
© 2014. Olawuyi J. O., Fagbohunmi S. G., Olawuyi O. M., Mgbole F. This is a research/review paper, distributed under the terms of the
Creative Commons Attribution-Noncommercial 3.0 Unported License http://creativecommons.org/licenses/by-nc/3.0/), permitting all
non-commercial use, distribution, and reproduction inany medium, provided the original work is properly cited.

Global Journal of Computer Science and Technology: G
Interdisciplinary
Volume 14 Issue 5 Version 1.0 Year 2014
Type: Double Blind Peer Reviewed International Research Journal
Publisher: Global Journals Inc. (USA)
Online ISSN: 0975-4172 & Print ISSN: 0975-4350

Using Latency to Evaluate Computer System Performance
 By Olawuyi J. O., Fagbohunmi S. G., Olawuyi O. M., Mgbole F.

 Abia State Polytechnic, Nigeria

Abstract- Building high performance computer systems requires an understanding of the behaviour
of systems and what makes them fast or slow. In addition to our file system performance analysis, we
have a number of projects in measuring, evaluating, and understanding system performances. The
conventional methodology for system performance measurement, which relies primarily on
throughput-sensitive benchmarks and throughput metrics, has major limitations when analyzing the
behaviour and performance of interactive workloads. The increasingly interactive character of
personal computing demands new ways of measuring and analyzing system performance. In this
paper, we present a combination of measurement techniques and benchmark methodologies that
address these problems. We use some simple methods for making direct and precise
measurements of event handling latency in the context of a realistic interactive application. We
analyze how results from such measurements can be used to understand the detailed behaviour of
latency-critical events. We demonstrate our techniques in an analysis of the performance of two
releases of Windows 9x and Windows XP Professional. Our experience indicates that latency can be
measured for a class of interactive workloads, providing a substantial improvement in the accuracy
and detail of performance information over measurements based strictly on throughput.

GJCST-G Classification: B.8.2

UsingLatencytoEvaluateComputerSystemPerformance

 Strictly as per the compliance and regulations of:

Using Latency to Evaluate Computer System
Performance

Olawuyi J.O. α, Fagbohunmi S.G. σ, Olawuyi O.M. ρ & Mgbole F. Ѡ

Abstract- Building high performance computer systems
requires an understanding of the behaviour of systems and
what makes them fast or slow. In addition to our file system
performance analysis, we have a number of projects in
measuring, evaluating, and understanding system
performances. The conventional methodology for system
performance measurement, which relies primarily on
throughput-sensitive benchmarks and throughput metrics, has
major limitations when analyzing the behaviour and
performance of interactive workloads. The increasingly
interactive character of personal computing demands new
ways of measuring and analyzing system performance. In this
paper, we present a combination of measurement techniques
and benchmark methodologies that address these problems.
We use some simple methods for making direct and precise
measurements of event handling latency in the context of a
realistic interactive application. We analyze how results from
such measurements can be used to understand the detailed
behaviour of latency-critical events. We demonstrate our
techniques in an analysis of the performance of two releases
of Windows 9x and Windows XP Professional. Our experience
indicates that latency can be measured for a class of
interactive workloads, providing a substantial improvement in
the accuracy and detail of performance information over
measurements based strictly on throughput.

I. Introduction

enchmarks are used in computer systems
research to analyze design alternatives, identify
performance problems, and motivate

improvements in system design. Equally important,
consumers use benchmarks to evaluate and compare
computer systems. Current benchmarks typically report
throughput, bandwidth, or end-to-end latency metrics.
Though often successful in rating the throughput of
transaction processing systems and/or the performance
of a system for scientific computation, these
benchmarks do not give a direct indication of
performance that is relevant for interactive applications
such as those that dominate modern desktop
computing. The most important performance criterion
for interactive applications is responsiveness, which
determines the performance perceived by the user.

In this paper, we propose a set of new
techniques for performance measurement in which
latency is measured in the context of a workload that is
realistic, both in terms of the application used and the
rate at which user- initiated events are generated. We
present low-overhead methods that require minimal
modifications to the system for measuring latency for a
broad class of interactive events. We use a collection of
simple benchmark examples to characterize our
measurement methodology. Finally, we demonstrate the
utility of our metrics by applying them in a comparison of
Microsoft Windows 9x, Windows 2000, and Windows XP
Professional, using realistic interactive input to off-the-
shelf applications.

The remainder of this section provides
background on the problem of measuring latency,
including the motivation for our new methodology based
on an analysis of the current practice in performance
measurement. Section 2 describes our methodology in
detail. In Section 3, we discuss some of the issues in
evaluating response time in terms of a user's
experience. In Sections 4 and 5, we apply our
methodology in a comparison of Windows 9x, Windows
2000, and Windows XP Professional. Sections 6 and 7
discuss the limitations of our work and conclude.

a) The Irrelevance of Throughput
Most macro-benchmarks designed for

interactive systems use throughput as the performance
metric, measuring the time that the system takes to
complete a sequence of user requests. A key feature of
throughput as a performance metric is that it can be
measured easily, given an accurate timer and a
computation that will do a fixed amount of work.
Throughput metrics measure system performance for
repetitive, synchronous sequences of requests.
However, the results of these benchmarks do not
correlate directly with user-perceived performance--a
critical metric when evaluating interactive system
performance. The performance of many modern
applications depends on the speed at which the system
can respond to an asynchronous stream of independent
and diverse events that result from interactive user input
or network packet arrival; we call this event handling
latency. Throughput metrics are ill-equipped to
characterize systems in such ways. More specifically,
throughput benchmarks fail to provide enough
information for evaluating interactive system

