMO II post architecture model is given as:?PM = A × [ × (1)67

Where PM is the effort expressed in person months, A is a multiplicative constant, size is the projected size of68
the software project expressed in thousands of lines of code KLOC, EM i (i=1,2....17) are effort multipliers and69
SF i (i=1,2....5) are exponent scale factors.70

2 b) Artificial Neural Networks71

An artificial neural network (ANN) is an efficient information processing system which resembles in characteristics72
with a biological neural network. ANN’s possess large number of highly interconnected processing elements called73
neurons. Each neuron is connected with the other by a connection link. Each connection link is associated with74
weights which contain information about the input signal. This information is used by the neuron net to solve a75
particular problem. Each neuron has an internal state of its own. This internal state is called the activation level76
of neuron, which is the function of the inputs the neuron receives. There are a number of activation functions77
that can be applied over net input such as Gaussian, Linear, Sigmoid and Tanh. It is the Sigmoid function that78
is the most frequently used in neural nets. Thus, the models of ANN are specified by the three basic entities79
namely [13]: 1. The model’s synaptic interconnections; 2. The training or learning rules adopted for updating80
and adjusting the connection weights; 3. Their activation functions.81

The neural network process starts by developing the structure of the network and establishing the technique82
used to train the network using an existing data set. Neural network architectures are divided into two groups:83
1. Feed forward networks where no loops in the network path occur. 2. Feedback networks that have recursive84
loops. The most common architecture of neural networks which is used in software cost estimation is the Back-85
Propagation trained Feed Forward networks [14,15]. The training algorithm of back propagation involves four86
stages: 1. Initialization of weights 2. Feed forward 3. Back Propagation of errors 4. Updation of the weights87
and biases III.88

3 Proposed Work89

The performance of a neural network depends on its architecture and their parameter settings. There are many90
parameters governing the architecture of the neural network including the number of layers, the number of nodes91
in each layer, the transfer function in each node, learning algorithm parameters and the weights which determine92
the connectivity between nodes. There is no rule which determines the ideal parameter settings but even a slight93
parameter changes can cause major variations in the results of almost all networks. This property of the neural94
network is captured in the present work for predicting the software costs. The neural network model proposed is95
based on multi layer feed forward neural network and it uses the architecture given by Ch. Satyananda Reddy96
and KVSVN Raju [11]. The model accommodates the COCOMO II model.97

The aim of this work is to evaluate the results of software cost estimation using COCOMO II by varying the98
activation functions at the input, hidden and the output layers. The model proposed uses the identity function99
at the input layer which is defined by The hidden and the output layer uses unipolar sigmoid function defined100
by .101

This function is especially advantageous to use in neural networks trained by back-propagation algorithms.102
Because it is easy to distinguish, and this can interestingly minimize the computation capacity for training.103
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4 a) Architecture of the Neural Network Model104

The proposed structure of the neural network accommodates the COCOMO II post architecture model given by105
Eq. 1. The use of neural network to estimate PM (person months) in Eq. 1 requires twenty four input nodes106
in the input layer which corresponds to seventeen EM’s, five SF’s and two bias values. The COCOMO model107
which is a non linear model is transformed into a linear model using natural logarithms as shown in Eq. 2.108

5 S.No109

The above equation becomes : C PM = [b 1 +x 1 *110
Where, C PM =ln(PM); z 1 =ln(EM 1 ); z 2 =ln(EM 2 );??;z 17 =ln(EM 17 ); z 18 =SF 1 ;??..;z 22 =SF 5 ;111

b 1 and b 2 are the biases and the coefficients x i and y i are the additional terms used in the model which act112
as the weights from the input layer to the hidden layer.113

The COCOMO II model as given by Eq. 3 is shown in Fig. 1. This network consists of two hidden layer nodes114
C EM and C SF that take into account the contribution of effort multipliers and scale factors. C PM is the node115
of the output layer where we get the value of ln(PM) which is the desired output of the model. In the above116
network all the original EM i and SF i values of COCOMO II are pre processed to ln(EM i ) and ln(SF i ) and117
used as input nodes. The two bias values are denoted by b 1 and b 2 , which are ln(A) and 1.01 respectively. The118
size of the product is not considered as one of the inputs to the network but as a cofactor for the initial weights119
for scale factors (SF). The weights associated to the input nodes connected to the hidden layer are denoted by x120
i for for each input ln(EMi) and b 1 . On the other hand, the weights associated to the hidden layer for each ln121
(SFi) input nodes and b 2 are y i +ln (size) for . These weights are initialized as x i =1and y i =0. The weights122
from the hidden layer to the output layer are denoted by p and q and initialized as p=q=1. The feed forward123
back propagation procedure is used to train the network by iteratively processing a set of training samples and124
comparing the network’s prediction with the actual value. For each training sample, the weights are modified so125
as to minimize the error between the networks predicted value and the actual value. The following algorithm is126
used for training the proposed network and for calculating the new set of weights:127

