
Using Latency to Evaluate Computer System Performance1

Olawuyi J.O1, Olawuyi J.O2 and Mgbole F.32

1 Abia State Polytechnic3

Received: 7 December 2013 Accepted: 5 January 2014 Published: 15 January 20144

5

Abstract6

Building high performance computer systems requires an understanding of the behaviour of7

systems and what makes them fast or slow. In addition to our file system performance8

analysis, we have a number of projects in measuring, evaluating, and understanding system9

performances. The conventional methodology for system performance measurement, which10

relies primarily on throughput-sensitive benchmarks and throughput metrics, has major11

limitations when analyzing the behaviour and performance of interactive workloads. The12

increasingly interactive character of personal computing demands new ways of measuring and13

analyzing system performance. In this paper, we present a combination of measurement14

techniques and benchmark methodologies that address these problems. We use some simple15

methods for making direct and precise measurements of event handling latency in the context16

of a realistic interactive application. We analyze how results from such measurements can be17

used to understand the detailed behaviour of latency-critical events. We demonstrate our18

techniques in an analysis of the performance of two releases of Windows 9x and Windows XP19

Professional. Our experience indicates that latency can be measured for a class of interactive20

workloads, providing a substantial improvement in the accuracy and detail of performance21

information over measurements based strictly on throughput.22

23

Index terms—24

1 Introduction25

enchmarks are used in computer systems research to analyze design alternatives, identify performance problems,26
and motivate improvements in system design. Equally important, consumers use benchmarks to evaluate27
and compare computer systems. Current benchmarks typically report throughput, bandwidth, or end-to-end28
latency metrics. Though often successful in rating the throughput of transaction processing systems and/or29
the performance of a system for scientific computation, these benchmarks do not give a direct indication of30
performance that is relevant for interactive applications such as those that dominate modern desktop computing.31
The most important performance criterion for interactive applications is responsiveness, which determines the32
performance perceived by the user.33

In this paper, we propose a set of new techniques for performance measurement in which latency is measured34
in the context of a workload that is realistic, both in terms of the application used and the rate at which user-35
initiated events are generated. We present low-overhead methods that require minimal modifications to the36
system for measuring latency for a broad class of interactive events. We use a collection of simple benchmark37
examples to characterize our measurement methodology. Finally, we demonstrate the utility of our metrics by38
applying them in a comparison of Microsoft Windows 9x, Windows 2000, and Windows XP Professional, using39
realistic interactive input to off-theshelf applications.40

The remainder of this section provides background on the problem of measuring latency, including the41
motivation for our new methodology based on an analysis of the current practice in performance measurement.42
Section 2 describes our methodology in detail. In Section 3, we discuss some of the issues in evaluating response43

1

Global Journals LATEX JournalKaleidoscope™
Artificial Intelligence formulated this projection for compatibility purposes from the original article published at Global Journals.
However, this technology is currently in beta. Therefore, kindly ignore odd layouts, missed formulae, text, tables, or figures.



4 METHODOLOGY

time in terms of a user’s experience. In Sections 4 and 5, we apply our methodology in a comparison of Windows44
9x, Windows 2000, and Windows XP Professional. Sections 6 and 7 discuss the limitations of our work and45
conclude.46

a) The Irrelevance of Throughput Most macro-benchmarks designed for interactive systems use throughput as47
the performance metric, measuring the time that the system takes to complete a sequence of user requests. A key48
feature of throughput as a performance metric is that it can be measured easily, given an accurate timer and a49
computation that will do a fixed amount of work. Throughput metrics measure system performance for repetitive,50
synchronous sequences of requests. However, the results of these benchmarks do not correlate directly with user-51
perceived performance–a critical metric when evaluating interactive system performance. The performance of52
many modern applications depends on the speed at which the system can respond to an asynchronous stream of53
independent and diverse events that result from interactive user input or network packet arrival; we call this event54
handling latency. Throughput metrics are ill-equipped to characterize systems in such ways. More specifically,55
throughput benchmarks fail to provide enough information for evaluating interactive system performance and56
make inappropriate assumptions for measuring interactive systems. i.57

2 Information Lost58

The results of throughput benchmarks are often reduced to a single number that indicates how long a system59
took to complete a sequence of events. Although this can provide information about the sum of the latencies for60
a sequence of events, it does not provide information about the variance in response time, which is an important61
factor in determining perceived interactive performance.62