B

© 2014 Global Journals Inc. (US)

G
lo
ba

l
Jo

ur
na

l
of
 C

om
pu

te
r
Sc

ie
nc

e
an

d
Te

ch
no

lo
gy

 V

ol
um

e
X
IV

Is
su

e
V

V
er
sio

n
I

 7

Y
e
a
r

20
14

(
DDDD DDDD

)
G

Author α Ѡ: Department of Computer Science, Abia State
Polytechnic, Aba. e-mails: olawuyijo@yahoo.co.uk,
mojirayool use ye2014@yahoo.com
Author σ: Department of Computer Engineering, Abia State
Polytechnic, Aba. e-mail: fman707@yahoo.com
Author ρ: School of General Study, Alvan Ikoku Federal College of
Education, Owerri. e-mail: oluwasijibomi@Hotmail.com

performance and make inappropriate assumptions for
measuring interactive systems.

i.

Information Lost

The results of throughput benchmarks are often
reduced to a single number that indicates how long a
system took to complete a sequence of events.
Although this can provide information about the sum of
the latencies for a sequence of events, it does not
provide information about the variance in response time,
which is an important factor in determining perceived
interactive performance.

The insufficient detail provided by throughput
benchmarks can also mislead designers trying to
identify the bottlenecks of a system. Since throughput
benchmarks provide only end-to-end measures of
activity, system activity generated by low-latency events
cannot be distinguished from that generated by longer-
latency events, which have a much greater impact on
user-perceived performance. Worse, if such a
benchmark includes sufficiently many short-latency
events, these short events can contribute significantly to
elapsed time, leading designers to optimize parts of the
system that have little or no impact on user-perceived
performance. In an effort to compare favourably against
other systems in throughput benchmarks, designers
may even undertake such optimizations knowingly. In
this case, bad benchmarking methodology hurts both
system designers and end-users.

In addition, user interfaces tend to use features
such as blinking cursors and interactive spelling
checkers that have (or are intended to have) negligible
impact on perceived interactive performance, yet may
be responsible for a significant amount of the
computation in the over all activity of an application.
Throughput measures pro vide no way to distinguish
between these features and events that are less
frequent but have a significant impact on user-perceived
performance.

Throughput benchmarks often drive the system
by feeding user input as rapidly as the system can
accept it, equivalent to modeling an infinitely fast user.
Such an input stream is unrealistic and susceptible to
generating misleading results. One of the sources for
such errors is batching. Client-server systems such as
Windows NT and the X-Window system batch multiple
client requests into a single message before sending
them to the server. This reduces communication
overhead and allows the server to apply optimizations to
the request stream, such as removing operations that
are overridden by later requests. Although batching
improves throughput, it can have a negative effect on
the responsiveness of the system.

When a benchmark uses an uninterrupted
stream of requests, the system batches requests more
aggressively to improve throughput. Measurement

results obtained while the system is operating in this
mode are meaningless; users will never be able to
generate such an input stream and achieve a similar
level of batching in actual use. Disabling batching
altogether is sometimes possible but does not fully
address the problem. An ideal test input should permit a
level of batching that is likely to occur in response to real
user input.

Overall, throughput measures provide an
indirect rather than a direct measure of latency, and as
such they can give a distorted view of interactive
performance. An ideal benchmarking methodology will
drive the system in the same way that real users do and
give designers a correct indication as to which parts of
the system are responsible for delays or user-
perceptible latency. Obtaining such figures requires that
we drive the system using an input stream that closely
resembles one that an interactive user may generate
and more importantly, an ability to measure the latency
of individual events.

II.

Methodology

Our methodology must provide the ability to
measure the latency of individual events that occur while
executing realistic interactive workloads. This poses the
following set of new challenges:

•

Interactive events are short in duration relative to
the timer resolution provided by clock APIs in
modern operating systems such as Windows and
UNIX. Whereas a batch workload might run for
millions of timer ticks, many interactive events last
less than a single timer interval.

•

Under realistic load, there will often be only a
fraction of a second between interactive events in
which to record results and prepare for the next
measurement. Therefore the measurement scheme
must have quick turnaround time.

•

Perhaps the most challenging problem is collecting
the requisite data without access to the source
code of the applications or operating system. With
source code, it is straightforward to instrument an
application to generate timestamps at the
beginning and ending points of every interactive
event, but this is time consuming at best and not
possible given our goal of measuring widely-
available commercial software.

Analyzing interactive applications is just as
challenging as measuring them. The time during which
an application is running can be divided into think time
and wait time. Think time is the time during which the
user is neither making requests of the system nor
waiting for the system to do something. Wait time is the
time during which the system is responding to a request
for which the user is waiting. Not all wait time is
equivalent with respect to the user; wait time intervals
shorter than a user's perception are irrelevant. We call

© 2014 Global Journals Inc. (US)

 8

Y
e
a
r

20
14

G
lo
ba

l
Jo

ur
na

l
of
 C

om
pu

te
r
Sc

ie
nc

e
an

d
Te

ch
no

lo
gy

 V

ol
um

e
X
IV

Is
su

e
V

V
er
sio

n
I

(
DDD D DDDD

)
G

Using Latency to Evaluate Computer System Performance

ii. Inaccurate User Assumptions

these classes of wait time "unnoticeable." A good
example of unnoticeable wait time is the time required to
service a keystroke when a user is entering text.
Although the system may require a few tens of
milliseconds to respond to each keystroke, such small
"waits" will be unnoticeable, as even the best typists
require approximately 120 ms per keystroke (Ben
Shniderman, Designing the user interface, 1992).
Distinguishing between wait time and think time is non-
trivial, and the quantity and distribution of wait time is
what the user perceives as an application's
responsiveness. Our measurement methodology must
help us recognize the wait time that is likely to irritate
users.

