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Abstract6

In the field of search based software testing, genetic algorithm based testing has received a7

major share of attention among researchers during the last few years. Though there are8

advantages for this type of testing, there also exist some practical difficulties which can make9

this technique less attractive for software testing industry. The potential of program slicing in10

testing has not been fully exploited till now and the works that have explicitly demonstrated11

the application of slicing in testing field are rare. Our paper aims to analyze existing12

techniques for software testing and to introduce an approach for software testing using13

program slicing technique. A systematic review of genetic algorithm based works reveals that,14

fitness function design, population initialization and parameter settings impact the quality of15

solution obtained in software testing using genetic algorithm. Based on the conclusions from16

the existing literature, we have probed deeper about the issues in these areas. Making an17

unbiased review like this may help to solve these unresolved issues in genetic algorithm based18

software testing. In this work, we have emphasized and has given clear directions on how19

slicing can be used as a potential tool for practical software testing. In addition, a set of20

research questions have been framed, which may be answered by reviewing the study made in21

this work. This may help future research in this area, leading to major breakthrough in22

software testing field.23
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Abstract-In the field of search based software testing, genetic algorithm based testing has received a major26

share of attention among researchers during the last few years. Though there are advantages for this type of27
testing, there also exist some practical difficulties which can make this technique less attractive for software28
testing industry. The potential of program slicing in testing has not been fully exploited till now and the works29
that have explicitly demonstrated the application of slicing in testing field are rare. Our paper aims to analyze30
existing techniques for software testing and to introduce an approach for software testing using program slicing31
technique. A systematic review of genetic algorithm based works reveals that, fitness function design, population32
initialization and parameter settings impact the quality of solution obtained in software testing using genetic33
algorithm. Based on the conclusions from the existing literature, we have probed deeper about the issues in these34
areas. Making an unbiased review like this may help to solve these unresolved issues in genetic algorithm based35
software testing. In this work, we have emphasized and has given clear directions on how slicing can be used as36
a potential tool for practical software testing. In addition, a set of research questions have been framed, which37
may be answered by reviewing the study made in this work. This may help future research in this area, leading38
to major breakthrough in software testing field.39

1 Introduction40

n God we trust, everything else we test?. This famous quote conveys the idea that almost all the things in this41
world are unreliable without testing [6]. Proper testing makes the software robust and trustworthy and hence the42
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1 INTRODUCTION

importance of testing cannot be overemphasized. From simple home appliances and common automobiles, to life43
support devices like mechanical ventilators and mission critical systems like nuclear reactors, there is an unending44
list of components which depend on some form of software for their proper functioning [27]. These softwares45
in turn depend on testing for their infallibility. Imagine a pharmaceutical company introducing a new drug in46
the market without proper trials and testing. It is not only illegal, but also extremely unsafe and potentially47
deleterious. Similarly, software development without testing makes it unreliable, unusable and even unsafe.48

While one of the main intentions of software testing is to check for and identify errors in software, a software49
tester has a much wider gamut of responsibilities. For example in our real life activity, in an automobile where50
there is a sound due to the loosening of wheel, the defect may be corrected by tightening it, but the alignment51
of the tightened wheel may not be synchronous with the other wheels. Therefore in the next step, the wheels are52
to be aligned for the proper running of the vehicle. Similarly, finding the root cause or in other words, finding53
the dependency during software testing is one of most challenging aspects of software testing as rectifying an54
error may introduce some side effects in the software. Getting the dependency relations present in a program55
serves as the backbone of several other processes in software development, such as regression testing, program56
comprehension, maintenance, reverse engineering and re-engineering [16,17]. This implies that, though software57
testing can be very challenging, it has a very significant influence and marked relevance in software development58
industry. In the earlier days, most of the applications used simple software and they were mostly standalone59
applications. The nature of modern day software can make its testing not an easy task. Many of the software60
used nowadays is real-time and embedded software with web interface. This type of software may have several61
interconnected modules and such software needs to be continuously tested until they get outdated from the world62
market. Technological changes, requirement changes and platform changes raise the need for continuing testing63
in such systems. In such software, the software dependency consideration is an unavoidable factor which decides64
the reliability of the software. Even a minor error may cause great mishap in such software applications. The65
unrestricted size of the source code is another problem plaguing the software testing industry. In the case of large66
commercial software, there will be several modules and lines of code which make software testing process more67
difficult. As testing cost increases with source code size, it should be one of the primary concerns of the software68
tester. In the field of software testing, a software tester cannot leave the scene after finishing the testing process69
[31]. During software testing, the test cases designed for solving the error in some part of the source code may70
prove to be insufficient to solve the bugs occurring some other parts of the source code. This is similar to the71
creation of mutant species. For example, long term use of an insecticide against a particular species of insect,72
makes it vulnerable to development of resistance by genetic modification and mutation in the insect. In such a73
situation, new insecticides have to be used to kill that insect. Similarly, the test cases designed for a particular74
test scenario may fail in some situation. This may be due to the changes made in the source code or due to75
the change in design requirements made as per user specifications. New test cases are to be found for solving76
such problem or the existing test cases should be updated by the software tester. From the above discussion77
it is evident that, a good tester should be a good software designer, an intuitive code developer and a reliable78
maintenance person, all rolled into one. For example, consider the situation where a company decides to change79
its product as per user requirements. Now, the software designer and code developer can fulfill their parts just by80
completing the work in their respective areas of expertise. On the other hand, for the testing to be fully reliable,81
the tester has to understand the changes made by designer and code developer and then develop appropriate82
testing methods. Truly speaking, a good software tester has to be a skilled all-rounder.83

Several methods were developed with an aim to address the challenges existing in software testing industry.84
Among the different software testing strategies, search based testing has received immense attention and85
especially, genetic algorithm based testing has made a marked influence in software testing research [30]. This86
is due to the adaptability of genetic algorithms to handle the testing process and the ability to represent the87
software testing problem as an optimization problem [38]. Considering the volume of work done in genetic88
algorithm based software testing, it is crucial to identify the merits and demerits of this approach. Even though89
genetic algorithm based testing has made a great impact in academic research, only very little attention has been90
given to understand the complexities of using genetic algorithms in practical software testing. This work focuses91
on this and we have tried to highlight the challenges involved in genetic algorithm based approaches for using it as92
a practical tool in software testing. The main reason for choosing this problem in our work is because of the usage93
of genetic algorithms in software testing without knowing the ambiguities in genetic algorithm based testing. In94
this paper, we have mentioned some works which utilize genetic algorithm for testing [38,39,40,44,51,52,54]. We95
can see that none of these works have adopted any general operator setting for testing purpose. The inherent96
nondeterministic nature of the genetic operators makes the program testing process a demanding task. The97
strength of using genetic algorithm mainly depends on setting the genetic parameters to their appropriate values98
and this in turn depends on the problem to be solved. This itself is a major challenge faced by testers.99