The insufficient detail provided by throughput benchmarks can also mislead designers trying to identify the63
bottlenecks of a system. Since throughput benchmarks provide only end-to-end measures of activity, system64
activity generated by low-latency events cannot be distinguished from that generated by longerlatency events,65
which have a much greater impact on user-perceived performance. Worse, if such a benchmark includes sufficiently66
many short-latency events, these short events can contribute significantly to elapsed time, leading designers to67
optimize parts of the system that have little or no impact on user-perceived performance. In an effort to compare68
favourably against other systems in throughput benchmarks, designers may even undertake such optimizations69
knowingly. In this case, bad benchmarking methodology hurts both system designers and end-users.70

In addition, user interfaces tend to use features such as blinking cursors and interactive spelling checkers that71
have (or are intended to have) negligible impact on perceived interactive performance, yet may be responsible72
for a significant amount of the computation in the over all activity of an application. Throughput measures pro73
vide no way to distinguish between these features and events that are less frequent but have a significant impact74
on user-perceived performance.75

Throughput benchmarks often drive the system by feeding user input as rapidly as the system can accept it,76
equivalent to modeling an infinitely fast user. Such an input stream is unrealistic and susceptible to generating77
misleading results. One of the sources for such errors is batching. Client-server systems such as Windows NT78
and the X-Window system batch multiple client requests into a single message before sending them to the server.79
This reduces communication overhead and allows the server to apply optimizations to the request stream, such80
as removing operations that are overridden by later requests. Although batching improves throughput, it can81
have a negative effect on the responsiveness of the system.82

When a benchmark uses an uninterrupted stream of requests, the system batches requests more aggressively to83
improve throughput. Measurement results obtained while the system is operating in this mode are meaningless;84
users will never be able to generate such an input stream and achieve a similar level of batching in actual use.85
Disabling batching altogether is sometimes possible but does not fully address the problem. An ideal test input86
should permit a level of batching that is likely to occur in response to real user input.87

Overall, throughput measures provide an indirect rather than a direct measure of latency, and as such they88
can give a distorted view of interactive performance. An ideal benchmarking methodology will drive the system89
in the same way that real users do and give designers a correct indication as to which parts of the system are90
responsible for delays or userperceptible latency. Obtaining such figures requires that we drive the system using91
an input stream that closely resembles one that an interactive user may generate and more importantly, an ability92
to measure the latency of individual events.93

3 II.94

4 Methodology95

Our methodology must provide the ability to measure the latency of individual events that occur while executing96
realistic interactive workloads. This poses the following set of new challenges:97

? Interactive events are short in duration relative to the timer resolution provided by clock APIs in modern98
operating systems such as Windows and UNIX. Whereas a batch workload might run for millions of timer ticks,99
many interactive events last less than a single timer interval. ? Under realistic load, there will often be only a100
fraction of a second between interactive events in which to record results and prepare for the next measurement.101
Therefore the measurement scheme must have quick turnaround time. ? Perhaps the most challenging problem102
is collecting the requisite data without access to the source code of the applications or operating system. With103

2



source code, it is straightforward to instrument an application to generate timestamps at the beginning and ending104
points of every interactive event, but this is time consuming at best and not possible given our goal of measuring105
widelyavailable commercial software. Analyzing interactive applications is just as challenging as measuring them.106
The time during which an application is running can be divided into think time and wait time. Think time is the107
time during which the user is neither making requests of the system nor waiting for the system to do something.108
Wait time is the time during which the system is responding to a request for which the user is waiting. Not all109
wait time is equivalent with respect to the user; wait time intervals shorter than a user’s perception are irrelevant.110
We call Inaccurate User Assumptions these classes of wait time ”unnoticeable.” A good example of unnoticeable111
wait time is the time required to service a keystroke when a user is entering text. Although the system may112
require a few tens of milliseconds to respond to each keystroke, such small ”waits” will be unnoticeable, as even113
the best typists require approximately 120 ms per keystroke (Ben Shniderman, Designing the user interface,114
1992). Distinguishing between wait time and think time is nontrivial, and the quantity and distribution of wait115
time is what the user perceives as an application’s responsiveness. Our measurement methodology must help us116
recognize the wait time that is likely to irritate users.117

In the following sections, we describe the combination of tools and techniques that we use to measure and118
identify event latency.119

5 a) Experimental Systems120

We ran our experiments on a personal computer based on an Intel Premiere III motherboard, with the Intel121
Neptune chip set and a 650 MHz Pentium processor. Our machine was equipped with a 256KB asynchronous122
SRAM Level 2 cache, 512 MB of RAM, and a Diamond Stealth 64 DRAM display card. We used a dedicated123
10GB Fujitsu disk (model M1606SAU) for each of the operating systems we tested. These disks were connected124
via a NCR825-based SCSI II host adapter. Both Windows 2000 and Windows XP systems used a NTFS file125
system, while the Windows 9x system used a FAT32 file system.126