In the following sections, we describe the
combination of tools and techniques that we use to
measure and identify event latency.

a) Experimental Systems

We ran our experiments on a personal
computer based on an Intel Premiere III motherboard,
with the Intel Neptune chip set and a 650 MHz Pentium
processor. Our machine was equipped with a 256KB
asynchronous SRAM Level 2 cache, 512 MB of RAM,
and a Diamond Stealth 64 DRAM display card. We used
a dedicated 10GB Fujitsu disk (model M1606SAU) for
each of the operating systems we tested. These disks
were connected via a NCR825-based SCSI II host
adapter. Both Windows 2000 and Windows XP systems
used a NTFS file system, while the Windows 9x system
used a FAT32 file system.

b) The Pentium Counters

The Intel Pentium processor has several built-in
hardware counters, including one 64-bit cycle counter
and two 40-bit configurable event counters as described
in Intel Corporation Developers manual (1995). The
counters can be configured to count any one of a
number of different hardware events (e.g., TLB misses,
interrupts, or segment register loads). The Pentium
counters make it possible to obtain accurate counts of a
broad range of processor events. Although the cycle
counter can be accessed in user or system mode, the
two event counters can only be read and configured
from system mode.

c) Idle Loop Instrumentation

Our first measurement technique uses a simple
model of user interaction to measure the duration of
interactive events. In an interactive system, the CPU is
mostly idle. When an interactive event arrives, the CPU
becomes busy and then returns to the idle state when
the event- handling is complete. By recording when the
processor leaves and returns to an idle state, we can
measure the time it takes to handle an interactive event,
and the time during which a user might be waiting.

The lack of kernel source code prevents us from
instrumenting the kernel to identify the exact times at

which the processor leaves or enters the idle loop.
Instead, we replace the system's idle loop with our own
low-priority process in each of the operating systems.
These low- priority processes measure the time to
complete a fixed computation: N iterations of a busy-
wait loop. The instrumentation code logs the time
required by the loop. The pseudo code is as follows:

while (space_left_in_the_buffer) {

 for (i = 0; i < N; i++)

 ;

 generate_trace_record;

 }

We select the value of N such that the inner
loop takes 1ms to complete when the processor is idle.
In this way we generate one trace record per millisecond
of idle time. If the processor is taken away from the idle
loop, the loop takes longer than 1ms of elapsed time to
complete. Any non-idle time manifests itself as an
elongated time interval between two trace records. The
larger we make N, the coarser the accuracy of our
measurements; the smaller we make N, the finer the
resolution of our measurements but the larger the trace
buffer required for a given benchmark run.

We wrote and measured a simple
microbenchmark to demonstrate and validate this
methodology. It uses a program that waits for input from
the user and when the input is received, performs some
computation, echoes the character

to the screen, and

then waits for the next input. We measured the time it
took to process a key stroke in two ways. First, we used
the idle loop method described above to measure the
processing time. Figure 1 shows the times at which the
samples were collected.

A B C D E

1ms 1ms 1ms 1ms
10.76 ms

Figure 1

:

Validation of Idle loop Methodology. The

system spent one ms

collecting each of samples A, B, D

and E but spent 10.76 ms collecting sample C indicating
the system performed 9.76 ms of work during this

interval

For the sake of clarity only a few samples are
shown. The figure shows that the system spent
approximately

one ms generating samples A, B, D, and

E, indicating that the system was idle during the periods
in which these samples were generated, but spent 10.76
ms generating sample C. The difference, (10.76 -

1) or

9.76 ms, represents the time required to handle the
event.

Next, we used the traditional approach,
recording one timestamp when the program received
the character (i.e., after a call to getchar()) and a second
timestamp after the character was echoed back to the
screen. This measurement reported an event-handling

© 2014 Global Journals Inc. (US)

G
lo
ba

l
Jo

ur
na

l
of
 C

om
pu

te
r
Sc

ie
nc

e
an

d
Te

ch
no

lo
gy

 V

ol
um

e
X
IV

Is
su

e
V

V
er
sio

n
I

 9

Y
e
a
r

20
14

(
DDDD DDDD

)
G

Using Latency to Evaluate Computer System Performance

latency of only 7.42 ms. The 2.34 ms discrepancy
between the two measurements highlights a
shortcoming of the conventional measurement
methodology. Our test program calls the getchar()
function to wait for user input. When the user enters a
character, the system generates a hardware interrupt,
which is first handled by the dynamically linked library
KERNEL32.DLL. In the traditional approach, the
measurement does not start until control is returned to
the test program. Therefore, it fails to capture the system
time required to process the interrupt and reschedule
the benchmark thread. In comparison, our idle loop
methodology provides a more complete measurement
of the computation required to process the keyboard
event.

