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Abstract-  Building high performance computer systems 
requires an understanding of the behaviour of systems and 
what makes them fast or slow. In addition to our file system 
performance analysis, we have a number of projects in 
measuring, evaluating, and understanding system 
performances. The conventional methodology for system 
performance measurement, which relies primarily on 
throughput-sensitive benchmarks and throughput metrics, has 
major limitations when analyzing the behaviour and 
performance of interactive workloads. The increasingly 
interactive character of personal computing demands new 
ways of measuring and analyzing system performance. In this 
paper, we present a combination of measurement techniques 
and benchmark methodologies that address these problems. 
We use some simple methods for making direct and precise 
measurements of event handling latency in the context of a 
realistic interactive application. We analyze how results from 
such measurements can be used to understand the detailed 
behaviour of latency-critical events. We demonstrate our 
techniques in an analysis of the performance of two releases 
of Windows 9x and Windows XP Professional. Our experience 
indicates that latency can be measured for a class of 
interactive workloads, providing a substantial improvement in 
the accuracy and detail of performance information over 
measurements based strictly on throughput.  

I. Introduction 

enchmarks are used in computer systems 
research to analyze design alternatives, identify 
performance problems, and motivate 

improvements in system design. Equally important, 
consumers use benchmarks to evaluate and compare 
computer systems. Current benchmarks typically report 
throughput, bandwidth, or end-to-end latency metrics. 
Though often successful in rating the throughput of 
transaction processing systems and/or the performance 
of a system for scientific computation, these 
benchmarks do not give a direct indication of 
performance that is relevant for interactive applications 
such as those that dominate modern desktop 
computing. The most important performance criterion 
for interactive applications is responsiveness, which 
determines the performance perceived by the user.  
 

    

 
  

  
 

 
  

In this paper, we propose a set of new 
techniques for performance measurement in which 
latency is measured in the context of a workload that is 
realistic, both in terms of the application used and the 
rate at which user- initiated events are generated. We 
present low-overhead methods that require minimal 
modifications to the system for measuring latency for a 
broad class of interactive events. We use a collection of 
simple benchmark examples to characterize our 
measurement methodology. Finally, we demonstrate the 
utility of our metrics by applying them in a comparison of 
Microsoft Windows 9x, Windows 2000, and Windows XP 
Professional, using realistic interactive input to off-the-
shelf applications.  

The remainder of this section provides 
background on the problem of measuring latency, 
including the motivation for our new methodology based 
on an analysis of the current practice in performance 
measurement. Section 2 describes our methodology in 
detail. In Section 3, we discuss some of the issues in 
evaluating response time in terms of a user's 
experience. In Sections 4 and 5, we apply our 
methodology in a comparison of Windows 9x, Windows 
2000, and Windows XP Professional. Sections 6 and 7 
discuss the limitations of our work and conclude.  

a) The Irrelevance of Throughput  
Most macro-benchmarks designed for 

interactive systems use throughput as the performance 
metric, measuring the time that the system takes to 
complete a sequence of user requests. A key feature of 
throughput as a performance metric is that it can be 
measured easily, given an accurate timer and a 
computation that will do a fixed amount of work. 
Throughput metrics measure system performance for 
repetitive, synchronous sequences of requests. 
However, the results of these benchmarks do not 
correlate directly with user-perceived performance--a 
critical metric when evaluating interactive system 
performance. The performance of many modern 
applications depends on the speed at which the system 
can respond to an asynchronous stream of independent 
and diverse events that result from interactive user input 
or network packet arrival; we call this event handling 
latency. Throughput metrics are ill-equipped to 
characterize systems in such ways. More specifically, 
throughput benchmarks fail to provide enough 
information for evaluating interactive system 
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performance and make inappropriate assumptions for 
measuring interactive systems. 

 

i.
 

Information Lost 
 

The results of throughput benchmarks are often 
reduced to a single number that indicates how long a 
system took to complete a sequence of events. 
Although this can provide information about the sum of 
the latencies for a sequence of events, it does not 
provide information about the variance in response time, 
which is an important factor in determining perceived 
interactive performance. 