In this work, we have suggested a program slicing approach for software testing and have highlighted the100
strengths of using program slicing as a tool in software testing industry. It was Weiser who introduced slicing in101
1979 [15,53] and his work encouraged many research works developing slicing algorithms. According to Weiser,102
slicing criterion consists of two parameters and it is represented as (V, This property of slicing is highly relevant,103
as source code size is a major concern is modern day software. Instead of analyzing the whole program, slicing104
reduces the program search space which in turn minimizes the testing effort. Setting the slicing criterion with105
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respect to the variable with incorrect value can help to identify the portion of source code which causes error106
during program testing. Here the manual effort of the program tester is reduced considerably as there is no need107
to consider the whole source program [11,47]. Slicing also helps to trace program dependencies which are very108
crucial in testing. In several works it has been mentioned that program slicing may be used for testing purpose109
[17,20,21]. None of these works gave a clear picture of how to utilize slicing to make testing more meaningful.110
Apart from program testing, slicing can be used in several applications such as program debugging [34,53],111
program comprehension [22] and program maintenance [17]. In this paper, we have demonstrated a forward112
slicing approach for testing and have tried to mark the merits of program slicing based testing approaches. The113
remaining section of the paper is organized as follows. Section 2 gives the basics of program slicing and genetic114
algorithm. Section 3 compares program slicing based testing and genetic algorithm based testing approaches.115
Based on the observations made in section 3, some research questions are framed in section 4. In section 5, we116
have given an explanation of the research questions in section 4. Threats to validity of n), where ’V’ is a set of117
variables and ’n’ is the program point [53]. In program slicing, source code size is minimized by converging focus118
on some specific program part implied by the ’slicing criterion’ [20,49].119

2 Global120

3 II.121

4 Basics122

As we are doing a detailed study of genetic algorithm based and program slicing based software testing methods,123
we shall go through the basic principles of genetic algorithm and program slicing concepts. Based on the124
conclusions from the exiting literature, we will have to probe deeper about the issues in these areas. Making125
an unbiased review like this may help to solve the issues in genetic algorithm based software testing and at the126
same time help to understand the relevance of program slicing in software testing. This may help the future127
researchers working in this area.128

5 a) Genetic Algorithms129

In order to conduct a proper review of genetic algorithm based software testing, it is essential that one should130
be familiar with the basic concepts and terms in genetic algorithm. This is dealt with in this section. Genetic131
algorithm is a type of evolutionary algorithm and is considered as the best and the strongest of all evolutionary132
algorithms [18,24]. It is a type of search technique developed by John Holland and works on Darwin’s principle of133
survival of the fittest. Genetic algorithm uses the technique of natural genetics, representing a computer model of134
biological evolution. Genetic algorithms have the ability to solve a variety of optimization and search problems.135
Several testing techniques use genetic algorithms believing that testing may be carried out in a better way using136
the natural evolutionary process present in them [39].137

Genetic algorithm identifies an optimal solution for a problem by applying natural evolutionary techniques to a138
group of possible solutions referred to as -population? [18,40]. After each generation, a new generation is formed139
which is better than the previous generation. The series of steps involved in genetic algorithm are population140
initialization, selection, crossover, mutation and termination. A string of digits called chromosomes are present141
and each individual of the string is called a gene. Each individual in the population has a fitness value which142
decides the quality and performance of that individual. Greater the fitness value better will be the problem143
solving capacity of an individual [25]. Collection of chromosomes makes up a population. The initial population144
is created randomly and the fitness of the individuals in the population is calculated. This information is used145
to select the best candidates for forming the next generation parents. After selecting parents of the successive146
generation, the next step is to combine these candidates to form the offspring. Crossover operation is used147
to perform this [36,54]. Crossover enables the selection of good features from parents to form the offspring.148
Mutation is applied to the offspring to create better quality individuals. Mutation is defined as the process of149
altering the genes in the chromosome [43]. A new generation is chosen from the offspring based on the fitness of150
the individuals. These individuals are considered as parents of the next generation. This cycle is repeated until151
a global solution for the problem is obtained. The basic steps of genetic algorithm are given in algorithm 1. This152
section deals with some of the common terms in program slicing. Slicing is defined as the process of deleting153
all those statements from a program which cannot affect the values of a variable of interest. In other words, a154
slice is a subset of source program statements. Slicing is performed based on slicing criteria. A slicing criterion155
comprises a program location and a set of variables known as slice set. If P is a program, x is a statement in P156
and y is a variable in P, then the slicing criterion (C) is given as C= (x, y). Program slicing can be divided into157
various types. Based on slicing criteria, the two main types are static and dynamic slicing [32,35], while based158
on direction of slicing the two main types are forward and backward slicing [22,49].159

6 i. Static Slicing160

A slice constructed by ignoring those parts of the program that are not relevant to the values stored in Year161
2014( D D D D D D D D )162
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9 A) SOFTWARE TESTING

C the chosen set of variables at the chosen point is known as static slice [8,34]. As mentioned above slicing163
criterion C= (x, y), where x is a statement in the P (program) and y is a variable in P. Given a variable y’ and a164
point of interest x’, slice will be constructed for y at x. An example program is given in table 1, where the static165
slice criterion is given as <11, a>. The result will be the set of statements <4, 5, 6, 8, 9>. Backward slicing166
gives all the program statements which affect the value of a particular variable at a particular point [TIP 1995].167
Forward slicing gives all the program statements which are affected by declaring a variable at a given point in168
the program [22,29]. ii. Dynamic Slicing The concept of dynamic slicing was given by Korel [33]. The set of169
statements that affect the value of a variable for one specific input is known as dynamic slice. In dynamic slicing170
we have to consider three parameters. First one is the point of interest within the program, second one is the171
variable and the third one is the sequence of input values for which the program was executed. Dynamic slicing172
criterion is defined as C= (x, y, i). Here x is the statement in the program, y is the subset of variables in the173
program and i is the input value [11]. A sample program to be sliced is given below in table 2. The variable174
with respect to which slicing is to be done is p, slicing point is the end of the program and input given is n=0.175
In static slicing though the size of the slices obtained will be large, all possible executions will be considered. On176
the other hand, in dynamic slicing the down side of small size of slices is that the result will be focused only for177
a specific input [32].178