Our idle loop methodology uses CPU busy time
to rep resent event latency, but there are several issues
that pre vent this from being an accurate measure of the
user's perceived response time. One problem is that
most graphics output devices refresh every 12-17 ms. In
this research, we do not consider this effect.

Another problem is that CPU busy time and
CPU idle time do not equate directly with wait time and
think time. First, synchronous I/O requests contribute to
wait time, even though the CPU can be idle during these
operations.

Second, in the case of background

processing, the user may not be waiting even though
the CPU is busy. The first problem could be solved with
system support for monitoring the I/O queue and
distinguishing between synchronous and asynchronous
requests. In order to address the second problem, we
must consider how events are processed by the
systems. When the user generates key strokes and
mouse clicks, they are queued in a message queue
awaiting processing. Therefore, when there are events
queued, we can assume that the user is waiting. By
combining CPU status (busy or idle), message queue
status (empty or non-empty), and status for outstanding
synchronous I/O (busy or idle), we can speculate during
which time intervals the user is waiting.

Figure 2 shows a state transition diagram for
identifying think time and wait time in our system, using
the parameters: CPU state, message queue state, and
synchronous I/O status. The diagram omits
asynchronous I/O, which we assume is background
activity, and assumes that users always wait for the
completion of an event. In real ity, we can never
precisely distinguish think time from wait time, because
we cannot know what the user is doing and whether the
user is actually waiting for an event to complete or is
thinking while an event is being processed. For
simplicity, in the rest of this paper, we assume that the
user waits for each event and report results in terms of
event handling latency. In the next section, we describe
how we obtain information about the status of the

message queue.

Running

Ready Waiting

Figure 2 : Showing state transition diagram

d) Monitoring the Message API
Win32 applications use the Peek Message()

and Get Message() calls to examine and retrieve events
from the message queue. We can monitor use of these
API entries by intercepting the USER32.DLL calls. By
monitoring use of these API entries, we can detect when
an application is prepared to accept a new event and
when it actually receives an event. We correlate the trace
of Get Message() and Peek Message() calls with our
CPU profile to determine when the application begins
handling a new request and when it completes a
request. This allows us to distinguish between
synchronous and asynchronous I/O. It is also useful for
recognizing situations where asynchronous computation
is used to improve interactive response time.

Figure 2 illustrates our design for a finite state
machine that distinguishes think time from wait time in a
latency measurement system. In Sections 4, 5, and 6,
we will demonstrate how to apply complete information
about CPU state and partial information about message
queue state to implement part of the FSM.
Implementation of the full FSM requires additional
system support for monitoring I/O and message queue
state transitions. Next, we will present two simple
example measurements to give some insight into some
of the non-trivial aspects of interpreting the output of our
measurements.

e) Idle System Profiles
In this section, we present measurement results

for the background activity that occurs during periods of
inactivity on Windows 9x and Windows XP. This provides
intuition about the measurement techniques as well as
baseline information, useful for interpreting latency
measurements in realistic situations. Figure 3 shows the
idle system profiles for the three test systems. To relate
non-idle time to elapsed time, we plot elapsed time on
the X-axis and the CPU utilization on the Y-axis. Given
that each sample represents 1 ms of idle time, the
average CPU utilization during a sample interval can be

© 2014 Global Journals Inc. (US)

 10

Y
e
a
r

20
14

G
lo
ba

l
Jo

ur
na

l
of
 C

om
pu

te
r
Sc

ie
nc

e
an

d
Te

ch
no

lo
gy

 V

ol
um

e
X
IV

Is
su

e
V

V
er
sio

n
I

(
DDD D DDDD

)
G

Using Latency to Evaluate Computer System Performance

calculated easily. For example, if the system spends 10
ms collecting a sample, and the sample includes 1 ms
of idle time, the CPU utilization for that time interval is
(10 -

1)/10 = 90%.

Both versions of Windows NT show bursts of
CPU

activity at 10 ms intervals due to hardware clock

interrupts. Correlating the samples with a count of
hardware interrupts from the Pentium performance
counters shows that each burst of computation is
accompanied by a hardware interrupt.

Although we have compensated for the
overhead introduced by the user-level idle loop,
Windows 9x shows a higher level of activity in
comparison to both versions of the Windows XP system.
We do not know what causes this increased activity in
Windows 9x.

By coupling our idle-loop methodology with the
Pentium counters, we were able to compute the interrupt
handling overhead for various classes of interrupts --

measurements difficult to obtain using conventional
methods. For example, the smallest clock interrupt
handling overhead under Windows XP was about 800
cycles, or 8 ms.

III.

Benchmarks

and

Metrics

Our benchmark set is organized into three
categories. Microbenchmarks are useful for
understanding system behaviour

for simple interactive

operations, such as interrupt handling and user-
interface animation. By analyzing microbenchmarks, we
develop an understanding of the low-level behaviour of
the system. We then extend our measurement to task-
oriented benchmarks in order to understand the real
impact of latency on the perceived interactive
responsiveness of an application. These task-

oriented

benchmarks are based on applications from typical PC
office suites and are designed to represent a realistic
interactive computing workload. We further apply
application microbenchmarks to evaluate isolated
interactive events from the realistic workloads. Our
application microbenchmarks include such
computations as page-down of a PowerPoint document
and editing of an embedded OLE

object.