6 b) The Pentium Counters127

The Intel Pentium processor has several built-in hardware counters, including one 64-bit cycle counter and two128
40-bit configurable event counters as described in Intel Corporation Developers manual (1995). The counters can129
be configured to count any one of a number of different hardware events (e.g., TLB misses, interrupts, or segment130
register loads). The Pentium counters make it possible to obtain accurate counts of a broad range of processor131
events. Although the cycle counter can be accessed in user or system mode, the two event counters can only be132
read and configured from system mode.133

7 c) Idle Loop Instrumentation134

Our first measurement technique uses a simple model of user interaction to measure the duration of interactive135
events. In an interactive system, the CPU is mostly idle. When an interactive event arrives, the CPU becomes136
busy and then returns to the idle state when the event-handling is complete. By recording when the processor137
leaves and returns to an idle state, we can measure the time it takes to handle an interactive event, and the time138
during which a user might be waiting.139

The lack of kernel source code prevents us from instrumenting the kernel to identify the exact times at which140
the processor leaves or enters the idle loop. Instead, we replace the system’s idle loop with our own low-priority141
process in each of the operating systems. These low-priority processes measure the time to complete a fixed142
computation: N iterations of a busywait loop. The instrumentation code logs the time required by the loop. The143
pseudo code is as follows: while (space_left_in_the_buffer) { for (i = 0; i < N; i++) ; generate_trace_record;144
} We select the value of N such that the inner loop takes 1ms to complete when the processor is idle. In this145
way we generate one trace record per millisecond of idle time. If the processor is taken away from the idle loop,146
the loop takes longer than 1ms of elapsed time to complete. Any non-idle time manifests itself as an elongated147
time interval between two trace records. The larger we make N, the coarser the accuracy of our measurements;148
the smaller we make N, the finer the resolution of our measurements but the larger the trace buffer required for149
a given benchmark run.150

We wrote and measured a simple microbenchmark to demonstrate and validate this methodology. It uses a151
program that waits for input from the user and when the input is received, performs some computation, echoes152
the character to the screen, and then waits for the next input. We measured the time it took to process a key153
stroke in two ways. First, we used the idle loop method described above to measure the processing time. Figure154
1 shows the times at which the samples were collected.155

8 A B156

C D E 1ms 1ms 1ms 1ms 10.76 ms Next, we used the traditional approach, recording one timestamp when157
the program received the character (i.e., after a call to getchar()) and a second timestamp after the character158
was echoed back to the screen. This measurement reported an event-handling latency of only 7.42 ms. The159
2.34 ms discrepancy between the two measurements highlights a shortcoming of the conventional measurement160
methodology. Our test program calls the getchar() function to wait for user input. When the user enters a161

3



10 E) IDLE SYSTEM PROFILES

character, the system generates a hardware interrupt, which is first handled by the dynamically linked library162
KERNEL32.DLL. In the traditional approach, the measurement does not start until control is returned to the163
test program. Therefore, it fails to capture the system time required to process the interrupt and reschedule164
the benchmark thread. In comparison, our idle loop methodology provides a more complete measurement of the165
computation required to process the keyboard event.166

Our idle loop methodology uses CPU busy time to rep resent event latency, but there are several issues that167
pre vent this from being an accurate measure of the user’s perceived response time. One problem is that most168
graphics output devices refresh every 12-17 ms. In this research, we do not consider this effect.169

Another problem is that CPU busy time and CPU idle time do not equate directly with wait time and think170
time. First, synchronous I/O requests contribute to wait time, even though the CPU can be idle during these171
operations. Second, in the case of background processing, the user may not be waiting even though the CPU is172
busy. The first problem could be solved with system support for monitoring the I/O queue and distinguishing173
between synchronous and asynchronous requests. In order to address the second problem, we must consider how174
events are processed by the systems. When the user generates key strokes and mouse clicks, they are queued in175
a message queue awaiting processing. Therefore, when there are events queued, we can assume that the user is176
waiting. By combining CPU status (busy or idle), message queue status (empty or non-empty), and status for177
outstanding synchronous I/O (busy or idle), we can speculate during which time intervals the user is waiting.178