7 III.179

8 Evaluation of Testing Approaches180

This section analyses the testing approach based on genetic algorithm and introduces our approach based on181
program slicing. Here we have identified some points to justify our analysis and these are used to frame the182
research questions in section 4. We have divided this section into three parts. In the first part the purpose of183
software testing is explained. The second part deals with genetic algorithm based software testing. Some relevant184
works in that field and our observations regarding genetic algorithm based testing are given in this section. In185
the third part we have introduced our program slicing based testing approach and have described its benefits186
and importance.187

9 a) Software testing188

The section gives an insight into the basics of software testing. In software testing the target program is executed189
to identify the errors. This is followed by debugging to rectify the identified errors [21]. Before starting the testing190
process, the objectives or the goals should be properly set and the tester should be aware of C the strategy to be191
followed to achieve the set goals [10]. It is very essential that the tester should have an idea of user requirements192
and should also be able to identify the conditions which will have an adverse effect on the selected testing strategy.193
The main objectives of testing are [4,41] ? To affirm that the software developed is error free ? To check whether194
the developed software is functioning correctly according to the program developer and program tester ? To195
confirm that the developed software works correctly without causing any data loss. Therefore developing an196
effective method for testing is an inevitable part of all software systems b) Genetic algorithm based testing197

In the past few years, search based software testing, especially evolutionary algorithm, has gained immense198
popularity [2,9]. A graph is shown in figure 1, which shows an increase in rate of publications and research199
works in search based software testing during the period 1975 to 2010 [37]. Among evolutionary algorithms,200
genetic algorithm is one of the widely researched techniques for software testing. They are included in dynamic201
testing techniques [26]. In dynamic testing, the program is executed based on given input data to obtain the202
corresponding output, while in static testing, the program has to be analyzed line by line to check for the errors203
in the program. Thus in static testing, the ability to find errors depends on the tester’s experience. Genetic204
algorithms are used to perform automated software testing due to their ability to represent the testing problem205
as an optimization function. Finding a solution for this optimization problem gives a solution for the testing206
process also. There were several attempts to generate test data using single population, multiobjective, master-207
slave, fine-grained and coarse-grained genetic algorithms [1,9]. We have limited our literature review to some of208
the most relevant works which have used the concepts of genetic algorithm and single objective fitness function209
in testing. A detailed study of these works is done to make an assessment of genetic algorithm based software210
testing approach. In the next paragraph, we discuss some of the most relevant works in genetic algorithm based211
software testing.212

A path wise test data generation using genetic algorithms was introduced by Pei et al. [45]. A control flow213
graph was constructed and the paths were individuals. A branch coverage criterion was used by Jones et al. [30]214
in their work for generating test data using genetic algorithms. Hamming distance approach was used to design215
the fitness function and their approach could cover programs which contain up to three loops. Pargas et al. [44]216
developed a tool called TGen which uses genetic algorithm for program testing. A parallel processing approach217
was used in TGen to improve the testing process. A path coverage and branch coverage approach was used in218
TGen. The performance of TGen was compared with a tool called manually selected from the graph. Only two219
loops were covered at a time. They designed the fitness function based on the paths selected from the graph.220
Genetic algorithm based testing was used by Roper et al. [46] for testing C program. They used the branch221
coverage criteria. In their approach, a random method for population selection was used and this population222
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was subjected to crossover and mutation to generate better Random which is a tool based on random method.223
Test cases which covered the largest number of predicates were given the highest fitness values. Bueno et al.224
[7] developed a method for software testing using genetic algorithms. They used the path coverage criteria and225
introduced the path similarity metric as fitness function.226

The population initialization was made by checking the previous nature of the population. This helps to create227
better individuals in the successive generations. C some predicate function. Their tool had many limitations like228
the inability to handle Boolean variables. Doungsaard et al. [12] used a genetic algorithm based approach to229
generate test data for UML state diagrams. They used the transition coverage approach and the fitness function230
was designed based on the number of transitions fired by the input sequence. The population initialization231
was made based on the nature of the previous generation individuals. Hermadi et al. [1] used a path coverage232
criterion to genetic test cases using genetic algorithm. The overall fitness function was a i. Population generation233
This includes initialization and representation of the population, strategies for population selection and the234
determination of population size. The population which is initialized may itself be the set of initial potential235
solution. The representation of population is another issue. Population can be represented as a group of 0’s236
and 1’s, as a group of integers, as decimal numbers or as characters. In some problems a tree representation is237
also possible. Based on the problem, appropriate method of representation is applied. Improper representation238
of the individual in genetic algorithms may cause unexpected variations in the final result [24,25]. measure239
of aggregation of individual’s fitness function. Table 5 gives a list of some of the works which is uses genetic240
algorithms for software testing.241

A review of these works, throws up some of the pertinent issues in genetic algorithm based software testing.242
These factors, which play a major role in genetic algorithm based testing and influence its outcome to a significant243
degree, are given below: The next major concerns related to population are the population selection strategy244
and population size. Either a random method or a heuristic based method is used to initialize the population.245
In the random method, population is selected randomly. In the heuristic based approach, instead of setting the246
population randomly, some tests are performed and the individuals are selected based on the test results. This247
shows that, population selection strategy can be based on several methods to select the appropriate population.248
The population size can also be a confounding factor because if the population size is too small the genetic249
algorithm will not search all the possible solution areas to procure an optimal solution [9,12]. In this case, the250
individuals may reproduce abundantly and the resulting diversity in population may cause the individuals to251
converge to a point which appears to be better than the neighboring points. In such a situation, even though252
there is a chance that a better solution exists, it is missed as the population size is already declared to be very253
small. This is known as the premature convergence problem [40]. Hence declaring the correct population size still254
remains a problem in genetic algorithm and research is still ongoing in this area. Before using genetic algorithm255
for software testing, these inherent issues have to be addressed. Due to the shortcomings of single population256
genetic algorithm, parallel genetic algorithm has been tried in many applications [30]. Parallel genetic algorithms257
are similar to single population genetic algorithms running in different machines. The performance of parallel258
genetic algorithms is affected by the way in which the computers are networked. In effect, even though parallel259
genetic algorithms may speed up the computation process compared to single population genetic algorithm,260
several issues in the network implementation topology needs to be dealt with.261