 

The insufficient detail provided by throughput 
benchmarks can also mislead designers trying to 
identify the bottlenecks of a system. Since throughput 
benchmarks provide only end-to-end measures of 
activity, system activity generated by low-latency events 
cannot be distinguished from that generated by longer-
latency events, which have a much greater impact on 
user-perceived performance. Worse, if such a 
benchmark includes sufficiently many short-latency 
events, these short events can contribute significantly to 
elapsed time, leading designers to optimize parts of the 
system that have little or no impact on user-perceived 
performance. In an effort to compare favourably against 
other systems in throughput benchmarks, designers 
may even undertake such optimizations knowingly. In 
this case, bad benchmarking methodology hurts both 
system designers and end-users. 

 

In addition, user interfaces tend to use features 
such as blinking cursors and interactive spelling 
checkers that have (or are intended to have) negligible 
impact on perceived interactive performance, yet may 
be responsible for a significant amount of the 
computation in the over all activity of an application. 
Throughput measures pro vide no way to distinguish 
between these features and events that are less 
frequent but have a significant impact on user-perceived 
performance. 

 
  

Throughput benchmarks often drive the system 
by feeding user input as rapidly as the system can 
accept it, equivalent to modeling an infinitely fast user. 
Such an input stream is unrealistic and susceptible to 
generating misleading results. One of the sources for 
such errors is batching. Client-server systems such as 
Windows NT and the X-Window system batch multiple 
client requests into a single message before sending 
them to the server. This reduces communication 
overhead and allows the server to apply optimizations to 
the request stream, such as removing operations that 
are overridden by later requests. Although batching 
improves throughput, it can have a negative effect on 
the responsiveness of the system. 

 

When a benchmark uses an uninterrupted 
stream of requests, the system batches requests more 
aggressively to improve throughput. Measurement 

results obtained while the system is operating in this 
mode are meaningless; users will never be able to 
generate such an input stream and achieve a similar 
level of batching in actual use. Disabling batching 
altogether is sometimes possible but does not fully 
address the problem. An ideal test input should permit a 
level of batching that is likely to occur in response to real 
user input. 

 

Overall, throughput measures provide an 
indirect rather than a direct measure of latency, and as 
such they can give a distorted view of interactive 
performance. An ideal benchmarking methodology will 
drive the system in the same way that real users do and 
give designers a correct indication as to which parts of 
the system are responsible for delays or user-
perceptible latency. Obtaining such figures requires that 
we drive the system using an input stream that closely 
resembles one that an interactive user may generate 
and more importantly, an ability to measure the latency 
of individual events.  

 

II.
 

Methodology 
 

Our methodology must provide the ability to 
measure the latency of individual events that occur while 
executing realistic interactive workloads. This poses the 
following set of new challenges: 

 

•
 

Interactive events are short in duration relative to 
the timer resolution provided by clock APIs in 
modern operating systems such as Windows and 
UNIX. Whereas a batch workload might run for 
millions of timer ticks, many interactive events last 
less than a single timer interval. 

 

•
 

Under realistic load, there will often be only a 
fraction of a second between interactive events in 
which to record results and prepare for the next 
measurement. Therefore the measurement scheme 
must have quick turnaround time. 

 

•
 

Perhaps the most challenging problem is collecting 
the requisite data without access to the source 
code of the applications or operating system. With 
source code, it is straightforward to instrument an 
application to generate timestamps at the 
beginning and ending points of every interactive 
event, but this is time consuming at best and not 
possible given our goal of measuring widely-
available commercial software. 

 

Analyzing interactive applications is just as 
challenging as measuring them. The time during which 
an application is running can be divided into think time 
and wait time. Think time is the time during which the 
user is neither making requests of the system nor 
waiting for the system to do something. Wait time is the 
time during which the system is responding to a request 
for which the user is waiting. Not all wait time is 
equivalent with respect to the user; wait time intervals 
shorter than a user's perception are irrelevant. We call 
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ii. Inaccurate User Assumptions 



 

 

these classes of wait time "unnoticeable." A good 
example of unnoticeable wait time is the time required to 
service a keystroke when a user is entering text. 
Although the system may require a few tens of 
milliseconds to respond to each keystroke, such small 
"waits" will be unnoticeable, as even the best typists 
require approximately 120 ms per keystroke (Ben 
Shniderman, Designing the user interface, 1992). 
Distinguishing between wait time and think time is non-
trivial, and the quantity and distribution of wait time is 
what the user perceives as an application's 
responsiveness. Our measurement methodology must 
help us recognize the wait time that is likely to irritate 
users.  

