
© 2014. K. Tejaswi & B. Monika. This is a research/review paper, distributed under the terms of the Creative Commons Attribution-
Noncommercial 3.0 Unported License http://creativecommons.org/licenses/by-nc/3.0/), permitting all non-commercial use, distribution,
and reproduction inany medium, provided the original work is properly cited.

Global Journal of Computer Science and Technology: B
Cloud and Distributed
Volume 14 Issue 4 Version 1.0 Year 2014
Type: Double Blind Peer Reviewed International Research Journal
Publisher: Global Journals Inc. (USA)
Online ISSN: 0975-4172 & Print ISSN: 0975-4350

Mobile Application with Cloud Computing
 By K. Tejaswi & B. Monika

Abstract-

Smartphones enable a new, rich user experience in pervasive computing. The major

problem with Smartphone is that hardware resources

such as CPUs, memory and batteries are still

limited. To solve this resource problem, many researchers have proposed architectures to use server
resources in the cloud for mobile devices. This paper proposes a conceptual architecture where
mobile application platform share the software as a service among multiple users on cloud server via
network.

Index terms: android, multi-tenant, cloud, virtual smartphone.

GJCST-B

Classification : C.1.4 C.2.4 D.4.7

MobileApplicationwithCloudComputing

Strictly as per the compliance and regulations of:

Mobile Application with Cloud
Computing

K. Tejaswi α & B. Monika σ

Index terms: android, multi-tenant, cloud, virtual
smartphone.

I. Introduction

he architecture for remotely using mobile
application on server is called Mobile
Application Platform on Cloud Server that intends

to handle not only user data but also user applications
in a cloud server. This approach changes the
application lifecycle as follows. "Write once, run
everywhere. Install once, use everywhere."Android is an
open-source mobile OS initiated by Google. The main
reason to select Android as a server platform is that it is
able to run not only for Smartphone but also for x86
processor.

Software as a Service (SaaS) represents a novel
paradigm and business model expressing the fact that
companies do not have to purchase and maintain their
own ICT infrastructure, but instead, acquire the services
embodied by software from a third party. Here SaaS
service is provided for mobile users. This paper
proposes Android as a Server Platform that enables
many users to use resources on remote cloud servers.
This paper also proposes a multi-tenant architecture of
Android on cloud server.

Author

α

σ:

Department of Electronics and Computer Engineering.

 e-mail: bhavanakarumanchi@gmail.com

a) Introduction

The various definitions focus on what is believed to be
the key aspects of multi-tenancy:

a. The ability of the application to share hardware
resources.

b. The availability of a high degree of configuration of
the software.

c. The architectural approach in which the tenants (or
users) make use of a single application and
database instance.

b) Multi-tenant Versus Multi-User
It is necessary to make an important, but subtle

distinction between the concepts multi-tenant and multi-
user. In a multi-user application it is assumed that all
users are using the same application with limited
configuration options. In a multi-tenant application, it is
assumed that each tenant has the possibility to heavily
configure the application. This results in the situation
that, although tenants are using the same building
blocks in their configuration, the appearance or workflow
of the application may be different for two tenants.

c) Architecture
Multi-tenancy is achieved through different

approaches. The first approach is by running multiple
users Virtual Machines in a server via a hypervisor. This
approach has the advantage of application usability and
maintenance. From the viewpoint of application
usability, every mobile application that can run on
Android-x86 is usable because each Android OS runs
only one application.

The second approach implements multi-tenant
function in kernel-layer. This approach changes Android
OS to run multiple user applications in separate
processes. This approach is similar to an ordinary thin
client server running multiple user applications in a
server. The main challenge is that original Android

T

© 2014 Global Journals Inc. (US)

G
lo
ba

l
Jo

ur
na

l
of
 C

om
pu

te
r
Sc

ie
nc

e
an

d
Te

ch
no

lo
gy

 V

ol
um

e
X
IV

Is
su

e
IV

V
er
sio

n
I

1

(
DDDD DDDD

)
Y
e
a
r

B
20

14

.