Genetic algorithm parameter settings Minimize Objective Function (f) = 10-x Population type: Double vector262
Fitness Scaling: Rank All the parameters except the population size are kept constant. The result obtained for263
various population sizes is given in Table 6. The objective function value and the value of the best individual264
present in all iterations are also displayed. From Table 6, it can be inferred that as the population size increases,265
the result obtained becomes better. Another illustration is given below in figures 2 to 6. These show that, as266
the population size increases beyond a certain size, the time taken for fitness function optimization increases.267
We have used the Genetic algorithm solver tool in Matlab 7.8 to give an idea of the population initialization268
issues presented above. The initial parameter settings for the Genetic algorithm tool are given below. When the269
population size is defined as 20, 30 and 70 respectively, the corresponding fitness values are obtained and the270
genetic algorithm terminates when the maximum number of generations are exceeded. The time taken for these271
three processes is almost the same. These can be inferred from the results given in figure 2, 3 and 4. In figure272
5 when the population size is 1000, the time taken for fitness function optimization is greater compared to the273
time taken for population size 20, 30 and 70 and here also the genetic algorithm terminates when the maximum274
number of generations exceeded the limit specified. In figure 6, it can be seen that only 44 iterations were able to275
run within the time limit specified as the time limit exceeded the maximum value. Here, an increase population276
size caused an overrun in time limit. These results point out that population initialization can influence the277
final result and the population initialization process is problem dependent. For small non-critical optimization278
problems, the size of the population may not be a critical factor. In critical problems, the population size is very279
crucial [50].280

10 ii. Setting of parameters281

In genetic algorithm based program testing, the parameter setting needs special attention. For example in the282
case of crossover and mutation, their rates should be not be set at either high or low levels. According to the283
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15 THE SCHAFFERF6 FUNCTION IS DEFINED AS:

problem’s nature the parameter settings should be adjusted. The following section gives a description of some of284
the operator settings used in genetic algorithm based testing.285

11 a. Selection286

In selection, individuals are selected from the parent population for crossover and mutation to produce next287
generation individuals [28,45,51]. There are different types of selections like roulette wheel, tournament selection,288
random selection, best selection etc. In roulette wheel selection individuals are selected according to their fitness.289
Each individual will be assigned a fitness value and the normalized fitness value is calculated. After calculating290
the normalized fitness value, accumulated fitness value is calculated by adding the fitness value of the concerned291
individual and than the remaining individuals. Tournament selection is a refinement of roulette wheel selection.292
Here roulette wheel selection is repeatedly applied to produce a group of population and the best individual293
is selected from this group. In random selection method, the chromosome is selected randomly from the given294
population whereas in best selection method the individual with the highest fitness value is selected.295

There are many other types of selection methods, but we have mentioned only a few. There is no specific296
rule which implies the usage of a particular type of selection method during software testing process. This is297
one of the greatest difficulties in genetic algorithm based software testing, as the final outcome of testing differs298
according to the type of selection method used.299

12 b. Crossover300

Crossover is the process of combination of parent chromosomes to produce offspring ??HOLLAND 1979]. The301
process of crossover affects the process of test data generation using single population genetic algorithm. The302
most commonly used types of crossover are one point crossover, two point crossover and uniform crossover.303
For example consider two parent individuals where the chromosomes are represented as bit strings: Parent304
1:1010101010 Parent 2:1000110000305

If the crossover occurs after the sixth bit in the parents, then two children will be formed and the last four306
bits of both the parents are interchanged. The result can be represented as follows: Child 1:1010100000 Child307
2:1000111010308

In uniform crossover, the crossover points are not selected. The parent bits are swapped randomly with 50%309
probability. If the third, sixth, seventh and tenth bit positions of the parent individuals are swapped, then310
two children will be produced and they can be represented as follows: Child 1:1000110010 Child 2:1010101000311
By using uniform crossover the diversity in the individuals produced is more compared to single and two point312
crossover and a better result is obtained. A better result for a given problem may be obtained, even if the testing313
process is done with the most suitable type of crossover. Solving this uncertainty in genetic algorithm crossover314
selection still remains as a challenge.315

13 c. Mutation316

Mutation is the process of altering the value of genes present in the chromosome for creating genetic mutation317
rates can be set to specific values. If the rate of mutation is set to high value, the search will become similar to a318
random search and if the mutation rate is very low then there will be no diversity in the population. Therefore319
generally the value of mutation is set between 0.01 and 0.05 [40]. From table 5, we can notice that the mutation320
rate is set to different values in the listed works. The main problem faced here is that, varying the mutation rate321
results in a change in the final result and this issue still remains unresolved in genetic algorithm based testing322
process.323

14 d. Uncertainty in Parameter Settings324

Even after testing a program using the best available genetic parameters, a better solution or the same solution325
can be obtained even if we use less competing methods of crossover, selection and mutation for solving the same326
problem. This shows the uncertain nature of genetic algorithms [38]. We have some examples to illustrate the327
uncertainty of genetic algorithms. Our aim is to use genetic algorithms to minimize the SchafferF6 function,328
which is a published benchmark function. SchafferF6 function is a complex optimization problem whose solution329
can be obtained by applying genetic algorithm based optimization methods. We have considered SchafferF6330
function in our optimization test because this function is a multidimensional function. It is having non-linear331
and oscillatory nature around the optimal solution [18]. This means that SchafferF6 function is having more332
than single local optima where the genetic algorithm may get halted.333

15 The SchafferF6 function is defined as:334

Here function minimization is done using twopoint crossover and uniform crossover. Initially the objective335
function or the fitness function minimization is done using two-point crossover. Then the experiment is repeated336
again using the same parameter settings. The resultant values are noted in each case. Then the objective function337
minimization is done using uniform crossover. Here also the experiment is repeated using uniform crossover and338
the values are noted. The results are shown in the table 7, table 8 and table 9.339
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It has been said that when uniform crossover is used for solving a problem, not only the result will be better340
compared to two point crossover, but also the convergence happens faster [30]. From the illustrations diversity341
[18]. Diversity in the population will create better individuals compared to a population without genetic diversity.342
According to the problem to be solved, given below in tables 7, 8, 9, we can see that this is not true in all the343
cases. In the first trial, the value of the Year 2014 SchafferF6 function obtained using uniform crossover is better344
than two point crossover. Further in this case, the time taken is more compared to two-point crossover. In the345
second trial, the time taken for minimizing the objective function using uniform crossover is less compared to346
two-point crossover. Here we can see that the fitness function has lower value when two-point crossover is used.347
Even though there is a little bit difference in time taken to minimize the function, the quality of the result is348
better in two-point crossover. In the third trial also the value of the fitness function is better when two-point349
crossover is used. Here the time take is more when two point crossover is used. When uniform crossover is350
used in the third trial it can be noticed that the value of the fitness function is greater than the value of the351
fitness function got when two point crossover is used and this indicates that the quality of test data got using352
two point crossover is better than the quality of test data obtained using uniform crossover. We can see that the353
time taken for two-point crossover is more compared to time taken when uniform crossover is used. Even though354
the convergence takes place faster in uniform crossover, it is not mandatory to get minimal value of the fitness355
function in all the trials. Form these observations we can conclude that, even though there are some general356
assumptions about the best methods of crossover, selection and mutation, which are to be used for solving a357
problem, it may not be possible to decide the best combination of these genetic factors as parameter setting in358
all the cases [26]. Therefore while using genetic algorithms for about the problem which is to be solved. All these359
make the use of genetic algorithm for effective program testing highly complex and impractical.360