In the following sections, we describe the 
combination of tools and techniques that we use to 
measure and identify event latency.  

a) Experimental Systems  

We ran our experiments on a personal 
computer based on an Intel Premiere III motherboard, 
with the Intel Neptune chip set and a 650 MHz Pentium 
processor. Our machine was equipped with a 256KB 
asynchronous SRAM Level 2 cache, 512 MB of RAM, 
and a Diamond Stealth 64 DRAM display card. We used 
a dedicated 10GB Fujitsu disk (model M1606SAU) for 
each of the operating systems we tested. These disks 
were connected via a NCR825-based SCSI II host 
adapter. Both Windows 2000 and Windows XP systems 
used a NTFS file system, while the Windows 9x system 
used a FAT32 file system.  

b) The Pentium Counters  

The Intel Pentium processor has several built-in 
hardware counters, including one 64-bit cycle counter 
and two 40-bit configurable event counters as described 
in Intel Corporation Developers manual (1995). The 
counters can be configured to count any one of a 
number of different hardware events (e.g., TLB misses, 
interrupts, or segment register loads). The Pentium 
counters make it possible to obtain accurate counts of a 
broad range of processor events. Although the cycle 
counter can be accessed in user or system mode, the 
two event counters can only be read and configured 
from system mode.  

c) Idle Loop Instrumentation  

Our first measurement technique uses a simple 
model of user interaction to measure the duration of 
interactive events. In an interactive system, the CPU is 
mostly idle. When an interactive event arrives, the CPU 
becomes busy and then returns to the idle state when 
the event- handling is complete. By recording when the 
processor leaves and returns to an idle state, we can 
measure the time it takes to handle an interactive event, 
and the time during which a user might be waiting.  

The lack of kernel source code prevents us from 
instrumenting the kernel to identify the exact times at 

which the processor leaves or enters the idle loop. 
Instead, we replace the system's idle loop with our own 
low-priority process in each of the operating systems. 
These low- priority processes measure the time to 
complete a fixed computation: N iterations of a busy-
wait loop. The instrumentation code logs the time 
required by the loop. The pseudo code is as follows:  

while (space_left_in_the_buffer) { 

       for (i = 0; i < N; i++) 

           ; 

       generate_trace_record;
 

   }
 

We select the value of N such that the inner 
loop takes 1ms to complete when the processor is idle. 
In this way we generate one trace record per millisecond 
of idle time. If the processor is taken away from the idle 
loop, the loop takes longer than 1ms of elapsed time to 
complete. Any non-idle time manifests itself as an 
elongated time interval between two trace records. The 
larger we make N, the coarser the accuracy of our 
measurements; the smaller we make N, the finer the 
resolution of our measurements but the larger the trace 
buffer required for a given benchmark run. 

 

We wrote and measured a simple 
microbenchmark to demonstrate and validate this 
methodology. It uses a program that waits for input from 
the user and when the input is received, performs some 
computation, echoes the character

 
to the screen, and 

then waits for the next input. We measured the time it 
took to process a key stroke in two ways. First, we used 
the idle loop method described above to measure the 
processing time. Figure 1 shows the times at which the 
samples were collected. 

 

A B C D E

1ms 1ms 1ms 1ms
10.76 ms

 

Figure 1
 
:
  
Validation of Idle loop Methodology. The 

system spent one ms
 
collecting each of samples A, B, D 

and E but spent 10.76 ms collecting sample C indicating 
the system performed 9.76 ms of work during this 

interval
 

For the sake of clarity only a few samples are 
shown. The figure shows that the system spent 
approximately

 
one ms generating samples A, B, D, and 

E, indicating that the system was idle during the periods 
in which these samples were generated, but spent 10.76 
ms generating sample C. The difference, (10.76 -

 
1) or 

9.76 ms, represents the time required to handle the 
event. 

 

Next, we used the traditional approach, 
recording one timestamp when the program received 
the character (i.e., after a call to getchar()) and a second 
timestamp after the character was echoed back to the 
screen. This measurement reported an event-handling 
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latency of only 7.42 ms. The 2.34 ms discrepancy 
between the two measurements highlights a 
shortcoming of the conventional measurement 
methodology. Our test program calls the getchar() 
function to wait for user input. When the user enters a 
character, the system generates a hardware interrupt, 
which is first handled by the dynamically linked library 
KERNEL32.DLL. In the traditional approach, the 
measurement does not start until control is returned to 
the test program. Therefore, it fails to capture the system 
time required to process the interrupt and reschedule 
the benchmark thread. In comparison, our idle loop 
methodology provides a more complete measurement 
of the computation required to process the keyboard 
event. 