Multi-tenancy is an organizational approach for
SaaS applications. Although SaaS is primarily perceived
as a busi - ness model, its introduction has lead to
numerous interesting problems and research in software
engineering. Despite the growing body of research in
this area, multi-tenancy is still relatively unexplored,
despite the fact the concept of multi-tenancy first came
to light around 2005.

Abstract- Smartphones enable a new, rich user experience in
pervasive computing. The major problem with Smartphone is
that hardware resources such as CPUs, memory and batteries
are still limited. To solve this resource problem, many
researchers have proposed architectures to use server
resources in the cloud for mobile devices. This paper
proposes a conceptual architecture where mobile application
platform share the software as a service among multiple users
on cloud server via network.

II. Multi-Tenancy

Multi-tenancy, this is defined as a feature where
the software running on a server provides services to
many users. It is one of the important features for cloud
computing. From the viewpoint of both economy and
ecology, it is beneficial to share hardware resources
among users. Using a mobile OS would be more
effective than using a desktop OS because the resource
requirements of mobile OSs are smaller.

supports only one display and keypad device since
Android is mainly designed to work on a Smartphone.

Another approach is to create a multi-tenant
function at framework-layer, similar to existing Java-
based multi-tenant framework. This approach remodels
Android the framework and APIs to support multiple
user applications. The main challenge is how to run
existing Android applications in modified framework.

d) Implementation
In the functional overview of the architecture two

new functions are defined for enabling multi-tenant for
Android. The first function is the multiple application
controller installed in an Android OS, and the second is
the user area manager located in a host OS. The
multiple application controller enables running of
multiple applications as if each application is running on
independent physical Smartphone. It is important
requirement to decrease implementation cost for
Android OS because of maintenance about OS version
up problem. The user area manager controls server
resources and act as an interface between a terminal
and the multiple application controllers.

When user wants to use an application, the user
terminal contacts the user area manager and order to
launch application. The user area manager checks the
server resources and select which guest OS to run
application. The multiple application controller launches
the application based on an order from the user area
manager. The user area manager returns VNC
connection information such as IP address and port.

 Terminal

Figure 1 : Functional Overview of Multi-Tenancy for
Android

e) Key Characteristics of Multi-Tenancy
Hardware Resource Sharing: The concept of

multi-tenancy comes in different flavours, and
depending on which flavour is implemented, the
utilization rate of the underlying hardware can be
maximized.

The following variants of multi-tenancy can be
distinguished

• Shared application, separate database.

• Shared application, shared database, separate
table.

• Shared application, shared table (pure multi-
tenancy)

i. High Degree of Configurability
In a single-tenant environment, every tenant has

his own, (possibly) customized application instance. In
contrast, in a multi-tenant setup, all tenants share the
same application instance, although it must appear to
them as if they are using a dedicated one. Because of
this, a key requirement of multi-tenant applications is the
possibility to configure and/or customize the application
to a tenant’s need, just like in single-tenancy .

ii. Shared Application and Database Instance
A single-tenant application may have many

running instances and they may all be different from
each other because of customization. In multi-tenancy,
these divergences no longer exist as the application is
runtime configurable. This entails that in multi-tenancy
the overall number of instances will clearly be much
lower (ideally it will be one, but the application may be
replicated for scalability purposes). As a consequence,
deployment is much easier and cheaper.

Figure 2

:

Architectural Overview of Multi-tenancy

III.