16 iii. Design of fitness function361

Applying genetic algorithm in program testing requires optimizing the specified fitness function. A fitness function362
should be designed in such a way that it gives optimal solution for a given problem. Defining the fitness function363
imprecisely may lead to a wrong solution or may cause the problem to be stuck in the local optima [18,40].364
The misleading nature of fitness function creates several problems. For example, the individuals with lower365
fitness values may be finalized as the optimal solution even when better individuals exist. This mainly occurs366
when the population size is smaller, because with a small sized population, the result may get converged at367
a faster rate than normal. Thus, in a limited population, if one of the individuals surpasses the neighbouring368
individuals, then that point or individual will be considered as the best solution even when better solutions exist.369
Considering these local points as the candidate solutions and assigning higher fitness values to them will result370
in a diversion from the original solution. This results from the inherent weakness of genetic algorithms [40]. A371
group of researchers used an evolutionary algorithm along with a reprogrammable hardware array and the fitness372
function was designed to output an oscillating signal. At the final stage of the experiment, the researchers found373
that the circuit had become a radio receiver which was able to pick up and relay an oscillating signal from the374
nearby electronic device. Here, there was a deviation from the main goal itself and this was due to the fault in the375
design of the fitness function [19]. Each one of the many works which use genetic algorithm for software testing376
has designed their own fitness function [37]. Referring the works given in table 5, we can see that none of the377
works have used similar type of fitness function. For example, Bueno et al. [7] have used a path similarity metric378
as fitness function and Michael et al. [40] have used the fitness function based on some predicate function. Even379
though there are some good methods for fitness function calculation, none of them is universally accepted as the380
gold standard. The fitness function is designed based on the analysis of a problem [24]. In other words, fitness381
function is problem dependent and this is one of the hurdles to be surmounted while using a genetic approach in382
software testing.383

17 iv. Response time prediction384

Fitness function optimization is a heuristic process and the optimization time and effort varies according to the385
nature of the problem [2]. Therefore, the exact time required for testing a program cannot be accurately predicted.386
The time varies as the parameter settings are changed. These can be inferred from the program testing; we can387
make only a few assumptions C graphical figures 2 to 6. From these figures, it is clear that solving a problem388
with a lower population size will take less time compared to solving the same problem with a higher population389
size. Even though this is not a major concern in most of the testing applications, some care has to be taken390
while using genetic algorithm based testing in safety critical applications. In today’s world, the workings of all391
applications are based on real time software. In real-time system the response time plays a critical role and due392
to the long computation time and uncertainty in the duration of computation time, genetic algorithms cannot393
ensure constant response time in all the executions [50]. Therefore before implementing the genetic algorithm394
based system in the original system, a prototype model checking has to be carried out. As stated above, since395
the performance of genetic algorithm changes according to the change in the parameter values, using genetic396
algorithms to solve such real time problems should be done with utmost care.397
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21 C. ANALYZER & TESTER

18 c) Software Testing using Program Slicing398

In the previous section we saw an overview of genetic algorithm based software testing. We have also explained399
some issues which can make genetic algorithm based software testing less practical in testing industry. This400
section looks into the possibilities of program slicing for software testing.401

As mentioned in section 2, the concept of slicing was introduced by Weiser and his works encouraged the402
application of slicing in several fields like program comprehension [22], testing [20,21,47], debugging [33,34],403
software maintenance [16], program cohesion [43], refactoring [35], reverse engineering [8] etc. We shall see how404
it can be used for software testing. In software testing, locating the erroneous statements is the key part. As405
program slicing deletes all those statements from a program which cannot affect the values of a variable of interest,406
slicing can make the whole software testing process more manageable. Even though some works have mentioned407
the use of slicing in testing [3,5,20,21,47], work that has explicitly shown how program slicing may be applied408
in software testing is extremely rare to the best of our knowledge. We have mentioned some fundamental works409
in table 10 which apply slicing for identifying test cases during the various phases of software development life410
cycle. In these works we can notice that they have either mentioned the need of slicing during regression testing411
process or during the design phase for identifying test cases before the coding phase. Our work illustrates how412
test cases may be obtained from slices during the testing phase itself.413

19 i. Testing Approach414

We have used a forward slicing approach for program testing. Forward slicing is recommended to locate the415
parts of the program affected by some modification and the sizes of the forward slices are smaller than that of416
backward slices in some scenarios [22]. In other words, when testing is done with an aim of identifying the errors417
caused by wrong input variable declaration, forward slicing is more meaningful than static slicing [22]. If the user418
is supposed to find errors in the output variable then static slicing is more useful than dynamic slicing. In such419
scenarios it will be more meaningful to apply forward slicing rather than backward slicing. In forward slicing, if a420
particular statement is affected by the value of the slice variable which is declared at a particular point, then that421
statement can be added to the list of slice statements. Otherwise there is no need to update the slice list. The422
whole process will be continued until slicing is performed for all the required variables. The result of the whole423
process will be a set of statements. These statements are known as forward slice of a particular variable. The424
forward slicing algorithm suggested in this work is given in algorithm 2 ii. System Description An overview of425
our system model is given below. Our system is implemented using Java and Netbeans IDE. Netbeans is having426
extensible plug-in system and Java is having object-oriented features. This is why they have been used. The427
main modules of the implemented system consist of the following parts, given in figure 7. 1. Input unit 2. Slicer428
3. Analyzer and tester The input unit has the facility to select the software program which is to be tested. After429
selecting the program, the variables in the program are listed. From the listed variables, the user can select the430
variables for slicing criterion.431

20 b. Forward Slicer432

This is the main part of the system. In this unit, slicing is performed for the program which is to be tested.433
After getting the program and the list of variables from the input unit, forward slicing is performed to identify434
the relevant statements in the selected program with respect to the slicing criterion. Forward slicing is performed435
according to algorithm 2 given in section 3.3.1. A sample program code is given in Sample 1 and the working436
of forward slicing algorithm is explained below. In the program code given above in Sample 1, forward slicing437
is applied with respect to the input variable basic’. The slicing criterion given is C= ??3, basic). The result of438
forward slicing is given in Result The slicer will analyze the statements 4-16 in Sample 1. Here statements 4, 6,439
7, 9, 11, 12, 14, 15 will execute based on the value substituted for the variable ’basic’. We can notice that the440
dependencies are checked in a forward direction. The final value of variables rent’, da’ and total’ are dependent441
on ’basic’. Thus forward slices obtained can find if any errors are present in the dependent statements also. The442
resultant statements from forward slicing are given in Result 1.443