Figure 2 shows a state transition diagram for identifying think time and wait time in our system, using the179
parameters: CPU state, message queue state, and synchronous I/O status. The diagram omits asynchronous180
I/O, which we assume is background activity, and assumes that users always wait for the completion of an event.181
In real ity, we can never precisely distinguish think time from wait time, because we cannot know what the182
user is doing and whether the user is actually waiting for an event to complete or is thinking while an event183
is being processed. For simplicity, in the rest of this paper, we assume that the user waits for each event and184
report results in terms of event handling latency. In the next section, we describe how we obtain information185
about the status of the message queue. Win32 applications use the Peek Message() and Get Message() calls to186
examine and retrieve events from the message queue. We can monitor use of these API entries by intercepting187
the USER32.DLL calls. By monitoring use of these API entries, we can detect when an application is prepared188
to accept a new event and when it actually receives an event. We correlate the trace of Get Message() and Peek189
Message() calls with our CPU profile to determine when the application begins handling a new request and when190
it completes a request. This allows us to distinguish between synchronous and asynchronous I/O. It is also useful191
for recognizing situations where asynchronous computation is used to improve interactive response time.192

9 Running Ready Waiting193

Figure 2 illustrates our design for a finite state machine that distinguishes think time from wait time in a latency194
measurement system. In Sections 4, 5, and 6, we will demonstrate how to apply complete information about195
CPU state and partial information about message queue state to implement part of the FSM. Implementation of196
the full FSM requires additional system support for monitoring I/O and message queue state transitions. Next,197
we will present two simple example measurements to give some insight into some of the non-trivial aspects of198
interpreting the output of our measurements.199

10 e) Idle System Profiles200

In this section, we present measurement results for the background activity that occurs during periods of inactivity201
on Windows 9x and Windows XP. This provides intuition about the measurement techniques as well as baseline202
information, useful for interpreting latency measurements in realistic situations. Figure ?? shows the idle system203
profiles for the three test systems. To relate non-idle time to elapsed time, we plot elapsed time on the X-axis204
and the CPU utilization on the Y-axis. Given that each sample represents 1 ms of idle time, the average CPU205
utilization during a sample interval can be G calculated easily. For example, if the system spends 10 ms collecting206
a sample, and the sample includes 1 ms of idle time, the CPU utilization for that time interval is (10 -1)/10 =207
90%.208

Both versions of Windows NT show bursts of CPU activity at 10 ms intervals due to hardware clock interrupts.209
Correlating the samples with a count of hardware interrupts from the Pentium performance counters shows that210
each burst of computation is accompanied by a hardware interrupt.211

Although we have compensated for the overhead introduced by the user-level idle loop, Windows 9x shows a212
higher level of activity in comparison to both versions of the Windows XP system. We do not know what causes213
this increased activity in Windows 9x.214

By coupling our idle-loop methodology with the Pentium counters, we were able to compute the interrupt215
handling overhead for various classes of interrupts -measurements difficult to obtain using conventional methods.216
For example, the smallest clock interrupt handling overhead under Windows XP was about 800 cycles, or 8 ms.217

4



11 III.218

12 Benchmarks and Metrics219

Our benchmark set is organized into three categories.220
Microbenchmarks are useful for understanding system behaviour for simple interactive operations, such as221

interrupt handling and userinterface animation. By analyzing microbenchmarks, we develop an understanding222
of the low-level behaviour of the system. We then extend our measurement to taskoriented benchmarks in order223
to understand the real impact of latency on the perceived interactive responsiveness of an application. These224
task-oriented benchmarks are based on applications from typical PC office suites and are designed to represent225
a realistic interactive computing workload. We further apply application microbenchmarks to evaluate isolated226
interactive events from the realistic workloads. Our application microbenchmarks include such computations as227
page-down of a PowerPoint document and editing of an embedded OLE object.228

We used Microsoft Visual Test to create most of our microbenchmarks and task-oriented benchmarks. MS229
Test provides a system for simulating user input events on a Windows system in a repeatable manner. Test230
scripts can specify the pauses between input events, generating minimal runtime overhead. However, in some231
cases, the way that Test drives applications alters the behaviour of those applications. This effect is discussed in232
detail in Section 5.4.233

13 a) Evaluating Response Time234

Early in this project, we had planned to develop a new latency metric, a formula that could be used to summarize235
our measurements and provide a single scalar figure of merit to characterize the interactive performance of a236
given workload. Events that complete in 0.1 seconds or less are believed to have imperceptible latency and237
do not contribute to user dissatisfaction, whereas events in the 2-4 second range invariably irritate users Ben238
Shneiderman (1992). Events that fall between these ranges may be acceptable but can correspond to perceptibly239
worse performance than events under 0.1 seconds. Our intuition is that a userresponsiveness metric would be240
a summation of the form: However, we also believe that the threshold, T, is a function of the type of event.241
For example, users probably expect keystroke event latency to be imperceptible while they may expect that a242
print command will impose some delay. The issues of event types, user expectation, the precise tolerance of243
users for delay, and the limitations of human perception are beyond our field of expertise. Presented with these244
obstacles, we modified our plans, and present latency measurements graphically. We trust that the issues in245
human-computer interaction can be resolved by specialists. In the meantime, our visualization of latency enables246
us to compare applications and develop an intuition for responsiveness without risking the inappropriate data247
reductions that could occur given our limited background in experimental psychology.248