Step 2: Perform steps 3-10 when stopping condition is false.128
Step 3: Perform steps 4-9 for each training pair.129
Step 4: Each input unit receives input signal and sends it to the hidden unit.130
Step 5: Each hidden unit C EM and C SF sums its weighted input signals to calculate net input given by:131

6 D132

Step 1: Initialize the weights and learning rate ? ( Apply sigmoidal activation function over C EM and C SF and133
send the output signal from the hidden unit to the input of output layer units.134

Step 6: The output unit C PM , calculates the net input given by: C PM =C EM *p+C SF *q Apply sigmoidal135
activation function over C PM to compute the output signal E est .136

Step 7: Calculate the error correction term as: ?=E act -E est , where E act is the actual effort from the137
dataset and E est is the estimated effort from step 6.138

Step 8: Update the weights between hidden and the output layer as:p(new)=p(old)+ ?* ?* C EM139
q(new)=q(old)+ ?* ?* C SF140

Step 9: Update the weights and bias between input and hidden layers as:x i (new)=x i (old)+ ?* ? EM *z i141
for i=1 to 17 y i (new)=y i (old)+ ?* ? SF *z i for i=18 to 22 b 1 (new)=b 1 (old)+ ?* ? EM b 2 (new)=b 2142
(old)+ ?* ? SF143

The error is calculated as? EM = ?*p; ? SF = ?*q ;144
Step 10: Check for the stopping condition. The stopping condition may be certain number of epochs reached145

or if the error is smaller than a specific tolerance.146
Using this approach, we iterate forward and backward until the terminating condition is satisfied. The variable147

? used in the above formula is the learning rate, a constant, typically having a value between 0 and 1. The learning148
rate can be increased or decreased by the expert judgment indicating their opinion of the input effect. In other149
words the error should have more effect on the expert’s indication that a certain input had more contribution150
to the error propagation or vice versa. For each project, the expert estimator can identify the importance of151
the input value to the error in the estimation. If none selected by the expert, the changes in the weights are152
as specified by the learning algorithm. The network should also be trained according to correct inputs. For153
example, if during estimation ACAP (Analyst Capability) is set as high but after the end of the project, the154
management realizes that it was nominal or low, then the system should not consider this as a network error and155
before training the system, the better values of cost factors should be used to identify the estimated cost.156

IV.157

7 Datasets and Evaluation Criteria158

The data sets used in the present study comes from PROMISE Software Engineering Repository data The159
evaluation consists in comparing the accuracy of the estimated effort with the actual effort. A common criterion160
for the evaluation of cost estimation model is the Magnitude of Relative Error (MRE) and is defined as in Eq. 4.161
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10 CONCLUSION

8 MRE = (4)162

The MRE values are calculated for each project in the validation set, while mean magnitude of relative error163
(MMRE) computes the average of MRE over N projects.164

(5) Another evaluation criterion is MdMRE, which measures the median of all MRE’s. MdMRE is less sensitive165
to extreme values. It exhibits a similar pattern to MMRE but it is more likely to select the true model if the166
underestimation is served.167

Since MRE, MMRE and MdMRE are the most common evaluation criteria, they are adopted as the168
performance evaluators in the present paper.169

V.170

9 Results and Discussion171

This section presents and discusses the results obtained when applying the proposed neural network model to the172
??OCOMO Table 3 shows the results and comparison on COCOMO dataset. It also contain results given by Ch.173
Satyananda Reddy and KVSVN Raju [11] for the corresponding projects. For example, in the case of Project ID174
5 it is ??.44 ?? shows the graphical representation of MRE values for the three models for COCOMO 81 dataset.175
There is a decrement in the relative error using the proposed model. The results obtained thus suggest that the176
proposed architecture can be applied for accurately predicting the software costs.177

Table 4 shows the results and comparison on NASA 93 dataset. Here also, there is a decrease in the relative178
error using the proposed model. For example, the relative error calculated for Project ID 30 is 8.81 for COCOMO179
model, and 3.34 for our proposed model. The relative error calculated for Project ID 62 is 13.2 for COCOMO180
model, and 5.00 for our proposed model. The Mean Magnitude of Relative Error (MMRE) for the entire validation181
set is 12.746 and 4.349 for the COCOMO model and our proposed model respectively. The MdMRE for the entire182
validation set is 13.43% for the COCOMO model and 4.46% for our proposed model. Fig. ?? shows the graphical183
representation of MRE values for the two models.184

For COCOMO_SDR dataset, COCOMO II model performs very poorly. For Project ID 1, it has estimated185
effort as 2241.4 whereas the actual effort is 1 and with our proposed model it is 1.24. Similarly, for Project ID 2186
COCOMO II effort is 901.6; its actual effort is 2 and the estimated is 1.95. Table 5 shows the estimated effort and187
their MRE values using the proposed model on COCOMO_SDR dataset. MMRE value for the estimated effort188
is 6.34. The MdMRE for the entire validation set is 4.62% for the proposed model. Fig. ?? shows the bar graph189
representation of actual effort values and estimated effort values with the proposed model for COCOMO_SDR.190
The bar graph shows that the estimated effort is very close to the actual effort.191