21 c. Analyzer & Tester444

In this unit the forward slices obtained are verified to find out whether they are significant in testing or not.445
Among the forward slices given above in Result 1, these statements are relevant in testing. Testing using Slicing446
4. if (basic < 1000) 6. rent= basic * 12 /100; 7. da= basic * 60 / 100; 9. else 11. rent= 700; 12. da= basic * 80447
/ 100; 14. total =basic + rent + da; 15. System .out. println (-total = -+ total);448

The execution of the rest of the program statements is dependent on the value of the variable ’basic’. Here the449
tester identifies the test sequence statements which are relevant for generating the required test data values from450
the forward slices. In order to find the possible value of ’basic’ present in the conditional statement of the static451
slice, an equivalence partition method is applied. Equivalence partition is considered as the basis of all testing452
data generation methods and in this method, when a program works for a particular value in a partition, it may453
work for the other values in the same partition and this in turn helps to avoid duplicate testing [31]. Moreover,454
equivalence partition method is comparatively easy and reliable [31]. In equivalence partition, the input domain455
is divided into a number of sub domains. The sub domains make up the equivalence class. If a test data value456
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in a class or partition is considered as a right value, then all the values under that particular class is considered457
as good values. We have to generate a value for the variable ’basic’ using equivalence partition. From the slice458
given in this section, conditional constraint is given is ’if The invalid test values is applicable to the ’else’ part of459
the conditional clause ’if (basic < 1000)’. Substituting some of the test data values of ’basic’ in the expressions460
will give the value of ’da’ and ’rent’ and finally the value of ’total’ may be calculated from these data.461

IV.462

22 Research Approach463

In the previous sections, we have analysed program testing using genetic algorithm and program slicing methods.464
Some issues related to genetic algorithm based testing have also been pointed out. Based on these observations,465
we have framed some research questions (Q) in the coming section. The aims of the research questions are also466
mentioned and this may help future research work in this area. The aim of this research question is to analyze467
the effectiveness of genetic algorithm based software testing. This question also intends to deal with the practical468
difficulties of this type of testing.469

Q2. In the software testing context, why is program slicing considered a better approach?470
This question aims to analyze the strengths of program slicing in testing and to study how program slicing471

makes testing more effective and reliable.472

23 b) Review Method473

obtaining the slices. As our focus in on program slicing based software testing, we have selected some leading474
works which have mentioned the term ’testing’ along with program slicing which is listed in table 10. Also, we475
have considered some of the fundamental works which use genetic algorithms for test case generation. We have476
not considered test selection, prioritisation etc. A summary of the referred works are given in table 5. The study477
made in section 3.2 answers the research questions.478

V.479

24 Results480

In this section we have tried to give an explanation to the research questions based on the studies mentioned in481
the previous sections.482

Q1. What is the future of genetic algorithm based software testing?483
We have provided only the most relevant points as solution to the research question. For this, the question484

Q1 has been split into some secondary questions (SQ). Providing appropriate answers to the secondary questions485
leads to an unbiased review of genetic algorithm based testing.486

SQ1. What is the role of genetic operators in genetic algorithm based testing?487
All the reviewed works use only single point crossover, except Jones et al. [30] work. In Jones’s et al. [30]488

work, uniform crossover is used. Also, while others use simple mutation and Jones’s work uses reciprocal and489
weighted mutation. Even though several works which explain the different types of operators and their relevance490
in different contexts exist, none of them have exploited these operators. They have used only the direct type of491
operators in their work. All these show that, the result obtained by using these common types of operators may492
be improved by substituting the testing process with a general operator selection strategy. This has not been493
decided till now in genetic algorithm based testing.494

25 SQ2.495

Does population initialization and representation affect software testing?496
From section 3.2, we can see that the population is selected randomly in most of the works. Selecting the497

population based on some heuristics improves the software testing process. Apart from this, we can see that498
only single population is used in most of these works. Only Wegner’s et al. [52] work use multipopulation along499
with single population. Even though a lot of research works are conducted continuously to decide the best type500
of population initialization, selection etc., some of the most common works which used genetic algorithm for501
software testing have experimented very little with population initialization concepts, various types of slicing,502
slicing algorithms, applications of slicing etc. None of them have mentioned how to proceed to the testing phase503
after initialization and the lack of a general strategy for methods. Again this shows that the quality of genetic504
algorithm based testing is dependent on population505

26 C506

We have referred to some relevant works in the field of genetic algorithm and program slicing based testing. A507
lot of works use genetic algorithms for test selection, test prioritisation, hardware testing etc. Apart from this,508
several works use a combined approach which uses genetic algorithm and other search algorithms for software509
testing [9]. Here we have mentioned only those works that describe software testing and test data generation510
using single population genetic algorithm. We have not considered other variations of genetic algorithms like511
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28 SQ4. PROGRAM DEPENDENCY

parallel genetic algorithm as they are not employed in testing literature. We have reviewed several papers which512
describe slicing population setting makes the whole testing process unpredictable.513

27 SQ3.514

What are the problems related with fitness function design during software testing?515
Applying genetic algorithm in program testing requires optimizing the specified fitness function. A fitness516

function should be designed in such a way that it gives optimal solution for a given problem. Defining the fitness517
function imprecisely will lead to a wrong solution or in some cases the problem may get stuck in local optima518
[18,25] suggested a method to remove variables which can lead to local optima. Even though, they were able to519
alleviate the problem of local optima, their approach didn’t work for inner loop variables. Another problem faced520
during the fitness function design process is the dependency problem. While designing the fitness function for a521
target node, the dependent nodes which affect the target node should be considered. Since most of the works,522
which use genetic algorithm based approach for testing, do not use data flow criteria, the fitness value may not523
be correct. Some works were done on this area to minimize this problem, but they could not explain the best524
strategy for fitness function design in the context of testing [26,50].525

28 SQ4. Program dependency526

In most of the genetic algorithm based software testing, program dependency is not correctly followed [37,24].527
In genetic algorithm based program testing, initially all the statements in the program should be analyzed to528
identify the relevant statements or we have to get the list of statements that will have a potential role in software529
testing. From the testing point of view, checking the whole program line by line is an unnecessary waste of530
effort. Instead of that, if we are able to find the program statements which help in program testing, such as those531
that assist in finding the test data values during testing, the whole testing effort will be reduced considerably.532
In addition, the testing can be made more methodical. Identifying the relevant statements which contribute533
to program testing, and analyzing those statements can give the dependence relation present in the program.534
Utilizing this dependence relation helps to trace out the errors in a program. For example, consider the sample535
control flow graph given below in Figure 8. All the program statements will be checked line by line from the536
starting point of the program. The statement basic<1000’ assist in test data generation and suitable test data537
values should be generated for the variable basic’. The value of basic’ is found out by optimizing the function538
proceeds in this approach. In order to get a full satisfactory explanation for SQ4, we have to see the result539
research question Q2. The explanation given in Q2 provides a justification for SQ4.540