 

Our idle loop methodology uses CPU busy time 
to rep resent event latency, but there are several issues 
that pre vent this from being an accurate measure of the 
user's perceived response time. One problem is that 
most graphics output devices refresh every 12-17 ms. In 
this research, we do not consider this effect. 

 

Another problem is that CPU busy time and 
CPU idle time do not equate directly with wait time and 
think time. First, synchronous I/O requests contribute to 
wait time, even though the CPU can be idle during these 
operations.

 
Second, in the case of background 

processing, the user may not be waiting even though 
the CPU is busy. The first problem could be solved with 
system support for monitoring the I/O queue and 
distinguishing between synchronous and asynchronous 
requests. In order to address the second problem, we 
must consider how events are processed by the 
systems. When the user generates key strokes and 
mouse clicks, they are queued in a message queue 
awaiting processing. Therefore, when there are events 
queued, we can assume that the user is waiting. By 
combining CPU status (busy or idle), message queue 
status (empty or non-empty), and status for outstanding 
synchronous I/O (busy or idle), we can speculate during 
which time intervals the user is waiting. 

 

Figure 2 shows a state transition diagram for 
identifying think time and wait time in our system, using 
the parameters: CPU state, message queue state, and 
synchronous I/O status. The diagram omits 
asynchronous I/O, which we assume is background 
activity, and assumes that users always wait for the 
completion of an event. In real ity, we can never 
precisely distinguish think time from wait time, because 
we cannot know what the user is doing and whether the 
user is actually waiting for an event to complete or is 
thinking while an event is being processed. For 
simplicity, in the rest of this paper, we assume that the 
user waits for each event and report results in terms of 
event handling latency. In the next section, we describe 
how we obtain information about the status of the

 

message queue. 
 

  

 

Running

Ready Waiting 

Figure 2 : Showing state transition diagram 

d) Monitoring the Message API  
Win32 applications use the Peek Message() 

and Get Message() calls to examine and retrieve events 
from the message queue. We can monitor use of these 
API entries by intercepting the USER32.DLL calls. By 
monitoring use of these API entries, we can detect when 
an application is prepared to accept a new event and 
when it actually receives an event. We correlate the trace 
of Get Message() and Peek Message() calls with our 
CPU profile to determine when the application begins 
handling a new request and when it completes a 
request. This allows us to distinguish between 
synchronous and asynchronous I/O. It is also useful for 
recognizing situations where asynchronous computation 
is used to improve interactive response time.  

Figure 2  illustrates our design for a finite state 
machine that distinguishes think time from wait time in a 
latency measurement system. In Sections 4, 5, and 6, 
we will demonstrate how to apply complete information 
about CPU state and partial information about message 
queue state to implement part of the FSM. 
Implementation of the full FSM requires additional 
system support for monitoring I/O and message queue 
state transitions. Next, we will present two simple 
example measurements to give some insight into some 
of the non-trivial aspects of interpreting the output of our 
measurements.  

e) Idle System Profiles  
In this section, we present measurement results 

for the background activity that occurs during periods of 
inactivity on Windows 9x and Windows XP. This provides 
intuition about the measurement techniques as well as 
baseline information, useful for interpreting latency 
measurements in realistic situations. Figure 3 shows the 
idle system profiles for the three test systems. To relate 
non-idle time to elapsed time, we plot elapsed time on 
the X-axis and the CPU utilization on the Y-axis. Given 
that each sample represents 1 ms of idle time, the 
average CPU utilization during a sample interval can be 
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calculated easily. For example, if the system spends 10 
ms collecting a sample, and the sample includes 1 ms 
of idle time, the CPU utilization for that time interval is 
(10 -

 
1)/10 = 90%. 

 

Both versions of Windows NT show bursts of 
CPU

 
activity at 10 ms intervals due to hardware clock 

interrupts. Correlating the samples with a count of 
hardware interrupts from the Pentium performance 
counters shows that each burst of computation is 
accompanied by a hardware interrupt. 

 

Although we have compensated for the 
overhead introduced by the user-level idle loop, 
Windows 9x shows a higher level of activity in 
comparison to both versions of the Windows XP system. 
We do not know what causes this increased activity in 
Windows 9x. 

 

By coupling our idle-loop methodology with the 
Pentium counters, we were able to compute the interrupt 
handling overhead for various classes of interrupts --

 

measurements difficult to obtain using conventional 
methods. For example, the smallest clock interrupt 
handling overhead under Windows XP was about 800 
cycles, or 8 ms. 