We used Microsoft Visual Test to create most of
our microbenchmarks and task-oriented benchmarks.
MS Test provides a system for simulating user input
events on a Windows system in a repeatable manner.
Test scripts can specify the pauses between input
events, generating minimal runtime overhead. However,
in some cases, the way that Test drives applications
alters the behaviour of those applications. This effect is
discussed in detail in Section 5.4.

a)

Evaluating Response Time

Early in this project,

we had planned to develop

a new latency metric, a formula that could be used to

summarize our measurements and provide a single
scalar figure of merit to characterize the interactive
performance of a given workload. Events that complete
in 0.1 seconds or less are believed to have
imperceptible latency and do not contribute to user
dissatisfaction, whereas events in the 2-4 second range
invariably irritate users Ben Shneiderman (1992). Events
that fall between these ranges may be acceptable but
can correspond to perceptibly worse performance than
events under 0.1 seconds. Our intuition is that a user-
responsiveness metric would be a summation of the
form:

However, we also believe that the threshold, T,
is a function of the type of event. For example, users
probably expect keystroke event latency to be
imperceptible while they may expect that a print
command will impose some delay. The issues of event
types, user expectation, the precise tolerance of users
for delay, and the limitations of human perception are
beyond our field of expertise. Presented with these
obstacles, we modified our plans, and present latency
measurements graphically. We trust that the issues in
human-computer interaction can be resolved by
specialists. In the meantime, our visualization of latency
enables us to compare applications and develop an
intuition for responsiveness without risking the
inappropriate data reductions that could occur given our
limited background in experimental psychology.

IV.

Micro-benchmarks

In this section, we present some basic
measurements of simple interactive events. This helps
us explore the character of our tools and understand the
kinds of things we can and cannot measure. Figure 3

Figure 3 shows the latencies for two simple
interactive events, unbound key stroke and mouse click
on the screen background, under the three operating
systems. We were unable to measure the overhead of

© 2014 Global Journals Inc. (US)

G
lo
ba

l
Jo

ur
na

l
of
 C

om
pu

te
r
Sc

ie
nc

e
an

d
Te

ch
no

lo
gy

 V

ol
um

e
X
IV

Is
su

e
V

V
er
sio

n
I

 11

Y
e
a
r

20
14

(
DDDD DDDD

)
G

Using Latency to Evaluate Computer System Performance

http://www.eecs.harvard.edu/vino/perf/graphics/G1_5E.ps�
http://www.eecs.harvard.edu/vino/perf/graphics/G1_8E.ps�

potential variability introduced by a human user, we
report the mean of 30-40 trials, ignoring cold cache
cases. The most significant standard deviations
occurred in the key click events for Windows XP and
Windows 9x (8%) while all the remaining standard
deviations were under 2%

of the mean.

On the key stroke test, Windows 9x shows
substantially worse performance than Windows XP. This
is a reflection of segment register loads (not shown) and
other overhead associated with 16-bit and 32–bit
windows codes as asserted by Bradley Chen et al,
which persist in Windows 9x.

The mouse click results are even more striking.
The Windows 9x measurements are off the scale,
because the system busy-waits between "mouse down"
and "mouse up" events; therefore our measurement
indicates the length of time the user took to perform the
mouse click. This is much longer than the actual
processing times of the Windows XP systems and is not
indicative of the actual Windows 9x performance.

Our methodology provides little guidance in
explaining the differences in performance between
Windows 2000 and Windows XP Professionals, but it
does highlight the fact that instructions and data
references occur roughly in pro portion to cycles across
the systems for both of the simple interactive events.
Therefore, we conclude that in the warm cache case, the
performance differences are a function of the code path
lengths. It is possible that the difference in code path
length stems from the change in GUI between the two
notable releases of Windows.

V.

Task-oriented

Benchmarks

In this section, we measure three task-oriented
bench marks, designed to model realistic tasks that
users commonly perform using the target applications.
In using these longer running benchmarks we have two
specific goals. The first is to measure the system
performance for a realistic system state. An often-cited
problem of micro-benchmarks is that they tend to
measure the sys tem when various caches are already
warm. However, measuring the system when all the
caches are cold is also unrealistic.

Neither extreme is
representative of the system state in which the target
micro-operations are invoked in common practice. By
measuring the latency of micro-operations embedded in
a longer realistic inter active task, we measure each
micro-operation under

more realistic circumstances. The
second goal is to identify long-latency operations that
users encounter as they perform tasks on the systems.
Since these long-latency operations have a greater
effect on how users perceive system performance than
very short events.

We ran each benchmark five times using
Microsoft Test and found that the results were consistent
across runs. The standard deviations for the elapsed
times and cumulative CPU busy times were 1-2%, and
the event latency distributions were virtually identical.
The graphical out put shown in the following sections
depicts one of the five runs for each benchmark.

a)

Microsoft Notepad

Notepad is a simple editor for ASCII text
distributed with all versions of Microsoft Windows. Our
Notepad benchmark models an editing session on a
56KB text file, which includes text entry of 1300
characters at approximately 100 words per minute, as
well as cursor and page movement. With this
benchmark, we demonstrate how differences in average
response time across the three systems manifest
themselves in our visual representation of latency and
how they can be used to com pare system
performance. We used the same Notepad executable
(the Windows XP version) on all three systems and used
a Microsoft Test script to drive Notepad. Since virtually
all Notepad activity is synchronous, we were able to
collect the latency figures for every key stroke that the
user made in a straightforward way. By correlating our
idle loop measurement with our monitoring of the Peek

Message() and Get

Message() API calls, we were able
to clearly identify the Test overhead and remove it from
the data presented.