Q2. In the software testing context, why is program slicing considered a better approach?541
In the above section we saw some of the shortcomings of genetic algorithm based testing approach. An example542

given below gives an explanation to research question Q2. Consider the same example given in figure 8. In the543
control flow graph, the statements which correspond to each node are marked. From the control flow graph we544
are taking the forward slicing criterion as ??2, basic). This means that all the statements which are affected by545
declaring the variable basic’ in statement 2 is to be identified. The resultant nodes in the CFG are given below546
in Figure 9.547

f(x) = 1000 -basic. After finding out suitable values for the variable basic’, the successive statements in the548
program is checked for errors. This is how the testing It can be observed that all nodes displayed above will549
be affected by the variable basic’ in statement 2. Node 3 is given as (basic<1000). When this program is to550
be tested, the test data which satisfies the condition in node 3 is to be generated. Similarly, nodes 4 and 6 are551
dependent on node 3 and this can be clearly traced form the slices obtained. Nodes 5 and 7 are also dependent552
on the variable basic’. If the value of basic’ is greater than 1000, then these nodes get executed. From this553
we can conclude that the statements which are relevant in testing and in the successive stages of testing like554
test case generation can be identified easily by the process of slicing. Moreover, as slicing gives the dependence555
information present in a program, it will be easy to dig up the mistakes in the dependent statements. We saw556
that, for testing the same program given in figure 8, if genetic algorithm is used instead of program slicing, the557
program statements will be checked line by line from the starting point of the program. The main difficulty558
in this approach is that all the statements which contain relevant and irrelevant variables should be analyzed559
to trace the errors in the program code. On the other hand, as program slicing is done based on some slicing560
criterion, an overview of the dependence in the program code is revealed and error detection will be much easier.561
Here we can notice that every input variable present in a program will not be responsible for the execution of562
branches present in the program. Moreover, removing the irrelevant variables from a program and focusing only563
on the relevant variables which are significant in the execution of a target branch can improve the performance564
of genetic algorithm based testing. Relevant variables are those which can influence certain statements in a565
program, while irrelevant variables are those that cannot affect the program statements. This points out the566
fact that, genetic algorithm may not perform up to the mark in a practical program testing scenario [39], which567
underscores the superiority of program slicing in program testing. A graph is given in Figure 10 which gives an568
analysis of the performance of evolutionary algorithms with and without irrelevant variable removal. Here in569
y-axis the success rate is plotted and in x-axis the program names with branches are plotted. Here P1 denotes570
the program name, F1 denotes the function and B1, B2 and B3 denote different branches. Success rate is a571
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measure of optimal test cases found out for the program branches. It can be noticed that the performance is572
better when irrelevant variables are removed from a program, compared to the performance without irrelevant573
variable removal. This establishes the weakness of genetic algorithm when there are a large number of irrelevant574
variables. C distribution in a program is uniform throughout the code, an increase in the number of executable575
statements with respect to a particular program variable increases the chance of discovering the number of faults576
related to that variable [33]. This means that, rather than concentrating on a particular area for a long time to577
attain high coverage for that particular branch or statements due to which program malfunctioning is caused,578
using minimal testing. This re-affirms the fact that program slicing can be more effective in program testing579
compared to genetic algorithm. An assessment of testing productivity obtained in genetic algorithm and program580
slicing based testing approach is given in figure 11. program which may play a critical role in program testing. 2.581
Testing productivity indicates the measure of the number of relevant statements that can be covered in a specific582
time interval [31,4]. 3. High testing means that more errors can be detected with less ’effort’, while low testing583
productivity means that the number of relevant statements covered in a specific time interval will be very few584
[31,4]. 4. ’Effort’ means the time taken to detect the potential statements which contribute in program test data585
generation, run the program with the generated test cases and add the test cases to the test suit.586

In program testing, the main objective is to find the maximum number of errors in the minimum time duration.587
Program slicing identifies more number of errors in less amount of time during the initial program execution stage.588
The relevant statements identified by program slicing provide an overview of dependency present in the program,589
making the error detection more practical. From this it is clear that, in program slicing based testing, although590
it is not possible to cover all the potential statements useful for testing, a reasonable number of statements can591
be analyzed when compared to genetic algorithm based program testing.592

29 VI.593

30 Threats To Validity594

The main threat to the validity of our work may be due to the limitation in the number and scope of the works595
which we have referred. We have limited our analysis to only those works which have mentioned the application596
of genetic algorithm in software testing and the use of program slicing in software testing.597

The downside of such restriction in the selection of works was that, all the possible variants of genetic algorithm598
based testing have not been analysed. Also, we have not studied all the existing algorithms in program slicing599
which may have some relevance in the field of software testing. Our study has been limited to only those works600
which have explicitly mentioned the use of program slicing in testing. We feel that such a narrowing in the field601
of our study has sharpened its focus and enabled us to do an in depth analysis of our chosen study objectives;602
which being the identification of shortcomings of genetic algorithm and establishing the usefulness of program603
slicing in practical software testing.604

31 VII.605

32 Conclusions606

The unresolved issues in practical software testing constitute the Achilles’ heel of software industry. As genetic607
algorithm is one of the most widely used and highly regarded approaches for software testing among researchers,608
it is high time that we explore its critical shortcomings in practical software testing. We have made an attempt609
to reveal some of the difficulties due to the inherent uncertain nature of genetic algorithm based software testing.610
A systematic review of the works made in this study reveals that, genetic algorithm factors like program code,611
program slicing tries to analyze more number of potential statements in a given program. The graph shows that,612
when program testing is done using program slicing, there will be high testing productivity and when program613
testing is implemented using genetic algorithms, the testing productivity will be low. Some of the terms related614
to the graph in Figure 11 are given below.615

Here the main principle is to identify possible program fitness function, population initialization and parameter616
settings impact the quality of solution obtained by genetic algorithm based testing. Apart from this, we have617
highlighted the significance of program slicing in software testing. For a given problem, program slicing has618
a higher ’testing productivity’ with lesser ’effort’. We have used this principle as the nidus for developing our619
idea. We have put forth a forward slicing based method in this work. Checking of conditional constraints in the620
forward slices will help to pick out the rules which are to be fulfilled when testing is carried out. We have also621
discussed how the dependent statements in the slices are used to trace errors during testing. Certain analytical622
results are also provided in our work to substantiate these facts. With this work, we intend to provide a guide623
to future researchers and to make software industry aware of the scope and potential of using program slicing as624
an effective tool in software testing. In future, we plan to elaborate upon the issues brought forth by our work625
which may lead to promising developments in testing field. 1 2626