 

III.
 

Benchmarks
 
and

 
Metrics

  

Our benchmark set is organized into three 
categories. Microbenchmarks are useful for 
understanding system behaviour

 
for simple interactive 

operations, such as interrupt handling and user-
interface animation. By analyzing microbenchmarks, we 
develop an understanding of the low-level behaviour of 
the system. We then extend our measurement to task-
oriented benchmarks in order to understand the real 
impact of latency on the perceived interactive 
responsiveness of an application. These task-

 
oriented 

benchmarks are based on applications from typical PC 
office suites and are designed to represent a realistic 
interactive computing workload. We further apply 
application microbenchmarks to evaluate isolated 
interactive events from the realistic workloads. Our 
application microbenchmarks include such 
computations as page-down of a PowerPoint document 
and editing of an embedded OLE

 
object. 

 

We used Microsoft Visual Test to create most of 
our microbenchmarks and task-oriented benchmarks. 
MS Test provides a system for simulating user input 
events on a Windows system in a repeatable manner. 
Test scripts can specify the pauses between input 
events, generating minimal runtime overhead. However, 
in some cases, the way that Test drives applications 
alters the behaviour of those applications. This effect is 
discussed in detail in Section 5.4. 

 

a)
 

Evaluating Response Time 
 

Early in this project,
 
we had planned to develop 

a new latency metric, a formula that could be used to 

summarize our measurements and provide a single 
scalar figure of merit to characterize the interactive 
performance of a given workload. Events that complete 
in 0.1 seconds or less are believed to have 
imperceptible latency and do not contribute to user 
dissatisfaction, whereas events in the 2-4 second range 
invariably irritate users Ben Shneiderman (1992). Events 
that fall between these ranges may be acceptable but 
can correspond to perceptibly worse performance than 
events under 0.1 seconds. Our intuition is that a user-
responsiveness metric would be a summation of the 
form: 

 

 

However, we also believe that the threshold, T, 
is a function of the type of event. For example, users 
probably expect keystroke event latency to be 
imperceptible while they may expect that a print 
command will impose some delay. The issues of event 
types, user expectation, the precise tolerance of users 
for delay, and the limitations of human perception are 
beyond our field of expertise. Presented with these 
obstacles, we modified our plans, and present latency 
measurements graphically. We trust that the issues in 
human-computer interaction can be resolved by 
specialists. In the meantime, our visualization of latency 
enables us to compare applications and develop an 
intuition for responsiveness without risking the 
inappropriate data reductions that could occur given our 
limited background in experimental psychology. 

 

IV.

 

Micro-benchmarks

  

In this section, we present some basic 
measurements of simple interactive events. This helps 
us explore the character of our tools and understand the 
kinds of things we can and cannot measure. Figure 3

 

 

Figure 3 shows the latencies for two simple 
interactive events, unbound key stroke and mouse click 
on the screen background, under the three operating 
systems. We were unable to measure the overhead of 
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potential variability introduced by a human user, we 
report the mean of 30-40 trials, ignoring cold cache 
cases. The most significant standard deviations 
occurred in the key click events for Windows XP and 
Windows 9x (8%) while all the remaining standard 
deviations were under 2%

 

of the mean. 

 

On the key stroke test, Windows 9x shows 
substantially worse performance than Windows XP. This 
is a reflection of segment register loads (not shown) and 
other overhead associated with 16-bit and 32–bit 
windows codes as asserted by Bradley Chen et al, 
which persist in Windows 9x. 

 

The mouse click results are even more striking. 
The Windows 9x measurements are off the scale, 
because the system busy-waits between "mouse down" 
and "mouse up" events; therefore our measurement 
indicates the length of time the user took to perform the 
mouse click. This is much longer than the actual 
processing times of the Windows XP systems and is not 
indicative of the actual Windows 9x performance. 

 

Our methodology provides little guidance in 
explaining the differences in performance between 
Windows 2000 and Windows XP Professionals, but it 
does highlight the fact that instructions and data 
references occur roughly in pro portion to cycles across 
the systems for both of the simple interactive events. 
Therefore, we conclude that in the warm cache case, the 
performance differences are a function of the code path 
lengths. It is possible that the difference in code path 
length stems from the change in GUI between the two 
notable releases of Windows. 

 

V.