Using

Mobile Devices as a

Virtual

 Cloud

Computing

Provider

a)

Motivation and Scenario

 While considering the case of offloading to
devices with similar characteristics, in which the

Mobile Application with Cloud Computing

© 2014 Global Journals Inc. (US)

G
lo
ba

l
Jo

ur
na

l
of
 C

om
pu

te
r
Sc

ie
nc

e
an

d
Te

ch
no

lo
gy

 V

ol
um

e
X
IV

Is
su

e
IV

V
er
sio

n
I
IV2

(
DDDD

)
Y
e
a
r

B
20

14

performance will be similar to the source node, the
overall performance of the task will be worse than
running it on a single device due to the migration
overhead. Therefore it is needed to explore what makes
the offloading to similar devices beneficial.

On an economical basis, accessing cloud
computing providers is associated with two costs: the
cost of networking plus the cost of using the provider’s
resources. The latter is not high nowadays – it can be as
cheap as 5 USD per month considering the access of a
small on-demand server 2 hours per day 2 - but is
expected to increase to reach higher levels of uptime
and better support .

On the other hand, wireless data fee is still very
high. As an example, in South Korea the subscription
plans for the i-phone 3GS (32GB) are near 70 USD per
month, and if the user wants to download 1 GB of data
he has to pay more than 200 USD. Besides, using 3G
connectivity consumes more battery and is slower than
network interactions with nearby devices using other
interface such as WiFi.

On a technical side, there are several benefits to
consider: First, it is necessary to preserve conventional
offloading benefits, such as allowing applications that
cannot, otherwise, be executed on mobile devices due
to a lack of resources. For example, if memory is not
enough then creating instances of those objects on any
remote device will allow the application to be executed.
Second, performance can be enhanced if the execution
sequence of an application can be reordered for
increasing the level of parallelism.

b) Architecture

Figure 3 : Architecture of Ad Hoc Mobile cloud

The process for the creation and usage of a
virtual cloud provider is simple: If a user is at a stable
place and wants to execute a task which needs more
resources than available at the device, the system
listens for nodes in the vicinity. If available, the system
intercepts the application loading and modifies the
application in order to use the virtual cloud. To support

this process, the architecture proposed consists of five
main features: Application manager; Resource
manager; Context manager; P2P component and;
Offloading manager.

i. Application Manager
It is in charge of launching and intercepting an

application at loading time and modifying and
application to add features required for offloading –
proxy creation, RPC support - according to the current
context. Since the idea is to replace calls to
infrastructure-based clouds, the interception and
modification should focus on modifying the reference to
that provider with a reference to the virtual provider. This
process is performed when an application is executed
the First time. Once an application is modified, its
modified copy is used to avoid further delays.

The Resource Manager: It is in charge of
application profiling and resource monitoring on a local
device. For each application, a profile is defined in terms
of the number of remote devices needed to create a
virtual cloud, and sensibility to privacy and amount of
resources needed for the migration to happen (in
average). This profile is checked by the application
manager whenever an application is executed in order
to determine whether an instance of the virtual provider
should be created or not.

ii. The Context Manager
It wields and synchronizes contextual

information from context widgets and makes it available
in some way for other processes. It is composed by
three subcomponents: context widgets that
communicate with the sources of information; a context
manager itself that handles the information and extracts
new contexts from them; and a social manager that is
used to store the knowledge regarding relationship
between users.

iii. P2p Component
Two basic contexts are of utter importance are

the location and number of nearby devices. The former
is used for the mobility traces. The later for the enabling
of a cloud from the application manager, and it is given
by the P2P component. This component is aware of the
status of the devices in the surroundings: it sends
events to the context manager in case a new device
enters the space, or if an existing device leaves the
space. It utilizes an ad hoc discovery mechanism, and
then groups the nodes using a P2P scheme, allowing for
better scalability and distribution of contents.

Once that information is captured, a context
aggregator located in the context manager generates
high level contexts from the basic contexts. They
represent the consolidated information related to the
user. It is only defined with one high level context for this
framework, which is whether the user is in a stable
location or not.