The results obtained thus, suggest that the proposed model outperformed the COCOMO model and the192
model given by Ch. Satyananda Reddy and KVSN Raju in terms of all the discussed evaluation criteria i.e,193
MRE, MMRE and MdMRE. It can be applied for accurately predicting the software costs.194

10 Conclusion195

Software development cost estimation is a challenging task for both the industrial as well as academic communities.196
The accurate predictions during the early stages of development of a software project can greatly benefit197
the development team. There are several effort estimation models that can be used in forecasting software198
development effort.199

In the paper, Feed Forward Back Propagation model of neural network is used which maps the COCOMO200
model. The model used identity function at the input layer and sigmoidal function at the hidden and output201
layer. The model incorporates COCOMO dataset and COCOMO NASA 2 dataset to train and to test the202
network. Based on the experiments performed, it is observed that the proposed model outscored COCOMO203
model and the model proposed by Ch. Satyananda Reddy and KVSN Raju. Future research can replicate and204
confirm this estimation technique with other datasets for software cost estimation. Furthermore, the utilization205
of other neural networks architecture can also be applied for estimating software costs. This work can also be206
extended using Neuro Fuzzy approach. 1207

1© 2013 Global Journals Inc. (US)
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10 CONCLUSION

Application Composition Model: This model is
suitable for quickly developed applications using
interoperable components like components based
on GUI builders and is based on new object point’s
estimation.
? Early Design Model: This model is used in the early
stages of a software project and can be used in
Application Generator, System Integration, or
Infrastructure Development Sector. It uses
Unadjusted Function Points (UFP) as the measure
of size.
? Post Architecture Model: This is the most detailed of
the three and is used after the overall architecture
for the project has been designed. One could use
function points or LOC as size estimates with this
model. It involves the actual development and
maintenance of a software product.
COCOMO II describes

Figure 7: 17 cost drivers and 5 scale factors that are used in the Post Architecture model. The
cost drivers for COCOMO II are rated on a scale from very low to extra high. Their product is
used to adjust the nominal effort. Table

1

Figure 8: Table 1 :

2

Figure 9: Table 2 :
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Cost
Driver

Very Low Low Nominal High Very High Extra
High

1 RELY 0.75 0.88 1.00 1.15 1.39 –
2 DATA – 0.93 1.00 1.09 1.19 –
3 CPLX 0.75 0.88 1.00 1.15 1.30 1.66
4 RUSE 0.91 1.00 1.14 1.29 1.49
5 DOCU 0.89 0.95 1.00 1.06 1.13
6 TIME – – 1.00 1.11 1.31 1.67
7 8 STOR

PVOL
—- –0.87 1.00 1.00 1.06 1.15 1.21 1.30 1.57 – 013

2
9 10 ACAP

PCAP
1.50 1.37 1.22 1.16 1.00 1.00 0.83 0.87 0.67 0.74 —- Year

11 PCON 1.24 1.10 1.00 0.92 0.84 –
12 AEXP 1.22 1.10 1.00 0.89 0.81 –
13 PEXP 1.25 1.12 1.00 0.88 0.81 –
14 LTEX 1.22 1.10 1.00 0.91 0.84 –
15 TOOL 1.24 1.12 1.00 0.86 0.72 –
16 SITE 1.25 1.10 1.00 0.92 0.84 0.78
17 SCED 1.29 1.10 1.00 1.00 1.00 –
Scaling Factors Very Low Low Nominal High Very High Extra

High
Precedentness 6.20 4.96 3.72 2.48 1.24 0.00
Development Flexibility 5.07 4.05 3.04 2.03 1.01 0.00
Architecture/Risk 7.07 5.65 4.24 2.83 1.41 0.00
Resolution
Team Cohesion Process Maturity 5.48 4.38 7.80 6.24 3.29 4.68 2.19 3.12 1.10 1.56 0.00

0.00
(
D
D
D
D
D
D
D
D
)
D

Figure 10:

Figure 11:

Figure 12:
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10 CONCLUSION

Figure 13:

3

S.No Project
ID

MRE(%) using CO-
COMO model

MRE(%) using Model
proposed by Satyananda
Reddy

MRE(%) using pro-
posed model

1 5 7.44 5.08 4.012
2 12 19.83 6.8 3.98
3 30 6.49 3.24 1.77
4 38 50.98 15.34 3.59
5 40 12.4 11.1 4.16
6 45 5.35 4.59 4.01
7 47 16.4 10.06 3.46
8 59 8.66 4.92 3.67
9 61 13.1 12.5 3.86
10 62 6.22 9.73 2.97
11 63 19.95 12.84 3.53

[Note: © 2013 Global Journals Inc. (US)]

Figure 14: Table 3 :

4

Figure 15: Table 4 :

5

Figure 16: Table 5 :
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