The cumulative latency graph shows that for all
three systems, over 80% of the latency of Notepad is
due to low-latency (less than 10 ms) events. These
short-latency events are the keystrokes that generate
printable ASCII characters. The remaining 20% of the
total latency are due to the longer latency (at least 28
ms) keystrokes that cause "page down" or newline
operations. These keystrokes cause Notepad to refresh
all or part of the screen. Events of the same type
contribute

equally to the total latency.

The latencies measured are relatively small for
Notepad and reflect both the simplicity of the application
and the relatively fast PC that we used for our
experiments. Although these differences in latency are
likely to go unnoticed by users of our test system, they

© 2014 Global Journals Inc. (US)

 12

Y
e
a
r

20
14

G
lo
ba

l
Jo

ur
na

l
of
 C

om
pu

te
r
Sc

ie
nc

e
an

d
Te

ch
no

lo
gy

 V

ol
um

e
X
IV

Is
su

e
V

V
er
sio

n
I

(
DDD D DDDD

)
G

Using Latency to Evaluate Computer System Performance

Microsoft Test for these micro-benchmarks, so we were
forced to use manual input. To compensate for the

b)

Microsoft Notepad

PowerPoint, from the Microsoft Office suite, is a
popular application for creating presentation graphics.
In our PowerPoint task scenario, the user starts
PowerPoint immediately after powering up the machine
and booting the operating system, so that all caches are
cold. The user then loads a 46-page, 530KB
presentation, and finds and modifies three OLE
embedded Excel graph objects. Each of the OLE
objects was of similar size and complexity. As with
Notepad, we used a Microsoft Test script to drive the
application and deliver key strokes at a realistic rate,
with each keystroke separated by at least 150 ms. An
important property of the PowerPoint benchmark is that
it has a number of events with easily perceptible
latencies. Since we were mainly interested in longer
events, we pre-processed our data to exclude events
with latency of less than 50 ms. Figure below shows the
results for the two versions of Windows. We were unable
to run this experiment for Windows XP due to limitations
of Microsoft Test when manipulating OLE embedded
object on that system.

The shortest event (with latency of less than one
second), are due to "page down" operations and MS-
Excel operations. Both systems exhibited a similar
latency distribution for these events. Six events had
latencies greater than one second on both systems, in
nearly the same relative order. Table 1 lists these long
latency events.

All of the long-latency events required disk
accesses, which are responsible for the majority of the
latency for these events. The effects of the file system
cache are most clearly observed in the latency for
starting the second OLE edit, as more of the pages for
the embedded Excel object editor become resident in
the buffer cache.

The cumulative latency graph shows that both
versions of Windows 2000 and Windows XP
demonstrate similar performance for the short-latency
keystrokes, and the majority of the performance
difference is a result of the ability of NTFS file system to
handle the long-latency events much more efficiently.

The standard deviations are all below 3%

Figure 4

:

Latency for simple interactive events

c)

Microsoft Word

Our task-oriented workload for Microsoft Word
consists of text entry of a paragraph of approximately
1000 characters. It includes cursor movement with arrow
keys and backspace characters to correct typing errors.
The timing between keystrokes was varied to

simulate
realistic pauses when composing a document, and line
justification and interactive spell checking were enabled.
We do not report results for Windows 9x, because the
system does not become idle immediately after Word
finishes handling an event, making all event latencies
appear to be several seconds long.

Figure 11 shows results for Microsoft Test
driven simulations on the two versions of NTFS based
Windows. Compared to Notepad, MS-Word requires
substantially more processing time per keystroke, due to
additional functionality such as text formatting, variable-
width fonts and inter active spell checking. For the
majority of interactive events, Windows XP exhibits
shorter response time and lower variance than Windows
2000.

© 2014 Global Journals Inc. (US)

G
lo
ba

l
Jo

ur
na

l
of
 C

om
pu

te
r
Sc

ie
nc

e
an

d
Te

ch
no

lo
gy

 V

ol
um

e
X
IV

Is
su

e
V

V
er
sio

n
I

 13

Y
e
a
r

20
14

(
DDDD DDDD

)
G

Using Latency to Evaluate Computer System Performance

might have a significant effect on user-perceived
performance on a slower machine.

http://www.eecs.harvard.edu/vino/perf/graphics/G1_14E.ps�

Figure 5 : Notepad Event Latency Summary

The MS-Word benchmark demonstrates both
the strengths and limitations of evaluating interactive
performance using latency. Compared to throughput
measurements, our latency analysis provides much
more detailed information, such as variations in latency
and the distribution of events with different latencies.
How ever, the structural features of Word push us to the
limit of the behavior we are able to analyze. Our analysis
indicates that Word uses a single system thread, but
responds to input events and handles background
computations asynchronously using an internal system
of coroutines or user level threads.