IV.249

14 Micro-benchmarks250

In this section, we present some basic measurements of simple interactive events. This helps us explore the251
character of our tools and understand the kinds of things we can and cannot measure. Figure ?? Figure ?? shows252
the latencies for two simple interactive events, unbound key stroke and mouse click on the screen background,253
under the three operating systems. We were unable to measure the overhead of G potential variability introduced254
by a human user, we report the mean of 30-40 trials, ignoring cold cache cases. The most significant standard255
deviations occurred in the key click events for Windows XP and Windows 9x (8%) while all the remaining256
standard deviations were under 2% of the mean.257

On the key stroke test, Windows 9x shows substantially worse performance than Windows XP. This is a258
reflection of segment register loads (not shown) and other overhead associated with 16-bit and 32-bit windows259
codes as asserted by Bradley Chen et al, which persist in Windows 9x.260

The mouse click results are even more striking. The Windows 9x measurements are off the scale, because261
the system busy-waits between ”mouse down” and ”mouse up” events; therefore our measurement indicates the262
length of time the user took to perform the mouse click. This is much longer than the actual processing times of263
the Windows XP systems and is not indicative of the actual Windows 9x performance.264

Our methodology provides little guidance in explaining the differences in performance between Windows 2000265
and Windows XP Professionals, but it does highlight the fact that instructions and data references occur roughly266
in pro portion to cycles across the systems for both of the simple interactive events. Therefore, we conclude that267
in the warm cache case, the performance differences are a function of the code path lengths. It is possible that268
the difference in code path length stems from the change in GUI between the two notable releases of Windows.269

V.270

15 Task-oriented Benchmarks271

In this section, we measure three task-oriented bench marks, designed to model realistic tasks that users commonly272
perform using the target applications. In using these longer running benchmarks we have two specific goals.273
The first is to measure the system performance for a realistic system state. An often-cited problem of micro-274
benchmarks is that they tend to measure the sys tem when various caches are already warm. However, measuring275

5



16 A) MICROSOFT NOTEPAD

the system when all the caches are cold is also unrealistic. Neither extreme is representative of the system state276
in which the target micro-operations are invoked in common practice. By measuring the latency of micro-277
operations embedded in a longer realistic inter active task, we measure each micro-operation under more realistic278
circumstances. The second goal is to identify long-latency operations that users encounter as they perform279
tasks on the systems. Since these long-latency operations have a greater effect on how users perceive system280
performance than very short events. We ran each benchmark five times using Microsoft Test and found that the281
results were consistent across runs. The standard deviations for the elapsed times and cumulative CPU busy282
times were 1-2%, and the event latency distributions were virtually identical. The graphical out put shown in283
the following sections depicts one of the five runs for each benchmark.284

16 a) Microsoft Notepad285

Notepad is a simple editor for ASCII text distributed with all versions of Microsoft Windows. Our Notepad286
benchmark models an editing session on a 56KB text file, which includes text entry of 1300 characters at287
approximately 100 words per minute, as well as cursor and page movement. With this benchmark, we demonstrate288
how differences in average response time across the three systems manifest themselves in our visual representation289
of latency and how they can be used to com pare system performance. We used the same Notepad executable (the290
Windows XP version) on all three systems and used a Microsoft Test script to drive Notepad. Since virtually291
all Notepad activity is synchronous, we were able to collect the latency figures for every key stroke that the292
user made in a straightforward way. By correlating our idle loop measurement with our monitoring of the Peek293
Message() and Get Message() API calls, we were able to clearly identify the Test overhead and remove it from294
the data presented.295

The cumulative latency graph shows that for all three systems, over 80% of the latency of Notepad is due to296
low-latency (less than 10 ms) events. These short-latency events are the keystrokes that generate printable ASCII297
characters. The remaining 20% of the total latency are due to the longer latency (at least 28 ms) keystrokes that298
cause ”page down” or newline operations. These keystrokes cause Notepad to refresh all or part of the screen.299
Events of the same type contribute equally to the total latency.300