 

Task-oriented

 

Benchmarks 

 

In this section, we measure three task-oriented 
bench marks, designed to model realistic tasks that 
users commonly perform using the target applications. 
In using these longer running benchmarks we have two 
specific goals. The first is to measure the system 
performance for a realistic system state. An often-cited 
problem of micro-benchmarks is that they tend to 
measure the sys tem when various caches are already 
warm. However, measuring the system when all the 
caches are cold is also unrealistic.

 

Neither extreme is 
representative of the system state in which the target 
micro-operations are invoked in common practice. By 
measuring the latency of micro-operations embedded in 
a longer realistic inter active task, we measure each 
micro-operation under

 

more realistic circumstances. The 
second goal is to identify long-latency operations that 
users encounter as they perform tasks on the systems. 
Since these long-latency operations have a greater 
effect on how users perceive system performance than 
very short events.  

 

We ran each benchmark five times using 
Microsoft Test and found that the results were consistent 
across runs. The standard deviations for the elapsed 
times and cumulative CPU busy times were 1-2%, and 
the event latency distributions were virtually identical. 
The graphical out put shown in the following sections 
depicts one of the five runs for each benchmark. 

 

a)

 

Microsoft Notepad 

 

 

Notepad is a simple editor for ASCII text 
distributed with all versions of Microsoft Windows. Our 
Notepad benchmark models an editing session on a 
56KB text file, which includes text entry of 1300 
characters at approximately 100 words per minute, as 
well as cursor and page movement. With this 
benchmark, we demonstrate how differences in average 
response time across the three systems manifest 
themselves in our visual representation of latency and 
how they can be used to com pare system 
performance. We used the same Notepad executable 
(the Windows XP version) on all three systems and used 
a Microsoft Test script to drive Notepad. Since virtually 
all Notepad activity is synchronous, we were able to 
collect the latency figures for every key stroke that the 
user made in a straightforward way. By correlating our 
idle loop measurement with our monitoring of the Peek

 

Message() and Get

 

Message() API calls, we were able 
to clearly identify the Test overhead and remove it from 
the data presented.

 

The cumulative latency graph shows that for all 
three systems, over 80% of the latency of Notepad is 
due to low-latency (less than 10 ms) events. These 
short-latency events are the keystrokes that generate 
printable ASCII characters. The remaining 20% of the 
total latency are due to the longer latency (at least 28 
ms) keystrokes that cause "page down" or newline 
operations. These keystrokes cause Notepad to refresh 
all or part of the screen. Events of the same type 
contribute

 

equally to the total latency. 

 

The latencies measured are relatively small for 
Notepad and reflect both the simplicity of the application 
and the relatively fast PC that we used for our 
experiments. Although these differences in latency are 
likely to go unnoticed by users of our test system, they 
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Microsoft Test for these micro-benchmarks, so we were 
forced to use manual input. To compensate for the 



 

 

  

b)

 

Microsoft Notepad 

 

PowerPoint, from the Microsoft Office suite, is a 
popular application for creating presentation graphics. 
In our PowerPoint task scenario, the user starts 
PowerPoint immediately after powering up the machine 
and booting the operating system, so that all caches are 
cold. The user then loads a 46-page, 530KB 
presentation, and finds and modifies three OLE 
embedded Excel graph objects. Each of the OLE 
objects was of similar size and complexity. As with 
Notepad, we used a Microsoft Test script to drive the 
application and deliver key strokes at a realistic rate, 
with each keystroke separated by at least 150 ms. An 
important property of the PowerPoint benchmark is that 
it has a number of events with easily perceptible 
latencies. Since we were mainly interested in longer 
events, we pre-processed our data to exclude events 
with latency of less than 50 ms. Figure below shows the 
results for the two versions of Windows. We were unable 
to run this experiment for Windows XP due to limitations 
of Microsoft Test when manipulating OLE embedded 
object on that system. 

 

The shortest event (with latency of less than one 
second), are due to "page down" operations and MS-
Excel operations. Both systems exhibited a similar 
latency distribution for these events. Six events had 
latencies greater than one second on both systems, in 
nearly the same relative order. Table 1 lists these long 
latency events. 

 

All of the long-latency events required disk 
accesses, which are responsible for the majority of the 
latency for these events. The effects of the file system 
cache are most clearly observed in the latency for 
starting the second OLE edit, as more of the pages for 
the embedded Excel object editor become resident in 
the buffer cache. 