Distinguishing background activity from
foreground activity in MS-Word is challenging. We
examined the results of hand-generated Word input
under Windows 2000 OS, compared it to the Test-
generated results, and found significant differences. For
our hand-generated tests, we ran seven trials, with the
same typist and input, and found that the event
histograms appeared very similar and that the variation
in cumulative latency and elapsed time was less than
4% across the runs. While the Test results showed that
most events had latency between 80 and 100 ms, we
measured a 32 ms typical latency for the hand-
generated input. This difference in event latency was
accompanied by a compensating difference in back
ground activity. The hand-generated input showed a
higher level of background activity than the Test-
generated results. We also observed that carriage
returns under the hand-generated input took longer than
200 ms to handle while the longest latency events we
saw in the Test-generated runs were 140 ms. Our
Message API log reveals that Test generates a
WM_QUEUESYNC messages after every keystroke. We

hypothesize that these messages were responsible for
the different behavior under Test and under manual
typing. However, with our current tools, the complexity of
Word makes it difficult to thoroughly analyze even the
simple experiment we present here.

VI.

Summary

The tools and techniques we have discussed
here are a first step towards understanding and
quantifying interactive latency, but there remains much
work to be done. In the absence of system and
application source, better performance monitoring tools
would be useful. Our measurements could be improved
through API calls that return information about system
state such as message queue lengths, I/O queue
length, and the types of requests on the I/O queue.
Currently, some of this information can be obtained, but
it is painful (e.g., monitoring the Get

Message() and

Peek

Message() calls).

Even in the presence of rich APIs, the task of
distinguishing between wait time and think time is not
always possible. There is no automatic way to detect
exactly what a user is doing. Without user input, we can

never tell whether a user is genuinely waiting while the
system paints a complicated graphic on the screen or is
busy thinking. For simulations using designed scripts,
we can make assumptions about when users think and
then analyze performance based on those assumptions,
but the most useful analysis will come from evaluating
actual user interaction.

One factor that contributes to user
dissatisfaction is the frequency of long-latency events.
We processed the Microsoft Word profile of Figure 5 to
analyze the distribution of inter-arrival times of events
above a given threshold. Since most events in the Word
benchmark were very short, we chose thresholds
around 100 ms. Table 2 shows the summaries for these
thresholds. Note that the standard deviations are of the
same order of magnitude as the averages themselves,
indicating that there is no strong periodicity between
long-latency events.

Threshold
in ms

 No of Events
above

Threshold

Inter-arrival times

Average
(in sec)

 Std Deviation

(in sec)

100

101

3.1

3.1

110

26

12.4

10.6

120

8

41.1

48.8

Table 2

We then examined the truly long-latency events
from the PowerPoint benchmark. Figure 12 shows the
event latency profile for all events over 50 ms.

Both

systems show similar periodicity with the better
performing 4.0 system demonstrating smaller inter-
arrival times to match its shorter overall latency.

© 2014 Global Journals Inc. (US)

 14

Y
e
a
r

20
14

G
lo
ba

l
Jo

ur
na

l
of
 C

om
pu

te
r
Sc

ie
nc

e
an

d
Te

ch
no

lo
gy

 V

ol
um

e
X
IV

Is
su

e
V

V
er
sio

n
I

(
DDD D DDDD

)
G

Using Latency to Evaluate Computer System Performance

In the case of Word, the inter-arrival times are
clustered because most events have similar latency. In
the case of PowerPoint, the inter-arrival times of long-
latency events are simply the inter-arrival times of a few
particular classes of events. The distribution of these
events is entirely dependent upon when we issued such
requests in our test script and is not necessarily
indicative of the distribution that might be obtained from
a real user. In this test, none of the simple keystroke
events were responsible for generating long-latency
events, rather all the events with latencies over 50 ms
result from major operations for which user expectation
for response time is generally longer. Until our tools
become sophisticated enough to examine long traces of
complex events generated by a real user, further
analysis of these inter-arrival times is not particularly
productive.

Figure 6

:

Counter measurements for PowerPoint page

down operation

Over time, our tools will become better able to
deal with the sophisticated applications that we seek to
analyze, but we need the human factors community to
assist us in understanding the limits of human
perception and the models of user tolerance. Some of

the questions that must be answered are:

•

What are the limits of human perception?

•

How do the limits vary by task (e.g., typing versus
mouse-tracking)?

•

How do the user expectation and tolerance for
interactive response time vary by task?

•

How does user dissatisfaction grow with increasing
of latency?

•

How does user dissatisfaction grow with the
variance of latency?

•

What aspects of performance contribute the most
to user satisfaction?

VII.

Conclusions

Latency, not throughput, is the key performance
metric for interactive software systems. In this paper, we

have introduced some tools and techniques for
quantifying latency for a general class of realistic
interactive application. To demonstrate our
methodology, we applied it to compare the
responsiveness of realistic applications running on three
popular PC operating systems. Whereas current
measurements of latency are generally limited to micro-
benchmarks, our approach allows us to measure
latency for isolated events in the context of realistic
interactive tasks. Our latency measurements give a
more accurate and complete picture of interactive
performance than throughput measurements.

We have combined a few simple ideas to get
precise information about latency in interactive
programs. We have shown that using these ideas we
can get accurate and meaningful information for simple
applications and also, to a degree, for complex
applications. The requirements of these techniques are
not out of reach; in particular, a hardware cycle counter,
a means for changing the

system idle loop, and a
mechanism for logging calls to system API routines are
needed. Additional support for detecting the enqueuing
of messages and the state of the I/O queue would
provide a more complete framework for latency
measurement. We have shown

the limitations of our
system for applications such as Microsoft Word that use
batching and asynchronous computation.