1© 2014 Global Journals Inc. (US)
2© 2014 Global Journals Inc. (US)24Year 2014
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1

Program Statements Static slice for criterion <11, a>
1 main() 4 cin» b;
2 { 5 a = 0;
3 int a,b; 6 while (b <= 10)
4 cin» b; 8 a=a+b;
5 a = 0; 9 ++ b;
6 while (b <= 10)
7 {
8 a=a+b;
9 ++ b;
10}
11 cout« a;
12 cout« b;
13 }

Figure 8: Table 1 :

2

Program Statements Dynamic Slicing
Criterion :-( 10, p,
n=0,)

1 scanf(”%d”,&n); p=0
2 s=0;
3 p=0;
4 while (n>0)
5 {
6 s=s+n;
7 p=p*n;
8 n=n?1;
9 }
10 printf (”%d%d”, p, s);

Figure 9: Table 2 :
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32 CONCLUSIONS

5

WORK COVERAGE FITNESS GA TYPE & POPULATIO CROSS MUTATION
FUNCTION POPULATION N SIZE & OVER TYPE

REPRESENTA SELECTION TYPE
TION STRATEGY

DOUNGSA-
ARD

TransitionNumber of Simple GA & 10 & Previous Two
point

Random

et al.
[2002]

transitions
fired

Sequence of knowledge mutation
&

by input triggers 0.5
sequence

HERMADI
et al.

Path Fitness= Simple GA & 30 & Roulette Single 0.1 0r 0.3

[2001] Number of wheel point
violations selection
+Distance

WEGENER
et al.

StatementApproximation Simple & multi Stochastic Single Discrete

[2001] level and population GA universal point recombinati
normalized & Integer sampling on, 1 &
predicate level representation multiple
distance strategies

BUENO
et al.

Path FT=NC- Simple GA& 80 and Single Simple &

[2002] EP/MEP Binary string Selection point 0.03
based on
Previous
knowledge

MICHAEL
et al.

Branch Predicate Simple GA & 24, 100 and Single Simple &

[2001] function Binary String Random point 0.001
selection

PRAGAS
et al.

Statement
&

Common Simple GA & 100 & Single Simple &

[1999] Branch predicates Input data list Random point 0.10
selection

JONES et
al.

Branch( Hamming Simple GA & 45 & Random UniformReciprocal

[1996] Maximum
3

distance Binary plus sign selection &Weighted.

Figure 10: Table 5 :
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6

Populatio n Best Individual Objective
Size final point value function value
20 24.76 -14.76
20 24.88 -14.85
30 27.30 -17.30
30 28.37 -18.37
70 44.51 -34.51
70 39.95 -29.95
1000 67.99 -57.99

Figure 11: Table 6 :

7

Parameters Two-Point Uniform
Crossover crossover

Number of Generations 1070 3184
Time taken in seconds 7.657 26.649
Score 0.001982 0.001758
Fitness function Value 0.265497 0.198465

Figure 12: Table 7 :

8

Parameters Two-Point Uniform
Crossover crossover

Number of Generations 949 749
Time taken in seconds 7.336 6.258
Score 0.003094 0.000808
Fitness function Value 0.257263 0.362636

Figure 13: Table 8 :

9

Parameters Two-Point Uniform
Crossover crossover

Number of Generations 499 145
Time taken in seconds 4.543 1.010
Score 0.001609 0.001124
Fitness function Value 0.167003 0.332225

Figure 14: Table 9 :

15



32 CONCLUSIONS

10

Work Description
Gupta et. al[1992] Regression testing using slicing
Binkley[1998] Incremental regression testing using

slicing
Harman et al. [1994] Mentioned that slicing may be

applied during the testing phase by
checking whether the program is
robust or not

Bates et al.[1993] Slicing applied to identify statements
modified in a program dependence
graph during the regression testing
phase

Samuel et. al[2009] Using dynamic slicing to generate
test cases form UML activity
diagrams

Figure 15: Table 10 :

11

Input Unit Forward Analyzer &
Slicer Tester

[Note: (basic<1000)’. Here the possible partitions are (basic >1000)’. and (basic >1000)’. Using these partitions
values are generated, which are given in table 11.C]

Figure 16: Table 11 :
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//where EOP is the end of program { 4. Store V’ in L’ // slicing variable V’ stored in list L’ 5. if ( VAR (L)627
? n) // check whether slice variable V’ stored in list L’ is present in statement n’ { 5.1. if ( n is an element of628
output statement) F= F U n //Store n // include the statement as a slice 5.2. if (n is an element expression)629

the statement as a slice // VAR (L) is the slice variable V’ stored in list L’ and RHS (EXPR) denotes the630
right side of the expression and LHS (EXPR) denotes the left side of the expression and VAR (RHS (EXPR))631
denotes variables in the right side of the expression and VAR (LHS (EXPR)) denote the variables in the left side632
of the expression. 5.2.2. else do not include the statement as a slice 5 In the algorithm 2 given above, the user633
selects the program for which the test sequence is to be generated. The slicing criterion is verified initially. Slicing634
criterion contains the variable and statement number. Here, we have to check for the program statements that are635
affected by the value of a particular variable at a particular point. The slice variable ’V’ is stored in a list ’L’. The636
statement number is denoted by ’n’. The process starts from the (nth) line till the end the program is reached.637
In the (nth) line, it is checked whether the variable ’V’ is present or not. If the variable ’V’ is not present, then638
(n+1) th line is checked. If the variable ’V’ is present in the (n) the line, a series of steps are to be performed. If639
’V’ is present in an expression, it is checked whether ’V’ is present on the right side or left side of the expression.640
If ’V’ is on the left side of the expression, that statement is considered as a slice and all the variables in the right641
side of the expression are also added to the list. In ’V’ is in the right side then it is not included as a slice. While642
checking the next line, we have to check not only for ’V’, but also all the all the variables present in the list.643
This is because; the other variables added to the list are the dependent variables of ’V’. Similarly, it is checked644
whether the slice variable is an element of conditional statement, declaration statement, input statement and645
output statement. If these conditions are true, the statements are considered as a slice. The statements inside646
the conditional body loop are also included as slice because the executions of these statements are dependent on647
the conditional clause. The process is repeated unit the end of the program and the result will be the forward648
slice for the corresponding ’ ’ L’ ’ ’ ’ ’ ’ ’649
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