Mobile Application with Cloud Computing

© 2014 Global Journals Inc. (US)

G
lo
ba

l
Jo

ur
na

l
of
 C

om
pu

te
r
Sc

ie
nc

e
an

d
Te

ch
no

lo
gy

 V

ol
um

e
X
IV

Is
su

e
IV

V
er
sio

n
I

3

(
DDDD DDDD

)
Y
e
a
r

B
20

14

Offloading manager component: It is in charge
of sending and managing jobs from the node to other
remote devices, plus receiving and processing jobs sent
from them. It communicates with the P2P component
once a job is issued to the respective node, and waits
for the results to be delivered back to the application.
This component is the one in charge of detecting
failures in the execution and to re-emit them. It also is in
charge of creating protected spaces for the execution of
the tasks coming from remote nodes. This protected
spaces (represented here as a VM), are utilized to block
the access to sensitive data located on the devices

c) Implementation
A prototype is implemented with framework in

Java. It was selected because it provides all the needed
capabilities in terms of intercepting the loading,
modifying the classes and also there were
implementations available for cloud computing
providers and clients on top of this platform. A main
issue was to modify applications in order to intercept
and replace references to infrastructure-based clouds
with mobile ones. In Java, code interception can be
done using bytecoders in conjunction with a
personalized class loader component, built on top of
regular JVM loader. A bytecode generator creates and
injects the needed code, while the loader allows the
interception of the classes before loading them in
memory. A personalized version of Javassist[14] was
utilized for this purpose.

Communication between devices is based on
the Extensible Messaging and Presence Protocol
(XMPP). Yaja! I is modified as a XMPP client is
implemented in Java. The modifications allow us to be
able to execute Yaja! on mobile devices and to
incorporate two extensions for XMPP: Serverless
Messaging8 and Jabber RPC9. The former is based on
mDNS and ZeroConf, and allows for the discovery and
messaging among devices without the need of an
infrastructure. The latter is a scheme based on XML-
RPC using XMPP as the transport protocol, and it is
utilized to execute the remote tasks associated with a
cloud job.

IV. Virtual Smartphone Over IP

Virtual Smartphone over IP, which provides
cloud computing environment specifically tailored for
smartphone users. It allows users to create virtual
smartphone images in the cloud and to remotely run
their mobile applications in these images as they would
locally. The motivation is to allow smartphone users to
more easily tap into the power of the cloud and to free
themselves from the limit of processing power, memory
and battery life of a physical smartphone. Using the
system, smartphone users can choose to install their
mobile applications either locally or in the cloud.

Running applications remotely in the cloud has
a number of advantages, such as avoiding untrusted
applications from accessing local data, boosting
computing resources, continuing to run applications on
the background and opening up new way to use
smartphones.

Virtual Smartphone over IP system adopts
architecture similar to ones commonly used by server
hosting providers. As illustrated, the system is
composed of a number of external smartphone clients,
a front-end server, a virtual smartphone farm, a
management server and a network file system (NFS).

• Virtual smartphone farm is the most important
component of the system. It is a virtualization
environment that hosts a collection of virtual
smartphone images, each of which is dedicated to
a smartphone user.

• The front-end server admits service requests from

smartphone users across the Internet and
establishes remote sessions to the appropriate
virtual smartphone images. The frond-end server
also allows smartphone users to create, configure
and destroy virtual smartphone images. Once a
remote session is established, the user can install
and run mobile applications on one of these
images instead own physical smartphone.

• The network file system is used by virtual
smartphones for all persistent file storage, in much
the same way that an SD card holds data for
physical smartphones. Since the NFS is easily
scalable, it practically provides each virtual
smartphone unlimited file storage.

Figure 4

: Basic concept of System

•

The management server is used to manage the
virtual smartphone farm. Typical operations of a
management server include the creation of virtual
images in bulk and troubleshooting individual
images.