Measuring latency for an arbitrary task and an
arbitrary application remains a difficult problem. Our
experience with Microsoft Word demonstrates that there
are many difficult technical issues to be resolved before
latency will become a practical metric for system design.
Our graphical representation provides a great deal of
information about program behavior to specialists, but is
probably not appropriate for more widespread use. The
two key components necessary to provide consumers a
single figure of merit are further work in human factors
and some method for distinguishing user think time from
user wait time.

VIII.

Acknowledgments

The authors

have benefited from the works of
Brian N. Bershad, et al, John K. Ousterhout, and Jeffrey
C. Mogul of Business Applications Performance
Corporation. We thank them for their insights and
suggestions. The authors are greatly grateful and
indebted to our research partners and colleagues in the
School of Science, and Computer Engineering, Abia
State Polytechnic, Aba, who have being research fellows
and have supported our research for some years now.
We would also like to thank the Management of both
Abia State

Polytechnic, Aba, and Alvan Ikoku Federal
College of Education, Owerri for providing the platform
and the right atmosphere for this work.

© 2014 Global Journals Inc. (US)

G
lo
ba

l
Jo

ur
na

l
of
 C

om
pu

te
r
Sc

ie
nc

e
an

d
Te

ch
no

lo
gy

 V

ol
um

e
X
IV

Is
su

e
V

V
er
sio

n
I

 15

Y
e
a
r

20
14

(
DDDD DDDD

)
G

Using Latency to Evaluate Computer System Performance

http://www.eecs.harvard.edu/vino/perf/graphics/G1_17E.ps�

References Références Referencias

1. Business Applications Performance Corporation,
"Sysmark for Windows NT," Press Release by IDEAS
International, Santa Clara, CA, March 1995.

2. Brian N. Bershad, Richard P. Draves, and Alessan
dro Forin, "Using Microbenchmarks to Evaluate
System Performance." Proceedings of the Third
Workshop on Workstation Operating Systems, IEEE,
Key Biscayne, Florida, April 1992, pages 148-153.

3. Ben Smith, "Ultrafast Ultrasparcs," Byte Magazine,
January 1996, page 139. Additional information on
the Bytemarks suite is available on the Internet:
http://www.byte.com/bmark/bdoc.htm.

4. J. Bradley Chen, Yasuhiro Endo, Kee Chan, David
Mazieres, Antonio Dias, Margo Seltzer, and Michael
D. Smith, "The Measured Performance of Personal
Computer Operating Systems," ACM Transactions
on Computer Systems 14, 1, February 1996, pages
3-40.

5. Intel Corporation, Pentium Processor Family
Developer's Manual. Volume 3: Architecture and
Programming Manual, Intel Corporation, 1995.

6. C. J. Lindblad and D. L. Tennenhouse, "The
VuSystem: A Programming System for Compute-
Intensive Multimedia," To appear in IEEE Journal of
Selected Areas in Communication," 1996.

7. Larry McVoy, "Lmbench: Portable tools for
performance analysis," Proceedings of the 1996
USENIX Technical Conference, January 1996,
pages 179- 294.

8. Jeffrey C. Mogul, "SPECmarks are leading us
astray," Proceedings of the Third Workshop on
Workstation Operating Systems, IEEE, Key
Biscayne, Florida, April 1992, pages 160-161.

9. James O'Toole, Scott Nettles, and David Gifford,
"Concurrent Compacting Garbage Collection," The
Proceedings of the Fourteenth ACM Symposium on
Operating System Principles, December 1993,
pages 161-174.

10. John K. Ousterhout, "Why Operating Systems Aren't
Getting Faster As Fast As Hardware." Proceedings
of the Summer 1991 USENIX Conference, June
1991, pages 247-256.

11. Mark Shand, "Measuring Unix Kernel Performance
with Reprogammable Hardware," Digital Paris
Research Lab, Research Report #19, August 1992.

12. Ben Shneiderman, Designing the User Interface,
Addison-Wesley, 1992.

13. Jeff Reilly, "SPEC Discusses the History and
Reasoning behind SPEC 95," SPEC Newsletter,
7(3):1- 3, September 1995.

14. M. L. VanNamee and B. Catchings, "Reaching New
Heights in Benchmark Testing," PC Magazine, 13
December 1994, pages 327-332. Further
information on Ziff-David benchmarks is available
on the Internet: http://www.zdnet.com/zdbop/.

© 2014 Global Journals Inc. (US)

 16

Y
e
a
r

20
14

G
lo
ba

l
Jo

ur
na

l
of
 C

om
pu

te
r
Sc

ie
nc

e
an

d
Te

ch
no

lo
gy

 V

ol
um

e
X
IV

Is
su

e
V

V
er
sio

n
I

(DDD D DDDD
)

G
Using Latency to Evaluate Computer System Performance

	Using Latency to Evaluate Computer System Performance
	Author
	I. Introduction
	a) The Irrelevance of Throughput
	i.Information Lost
	ii. Inaccurate User Assumptions

	II. Methodology
	a) Experimental Systems
	b) The Pentium Counters
	c) Idle Loop Instrumentation
	d) Monitoring the Message API
	e) Idle System Profiles

	III. Benchmarks and Metrics
	a)Evaluating Response Time

	IV.Micro-benchmarks
	V.Task-oriented Benchmarks
	a) Microsoft Notepad
	b) Microsoft Notepad
	c) Microsoft Word

	VI.Summary
	VII.Conclusions
	References Références Referencias
	VIII.Acknowledgments