 

The cumulative latency graph shows that both 
versions of Windows 2000 and Windows XP 
demonstrate similar performance for the short-latency 
keystrokes, and the majority of the performance 
difference is a result of the ability of NTFS file system to 
handle the long-latency events much more efficiently.  

 

 

The standard deviations are all below 3%

 
  

 

Figure 4

 

:

 

Latency for simple interactive events

 

c)

 

Microsoft Word 

 

Our task-oriented workload for Microsoft Word 
consists of text entry of a paragraph of approximately 
1000 characters. It includes cursor movement with arrow 
keys and backspace characters to correct typing errors. 
The timing between keystrokes was varied to

 

simulate 
realistic pauses when composing a document, and line 
justification and interactive spell checking were enabled. 
We do not report results for Windows 9x, because the 
system does not become idle immediately after Word 
finishes handling an event, making all event latencies 
appear to be several seconds long. 

 

Figure 11 shows results for Microsoft Test 
driven simulations on the two versions of NTFS based 
Windows. Compared to Notepad, MS-Word requires 
substantially more processing time per keystroke, due to 
additional functionality such as text formatting, variable-
width fonts and inter active spell checking. For the 
majority of interactive events, Windows XP exhibits 
shorter response time and lower variance than Windows 
2000. 

 

© 2014   Global Journals Inc.  (US)

G
lo
ba

l 
Jo

ur
na

l 
of
 C

om
pu

te
r 
Sc

ie
nc

e 
an

d 
Te

ch
no

lo
gy

  
  

  
 V

ol
um

e 
X
IV

  
Is
su

e 
V
  

V
er
sio

n 
I 
  

  
  
 

  13

Y
e
a
r

20
14

  
 

(
DDDD DDDD

)
G

Using Latency to Evaluate Computer System Performance

might have a significant effect on user-perceived 
performance on a slower machine.

http://www.eecs.harvard.edu/vino/perf/graphics/G1_14E.ps�


 

 

 

Figure 5 :  Notepad Event Latency Summary 

The MS-Word benchmark demonstrates both 
the strengths and limitations of evaluating interactive 
performance using latency. Compared to throughput 
measurements, our latency analysis provides much 
more detailed information, such as variations in latency 
and the distribution of events with different latencies. 
How ever, the structural features of Word push us to the 
limit of the behavior we are able to analyze. Our analysis 
indicates that Word uses a single system thread, but 
responds to input events and handles background 
computations asynchronously using an internal system 
of coroutines or user level threads.  

Distinguishing background activity from 
foreground activity in MS-Word is challenging. We 
examined the results of hand-generated Word input 
under Windows 2000 OS, compared it to the Test-
generated results, and found significant differences. For 
our hand-generated tests, we ran seven trials, with the 
same typist and input, and found that the event 
histograms appeared very similar and that the variation 
in cumulative latency and elapsed time was less than 
4% across the runs. While the Test results showed that 
most events had latency between 80 and 100 ms, we 
measured a 32 ms typical latency for the hand-
generated input. This difference in event latency was 
accompanied by a compensating difference in back 
ground activity. The hand-generated input showed a 
higher level of background activity than the Test-
generated results. We also observed that carriage 
returns under the hand-generated input took longer than 
200 ms to handle while the longest latency events we 
saw in the Test-generated runs were 140 ms. Our 
Message API log reveals that Test generates a 
WM_QUEUESYNC messages after every keystroke. We 

hypothesize that these messages were responsible for 
the different behavior under Test and under manual 
typing. However, with our current tools, the complexity of 
Word makes it difficult to thoroughly analyze even the 
simple experiment we present here. 

 

VI.
 

Summary 
 

The tools and techniques we have discussed 
here are a first step towards understanding and 
quantifying interactive latency, but there remains much 
work to be done. In the absence of system and 
application source, better performance monitoring tools 
would be useful. Our measurements could be improved 
through API calls that return information about system 
state such as message queue lengths, I/O queue 
length, and the types of requests on the I/O queue. 
Currently, some of this information can be obtained, but 
it is painful (e.g., monitoring the Get

 
Message() and 

Peek
 
Message() calls). 

 

Even in the presence of rich APIs, the task of 
distinguishing between wait time and think time is not 
always possible. There is no automatic way to detect 
exactly what a user is doing. Without user input, we can

 

never tell whether a user is genuinely waiting while the 
system paints a complicated graphic on the screen or is 
busy thinking. For simulations using designed scripts, 
we can make assumptions about when users think and 
then analyze performance based on those assumptions, 
but the most useful analysis will come from evaluating 
actual user interaction. 