Mobile Application with Cloud Computing

© 2014 Global Journals Inc. (US)

G
lo
ba

l
Jo

ur
na

l
of
 C

om
pu

te
r
Sc

ie
nc

e
an

d
Te

ch
no

lo
gy

 V

ol
um

e
X
IV

Is
su

e
IV

V
er
sio

n
I
IV4

(
DDDD

)
Y
e
a
r

B
20

14

Users control their virtual smartphone images

through a dedicated client application installed on their
smartphones. This client application receives the screen
output of a virtual smartphone image and presents the
screen locally in the same way as conventional thin-
client technology. Since it is expect that most

users to
access their virtual smartphone images through an
unstable network such as 3G, the image must continue
to run on the farm and be in the same state when the
user is connected again after the user is disconnected in
an expected manner.

 a)

Implementation

A proof-of-concept prototype is proposed using

Android, an open-source mobile OS initiated by Google.
The main reason behind the choice is that Android OS is
not only designed for smartphone

devices with an ARM
processor, but also is being ported to the x86 platform
[4]. Although Android-x86 is originally intended for
netbooks, it gives us an opportunity to create a virtual
image of Android using a bare-metal hypervisor. This
allows each virtual Android-x86 image to tap into the
power of server hardware in a data center. The fact that
a CPU emulator is not needed (i.e. x86-to-ARM) to run
the virtual image is very important since such emulator
always introduces enormous overhead and may
neutralize any performance advantage offered by a data
center.

 Figure 5

: Overview of Virtual Smartphone over IP

 A client application can be implemented on an
Android smartphone. Although the system does not
require the physical and the virtual smartphones to be
on the same platform, this particular setting allows us to
more tightly integrate both environments.

A pair of VNC-based server can be

implemented on client programs. The

server program
resides in each Android-x86 image that run on top of

VMWARE ESXi while the client program is installed in the
physical Android device. The client program enables a
user to remotely interact and control Anroid-x86 images.
The client program transmits various events from the
physical device to the virtual smartphone and receives
graphical screen updates from the virtual smartphone.

A virtual sensor driver can also be implemented
in the Android-x86 image. Most modern smartphones
are equipped with various sensor devices such as GPS,
accelerometer and thermometers. While VNC itself
supports only keyboard and mouse as the primarily
input devices, it can also be extended where client
program can transmit sensor readings (accelerometer,
orientation, magnetic field and temperature etc) to the
virtual sensor driver in the Android-x86 image. The virtual
sensor driver is implemented in such a way that the
sensor readings from the physical Android device would
appear to come from the Anroid-x86 images itself. This
is an important feature as it allows Android applications
in an Android-x86 image to obtain sensor readings from
the physical smartphone without any modification.

Proposed prototype allows applications running
in the cloud to appear like local applications on the
physical device, with functions such as copy-and-paste
between local and remote applications. The prototype
also features remote shortcuts to remote applications in
the virtual smartphone that minimize the number of
steps required for users to launch remote applications.

Furthermore, each short-cut can point to a
different virtual Android-x86 image, and thus allowing
users instant access to remote applications residing in
multiple Android-x86 images in one single menu.

V.

Android OS

The reasons where run Android OS on

hypervisor is implemented are as follows:

•

Maintenance:

An OS image is easy to backup,
restore, and check the server environment similar
to other hypervisor-based virtualization.

•

Application Environment:

The Android OS has
backward compatibility regarding application
runtime. For example, an application that is made
for Android 1.6 runtime can work in Android 2.1
runtime. However, device information such as
sensor, keyboard, and display size, varies from
one physical device to another. Running Android
OS in various setting is simple method to keep
application environment.

•

CPU management:

The Android is not designed to
run an a multiple core environment. Therefore
hypervisor's CPU allocation is important to
strengthen the efficiency of CPU power.

Multiple application controllers is an enabler to
run multi user applications. The discussion is focused
about device support for multi user and how to run
application.