The latencies measured are relatively small for Notepad and reflect both the simplicity of the application and301
the relatively fast PC that we used for our experiments. Although these differences in latency are likely to go302
unnoticed by users of our test system, they Microsoft Test for these micro-benchmarks, so we were forced to303
use manual input. To compensate for the b) Microsoft Notepad PowerPoint, from the Microsoft Office suite,304
is a popular application for creating presentation graphics. In our PowerPoint task scenario, the user starts305
PowerPoint immediately after powering up the machine and booting the operating system, so that all caches are306
cold. The user then loads a 46-page, 530KB presentation, and finds and modifies three OLE embedded Excel307
graph objects. Each of the OLE objects was of similar size and complexity. As with Notepad, we used a Microsoft308
Test script to drive the application and deliver key strokes at a realistic rate, with each keystroke separated by at309
least 150 ms. An important property of the PowerPoint benchmark is that it has a number of events with easily310
perceptible latencies. Since we were mainly interested in longer events, we pre-processed our data to exclude311
events with latency of less than 50 ms. Figure ??elow shows the results for the two versions of Windows. We312
were unable to run this experiment for Windows XP due to limitations of Microsoft Test when manipulating313
OLE embedded object on that system.314

The shortest event (with latency of less than one second), are due to ”page down” operations and MS-Excel315
operations. Both systems exhibited a similar latency distribution for these events. Six events had latencies316
greater than one second on both systems, in nearly the same relative order. Table ?? lists these long latency317
events.318

All of the long-latency events required disk accesses, which are responsible for the majority of the latency for319
these events. The effects of the file system cache are most clearly observed in the latency for starting the second320
OLE edit, as more of the pages for the embedded Excel object editor become resident in the buffer cache.321

The cumulative latency graph shows that both versions of Windows 2000 and Windows XP demonstrate322
similar performance for the short-latency keystrokes, and the majority of the performance difference is a result323
of the ability of NTFS file system to handle the long-latency events much more efficiently.324

The standard deviations are all below 3% The timing between keystrokes was varied to simulate realistic325
pauses when composing a document, and line justification and interactive spell checking were enabled. We do326
not report results for Windows 9x, because the system does not become idle immediately after Word finishes327
handling an event, making all event latencies appear to be several seconds long.328

Figure 11 shows results for Microsoft Test driven simulations on the two versions of NTFS based Windows.329
Compared to Notepad, MS-Word requires substantially more processing time per keystroke, due to additional330
functionality such as text formatting, variablewidth fonts and inter active spell checking. For the majority of331
interactive events, Windows XP exhibits shorter response time and lower variance than Windows 2000. The MS-332
Word benchmark demonstrates both the strengths and limitations of evaluating interactive performance using333
latency. Compared to throughput measurements, our latency analysis provides much more detailed information,334
such as variations in latency and the distribution of events with different latencies. How ever, the structural335
features of Word push us to the limit of the behavior we are able to analyze. Our analysis indicates that Word336

6



uses a single system thread, but responds to input events and handles background computations asynchronously337
using an internal system of coroutines or user level threads.338

Distinguishing background activity from foreground activity in MS-Word is challenging. We examined the339
results of hand-generated Word input under Windows 2000 OS, compared it to the Testgenerated results, and340
found significant differences. For our hand-generated tests, we ran seven trials, with the same typist and input,341
and found that the event histograms appeared very similar and that the variation in cumulative latency and342
elapsed time was less than 4% across the runs. While the Test results showed that most events had latency343
between 80 and 100 ms, we measured a 32 ms typical latency for the handgenerated input. This difference344
in event latency was accompanied by a compensating difference in back ground activity. The hand-generated345
input showed a higher level of background activity than the Testgenerated results. We also observed that carriage346
returns under the hand-generated input took longer than 200 ms to handle while the longest latency events we saw347
in the Test-generated runs were 140 ms. Our Message API log reveals that Test generates a WM_QUEUESYNC348
messages after every keystroke. We hypothesize that these messages were responsible for the different behavior349
under Test and under manual typing. However, with our current tools, the complexity of Word makes it difficult350
to thoroughly analyze even the simple experiment we present here.351

17 VI.352

18 Summary353

The tools and techniques we have discussed here are a first step towards understanding and quantifying interactive354
latency, but there remains much work to be done. In the absence of system and application source, better355
performance monitoring tools would be useful. Our measurements could be improved through API calls that356
return information about system state such as message queue lengths, I/O queue length, and the types of requests357
on the I/O queue. Currently, some of this information can be obtained, but it is painful (e.g., monitoring the358
Get Message() and Peek Message() calls).359