 

One factor that contributes to user 
dissatisfaction is the frequency of long-latency events. 
We processed the Microsoft Word profile of Figure 5 to 
analyze the distribution of inter-arrival times of events 
above a given threshold. Since most events in the Word 
benchmark were very short, we chose thresholds 
around 100 ms. Table 2 shows the summaries for these 
thresholds. Note that the standard deviations are of the 
same order of magnitude as the averages themselves, 
indicating that there is no strong periodicity between 
long-latency events.

 

Threshold 
in ms

 No of Events 
above 

Threshold
 

Inter-arrival times
 

  
Average 
(in sec)

 Std Deviation
 
  

(in sec)
 

100
 

101
 

3.1
 

3.1
 

110
 

26
 

12.4
 

10.6
 

120
 

8
 

41.1
 

48.8
 

Table 2 

 

We then examined the truly long-latency events 
from the PowerPoint benchmark. Figure 12 shows the 
event latency profile for all events over 50 ms.

 
Both 

systems show similar periodicity with the better 
performing 4.0 system demonstrating smaller inter-
arrival times to match its shorter overall latency. 
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In the case of Word, the inter-arrival times are 
clustered because most events have similar latency. In 
the case of PowerPoint, the inter-arrival times of long-
latency events are simply the inter-arrival times of a few 
particular classes of events. The distribution of these 
events is entirely dependent upon when we issued such 
requests in our test script and is not necessarily 
indicative of the distribution that might be obtained from 
a real user. In this test, none of the simple keystroke 
events were responsible for generating long-latency 
events, rather all the events with latencies over 50 ms 
result from major operations for which user expectation 
for response time is generally longer. Until our tools 
become sophisticated enough to examine long traces of 
complex events generated by a real user, further 
analysis of these inter-arrival times is not particularly 
productive. 

 

 

Figure 6
 
:
 
Counter measurements for PowerPoint page 

down operation
 

Over time, our tools will become better able to 
deal with the sophisticated applications that we seek to 
analyze, but we need the human factors community to 
assist us in understanding the limits of human 
perception and the models of user tolerance. Some of

 

the questions that must be answered are: 
 

•
 

What are the limits of human perception? 
 

•
 

How do the limits vary by task (e.g., typing versus 
mouse-tracking)? 

 

•
 

How do the user expectation and tolerance for 
interactive response time vary by task? 

 

•
 

How does user dissatisfaction grow with increasing 
of latency? 

 

•
 

How does user dissatisfaction grow with the 
variance of latency? 

 

•
 

What aspects of performance contribute the most 
to user satisfaction? 

 

VII.
 

Conclusions
  

Latency, not throughput, is the key performance 
metric for interactive software systems. In this paper, we 

have introduced some tools and techniques for 
quantifying latency for a general class of realistic 
interactive application. To demonstrate our 
methodology, we applied it to compare the 
responsiveness of realistic applications running on three 
popular PC operating systems. Whereas current 
measurements of latency are generally limited to micro-
benchmarks, our approach allows us to measure 
latency for isolated events in the context of realistic 
interactive tasks. Our latency measurements give a 
more accurate and complete picture of interactive 
performance than throughput measurements. 

 

We have combined a few simple ideas to get 
precise information about latency in interactive 
programs. We have shown that using these ideas we 
can get accurate and meaningful information for simple 
applications and also, to a degree, for complex 
applications. The requirements of these techniques are 
not out of reach; in particular, a hardware cycle counter, 
a means for changing the

 

system idle loop, and a 
mechanism for logging calls to system API routines are 
needed. Additional support for detecting the enqueuing 
of messages and the state of the I/O queue would 
provide a more complete framework for latency 
measurement. We have shown

 

the limitations of our 
system for applications such as Microsoft Word that use 
batching and asynchronous computation. 

 

Measuring latency for an arbitrary task and an 
arbitrary application remains a difficult problem. Our 
experience with Microsoft Word demonstrates that there 
are many difficult technical issues to be resolved before 
latency will become a practical metric for system design. 
Our graphical representation provides a great deal of 
information about program behavior to specialists, but is 
probably not appropriate for more widespread use. The 
two key components necessary to provide consumers a 
single figure of merit are further work in human factors 
and some method for distinguishing user think time from 
user wait time. 
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