Mobile Application with Cloud Computing

© 2014 Global Journals Inc. (US)

G
lo
ba

l
Jo

ur
na

l
of
 C

om
pu

te
r
Sc

ie
nc

e
an

d
Te

ch
no

lo
gy

 V

ol
um

e
X
IV

Is
su

e
IV

V
er
sio

n
I

5

(
DDDD DDDD

)
Y
e
a
r

B
20

14

Multiple device support for Android Application:
From the viewpoint of the Android application lifecycle,
only one application can use the display, and the other
applications automatically run in the background
process. To solve this issue, multiple display device
support and application mapping is required.

Data Security Integration:

The Android has
security mechanism to protect the application data
sector from other application using user account based
access control. Of course Android is not designed to
use same application for different users. So, if users
share same application data sector, mixing of
unexpected user data may occur.

There are two approaches to solve this
problem. One is virtual SD card approach. When all user
accesses to SD card is controlled, it can prevent access
to another user's application data. The benefit of this
approach is that implementation impact is limited to SD
card driver. Second approach is using a file system
function. GNU chroot enables changing the application
root directory dynamically. This approach would also
prevent unexpected file access.

VI.

Conclusion

This paper, proposes Android as a Server
Platform system that enables the use of sharing server-
side Android OS among multiple users. It is possible to
develop a prototype system about

proposed multi-
tenant Android architecture. It is believed that proposed
architecture shows high performance on virtual image-
based virtualization for mobile applications.

VII.

Acknowledgment

I am really thankful to the Almighty. I am also
thankful to my guide Mrs. Roselin Mary, HOD of
Computer Science Department, AIHT, who helped me
for various researches in the project. I also convey my
thanks to all the staff members of AIHT for helping me
out in this project.

References Références Referencias

1.

M. Satyanarayanan, V.Bahl, R. Caceres, and N.
Davies, The Case for VM-based Cloudlets in Mobile
Computing. : IEEE Pervasive Computing, 2009.

2.

G.H-Canepa and D.

Lee A Virtual Cloud
Computiong Privoder for Mobile Devices. San
Francisco: MCS'10, 2010.

3.

B.G. Chun and P. Maniatis. Augmented Smartphone
Applications Through Clone Cloud Execution.

4.

Y.Royon, S.Frenot, and F.L.Mouel Virtualization of
Service Gateways in Multi-provider Environments.
Heidelberg : CBSE 2006, 2006.

5.

C.P.Bezemer and A.Zaidman Multi-Tenant SaaS
Applications: Maintenance Dream or Nightmare?
Antwerp, Belgium : IWPSE-EVOL' 10, 2010.

6.

E.Y.chen and M.Ito. Virtual Smartphone over IP.
Montreal,QC, Canada: IEEE WOWMOM, 2010.

7.

Android-x86 Project -

Run Android on Your
PC(Android-x86 -

Porting Android to x86). http://

www.android-x86.org/.

8.

Application Fundamentals | Android Developers.
http://developer.android.com/guide/topics/fundame
-

ntals.html

Mobile Application with Cloud ComputingMobile Application with Cloud Computing

© 2014 Global Journals Inc. (US)

G
lo
ba

l
Jo

ur
na

l
of
 C

om
pu

te
r
Sc

ie
nc

e
an

d
Te

ch
no

lo
gy

 V

ol
um

e
X
IV

Is
su

e
IV

V
er
sio

n
I
IV6

(
DDDD

)
Y
e
a
r

B
20

14

	Mobile Application with Cloud Computing
	Author
	Index terms
	I. Introduction
	II. Multi-Tenancy
	a) Introduction
	b) Multi-tenant Versus Multi-User
	c) Architecture
	d) Implementation
	e) Key Characteristics of Multi-Tenancy

	III. Using Mobile Devices as a Virtual Cloud Computing Provider
	a) Motivation and Scenario
	b) Architecture
	c) Implementation

	IV. Virtual Smartphone Over IP
	a) Implementation

	V. Android OS
	VI. Conclusion
	VII. Acknowledgment
	References Références Referencias