Even in the presence of rich APIs, the task of distinguishing between wait time and think time is not always360
possible. There is no automatic way to detect exactly what a user is doing. Without user input, we can never361
tell whether a user is genuinely waiting while the system paints a complicated graphic on the screen or is busy362
thinking. For simulations using designed scripts, we can make assumptions about when users think and then363
analyze performance based on those assumptions, but the most useful analysis will come from evaluating actual364
user interaction.365

One factor that contributes to user dissatisfaction is the frequency of long-latency events. We processed the366
Microsoft Word profile of Figure 5 to analyze the distribution of inter-arrival times of events above a given367
threshold. Since most events in the Word benchmark were very short, we chose thresholds around 100 ms.368
Table ?? shows the summaries for these thresholds. Note that the standard deviations are of the same order of369
magnitude as the averages themselves, indicating that there is no strong periodicity between long-latency events.370
Table ?? We then examined the truly long-latency events from the PowerPoint benchmark. Figure 12 shows the371
event latency profile for all events over 50 ms. Both systems show similar periodicity with the better performing372
4.0 system demonstrating smaller interarrival times to match its shorter overall latency. In the case of Word,373
the inter-arrival times are clustered because most events have similar latency. In the case of PowerPoint, the374
inter-arrival times of longlatency events are simply the inter-arrival times of a few particular classes of events.375
The distribution of these events is entirely dependent upon when we issued such requests in our test script and376
is not necessarily indicative of the distribution that might be obtained from a real user. In this test, none of the377
simple keystroke events were responsible for generating long-latency events, rather all the events with latencies378
over 50 ms result from major operations for which user expectation for response time is generally longer. Until379
our tools become sophisticated enough to examine long traces of complex events generated by a real user, further380
analysis of these inter-arrival times is not particularly productive.381

19 Global Journal of Computer Science and Technology382

Figure ?? : Counter measurements for PowerPoint page down operation Over time, our tools will become383
better able to deal with the sophisticated applications that we seek to analyze, but we need the human factors384
community to assist us in understanding the limits of human perception and the models of user tolerance. Some385
of the questions that must be answered are:386

? What are the limits of human perception?387
? How do the limits vary by task (e.g., typing versus mouse-tracking)? ? How do the user expectation and388

tolerance for interactive response time vary by task? ? How does user dissatisfaction grow with increasing of389
latency? ? How does user dissatisfaction grow with the variance of latency? ? What aspects of performance390
contribute the most to user satisfaction?391

20 VII. Conclusions392

Latency, not throughput, is the key performance metric for interactive software systems. In this paper, we393
have introduced some tools and techniques for quantifying latency for a general class of realistic interactive394

7



20 VII. CONCLUSIONS

application. To demonstrate our methodology, we applied it to compare the responsiveness of realistic applications395
running on three popular PC operating systems. Whereas current measurements of latency are generally limited396
to microbenchmarks, our approach allows us to measure latency for isolated events in the context of realistic397
interactive tasks. Our latency measurements give a more accurate and complete picture of interactive performance398
than throughput measurements.399

We have combined a few simple ideas to get precise information about latency in interactive programs. We have400
shown that using these ideas we can get accurate and meaningful information for simple applications and also,401
to a degree, for complex applications. The requirements of these techniques are not out of reach; in particular, a402
hardware cycle counter, a means for changing the system idle loop, and a mechanism for logging calls to system403
API routines are needed. Additional support for detecting the enqueuing of messages and the state of the I/O404
queue would provide a more complete framework for latency measurement. We have shown the limitations of405
our system for applications such as Microsoft Word that use batching and asynchronous computation.406

Measuring latency for an arbitrary task and an arbitrary application remains a difficult problem. Our407
experience with Microsoft Word demonstrates that there are many difficult technical issues to be resolved before408
latency will become a practical metric for system design. Our graphical representation provides a great deal of409
information about program behavior to specialists, but is probably not appropriate for more widespread use. The410
two key components necessary to provide consumers a single figure of merit are further work in human factors411
and some method for distinguishing user think time from user wait time. 1

Figure 1: G

1

Figure 2: Figure 1 :
412

1© 2014 Global Journals Inc. (US)

8



2

Figure 3: Figure 2 :

Figure 4: G

9



20 VII. CONCLUSIONS

4

Figure 5: Figure 4 :

Figure 6: G

10



5

Figure 7: Figure 5 :

Figure 8: Volume

11



20 VII. CONCLUSIONS

12



.1 Acknowledgments

.1 Acknowledgments413

The authors have benefited from the works of Brian N. Bershad, et al, John K. Ousterhout, and Jeffrey C.414
Mogul of Business Applications Performance Corporation. We thank them for their insights and suggestions.415
The authors are greatly grateful and indebted to our research partners and colleagues in the School of Science,416
and Computer Engineering, Abia State Polytechnic, Aba, who have being research fellows and have supported417
our research for some years now. We would also like to thank the Management of both Abia State Polytechnic,418
Aba, and Alvan Ikoku Federal College of Education, Owerri for providing the platform and the right atmosphere419
for this work.420

[Architecture and Programming Manual, Intel Corporation ()] Architecture and Programming Manual, Intel421
Corporation, 1995. 3. (Pentium Processor Family Developer’s Manual)422

[Business Applications Performance Corporation (1995)] Business Applications Performance Corporation,423
March 1995. Santa Clara, CA. (Press Release by IDEAS International)424

[James et al. (1993)] ‘Concurrent Compacting Garbage Collection’. O’ James , Scott Toole , David Nettles ,425
Gifford . The Proceedings of the Fourteenth ACM Symposium on Operating System Principles, December426
1993. p. .427

[Shneiderman ()] Designing the User Interface, Ben Shneiderman . 1992. Addison-Wesley.428

[Mcvoy (1996)] ‘Lmbench: Portable tools for performance analysis’. Larry Mcvoy . Proceedings of the 1996429
USENIX Technical Conference, (the 1996 USENIX Technical Conference) January 1996. p. .430

[Shand (1992)] ‘Measuring Unix Kernel Performance with Reprogammable Hardware’. Mark Shand . #19. Digital431
Paris Research Lab August 1992. (Research Report)432

[Vannamee and Catchings (1994)] ‘Reaching New Heights in Benchmark Testing’. M L Vannamee , B Catchings433
. http://www.zdnet.com/zdbop/ Further information on Ziff-David benchmarks is available on the434
Internet, 13 December 1994. p. . (PC Magazine)435

[Reilly (1995)] ‘SPEC Discusses the History and Reasoning behind SPEC 95’. Jeff Reilly . SPEC Newsletter436
September 1995. 7 (3) p. .437

[Mogul (1992)] ‘SPECmarks are leading us astray’. Jeffrey C Mogul . Proceedings of the Third Workshop on438
Workstation Operating Systems, (the Third Workshop on Workstation Operating SystemsBiscayne, Florida)439
April 1992. IEEE. p. .440

[Bradley Chen et al. (1996)] ‘The Measured Performance of Personal Computer Operating Systems’. J Bradley441
Chen , Yasuhiro Endo , Kee Chan , David Mazieres , Antonio Dias , Margo Seltzer , Michael D Smith . ACM442
Transactions on Computer Systems February 1996. 14 p. .443

[Lindblad and Tennenhouse ()] ‘The VuSystem: A Programming System for Compute-Intensive Multimedia’. C444
J Lindblad , D L Tennenhouse . IEEE Journal of Selected Areas in Communication 1996. (To appear in)445

[Smith (1996)] Ultrafast Ultrasparcs, Ben Smith . http://www.byte.com/bmark/bdoc.htm January 1996.446
p. 139. (Byte Magazine. Additional information on the Bytemarks suite is available on the Internet)447

[Bershad et al. (1992)] ‘Using Microbenchmarks to Evaluate System Performance’. Brian N Bershad , Richard448
P Draves , Alessan Dro Forin . Proceedings of the Third Workshop on Workstation Operating Systems, (the449
Third Workshop on Workstation Operating SystemsBiscayne, Florida) April 1992. IEEE. p. .450

[Ousterhout (1991)] ‘Why Operating Systems Aren’t Getting Faster As Fast As Hardware’. John K Ousterhout451
. Proceedings of the Summer 1991 USENIX Conference, (the Summer 1991 USENIX Conference) June 1991.452
p. .453

13

http://www.zdnet.com/zdbop/
http://www.byte.com/bmark/bdoc.htm

	1 Introduction
	2 Information Lost
	3 II.
	4 Methodology
	5 a) Experimental Systems
	6 b) The Pentium Counters
	7 c) Idle Loop Instrumentation
	8 A B
	9 Running Ready Waiting
	10 e) Idle System Profiles
	11 III.
	12 Benchmarks and Metrics
	13 a) Evaluating Response Time
	14 Micro-benchmarks
	15 Task-oriented Benchmarks
	16 a) Microsoft Notepad
	17 VI.
	18 Summary
	19 Global Journal of Computer Science and Technology
	20 VII. Conclusions
	.1 Acknowledgments


