

Global Journal of Computer Science and Technology: C
Software & Data Engineering
Volume 14 Issue 9 Version 1.0 Year 2014
Type: Double Blind Peer Reviewed International Research Journal
Publisher: Global Journals Inc. (USA)
Online ISSN: 0975-4172 & Print ISSN: 0975-4350

Improved Approaches to Handle Bigdata through Hadoop

 KLEF University, India

Abstract- Big data is an evolving term that describes any voluminous amount of structured, semi-
structured and unstructured data that has the potential to be mined for information.Today’s world
produces a large amount of data from various sources, records and from different fields termed as
“BIG DATA”. Such huge data is to be analyzed, and filtered using various techniques and algorithms
to extract the interested and useful data to gain knowledge. In the new era with the boom of both
structured and unstructured types of data, in the field of genomics, meteorology, biology,
environmental research and many others, it has become difficult to process, manage and analyze
patterns using traditional databases and architectures. It requires new technologies and skills to
analyze the flow of material and draw conclusions. So, a proper architecture should be understood to
gain knowledge about the Big Data. The analysis of Big Data involves multiple distinct phases such
as collection, extraction, cleaning, analysis and retrieval.

GJCST-C Classification

:

H.2.8, H.2.6

 ImprovedApproachestoHandleBigdatathroughHadoop

 Strictly as per the compliance and regulations of:

By K. Sandeep, K. Kondaiah, A. ineetha & Ch. Monica

© 2014. K K. Sandeep, K. Kondaiah, A. ineetha & Ch. Monica. This is a research/review paper, distributed under the terms of the
Creative Commons Attribution-Noncommercial 3.0 Unported License http://creativecommons.org/licenses/by-nc/3.0/), permitting all
non-commercial use, distribution, and reproduction inany medium, provided the original work is properly cited.

Improved Approaches to Handle Bigdata
through Hadoop

I. Introduction

pache Hadoop, the popular data storage and
analysis platform, has generated a great deal of
interest recently. Large and successful companies

are using it to do powerful analyses of the data they
collect. Hadoop offers two important services: It can
store any kind of data from any source, inexpensively
and at very large scale, and it can do very sophisticated
analysis of that data easily and quickly.

Unlike older database and data warehousing
systems, Hadoop is different and those differences can
be confusing to users. What data belongs in a Hadoop
cluster? What kind of questions can the system answer?
Understanding how to take advantage of Hadoop
requires a deeper knowledge of how others have
applied it to real-world problems that they face.

This paper presents detailed analysis of
Hadoop and MapReduce programming Model and also
the challenges that hadoop is facing and future scope of

implementation of hadoop and various other new
algorithms.

II. WhatisHadoop?

Hadoop is data storage and processing
system. It is scalable, fault-tolerant and distributed.
Hadoop was originally developed by the world’s largest
internet companies to capture and analyze the data that
they generate. Unlike older platforms, Hadoop is able to
store any kind of data in its native format and to perform
a wide variety of analyses and transformations on that
data. Hadoop stores terabytes, and even petabytes, of
data inexpensively. It is robust and reliable and handles
hardware and system failures automatically, without
losing data or interrupting data analyses. Hadoop runs
on clusters of commodity servers. Each of those servers
has local CPU and storage. Each can store a few
terabytes of data on its local disk.

Hadoop supports applications under a free
license. Three critical components of Hadoop system
are:

1. Hadoop Common : Common Utilities Package
2. HFDS: Hadoop Distributed File System with high

throughput access to application data.
3. MapReduce: A software framework for distributed

processing of large data sets on computer
clusters.

The Hadoop Distributed File System, or
HDFS:HDFS is the storage system for a Hadoop cluster.
When data arrives at the cluster, the HDFS software
breaks it into pieces and distributes those pieces
among the different servers participating in the cluster.
Each server stores just a small fragment of the complete
data set, and each piece of data is replicated on more
than one server.

A distributed data processing framework called
Map Reduce: Because Hadoopstores the entire dataset
in small pieces across a collection of servers, analytical
jobs can be distributed, in parallel, to each of the
servers storing part of the data. Each server evaluates
the question against its local fragment simultaneously
and reports its results back for collation into a
comprehensive answer. MapReduce isthe plumbing that
distributes the work and collects the results.

Hadoop is high-performance distributed data
storage and processing system. Its two major
subsystems are HDFS, for storage, and MapReduce, for

A

© 2014 Global Journals Inc. (US)

G
lo
ba

l
Jo

ur
na

l
of
 C

om
pu

te
r
Sc

ie
nc

e
an

d
Te

ch
no

lo
gy

 V

ol
um

e
X
IV

Is
su

e
IX

V
er
sio

n
I

 7

Y
e
a
r

20
14

(
DDDD DDDD

)
C

Abstract- Big data is an evolving term that describes any
voluminous amount of structured, semi-structured and
unstructured data that has the potential to be mined for
information.Today’s world produces a large amount of data
from various sources, records and from different fields termed
as “BIG DATA”. Such huge data is to be analyzed, and filtered
using various techniques and algorithms to extract the
interested and useful data to gain knowledge. In the new era
with the boom of both structured and unstructured types of
data, in the field of genomics, meteorology, biology,
environmental research and many others, it has become
difficult to process, manage and analyze patterns using
traditional databases and architectures. It requires new
technologies and skills to analyze the flow of material and
draw conclusions. So, a proper architecture should be
understood to gain knowledge about the Big Data. The
analysis of Big Data involves multiple distinct phases such as
collection, extraction, cleaning, analysis and retrieval.This
paper presents detailed analysis of Hadoop and MapReduce
programming Model and also the challenges that Apache
Hadoop, the popular data storage and analysis platform used
by major number of large companies is facing and future
scope of implementation of Hadoop and various other new
improvements to the challenges.

Author α σ ρ Ѡ: Department of Electronics and Computer engineering
KLEF University. Vaddeswaram, Tadepalli (Mandal), Guntur(dist),
522502 A.P, INDIA. e-mails: Sandeep.k@gmail.com,
Kondaya.Kuppala@gmail.com, mailvivacious@gmail.com,
monica cherukuri09@gmail.com

K. Sandeep α, K. Kondaiah σ, A. vineetha ρ & Ch. MonicaѠ

parallel data processing.Hadoop automatically detects
and recovers from hardware and software failures.
HDFS and MapReduce will help in performing this.

Hadoop stores any type of data, structured or
complex, from any number of sources, in its natural
format. No conversion or translation is required on
ingest. Data from many sources can be combined and
processed in very powerful ways, so that Hadoop can
do deeper analyses than older legacy systems. Hadoop
integrates cleanly with other enterprise data
management systems. Moving data among existing
data warehouses, newly available log or sensor feeds
and Hadoop is easy. Hadoop is a powerful new tool that
complements current infrastructure with new ways to
store and manage data at scale.

MapReduce: Simplified Data Processing on Large
Clusters

MapReduce is a programming model and
software framework first developed by Google (Google’s
MapReduce paper submitted in 2004) intended to
facilitate and simplify the processing of vast amounts of
data in parallel on large clusters of commodity hardware
in a reliable, fault-tolerant manner. Computational
processing occurs on both:
• Unstructured data: file system.
• Structured data: database.
MapReduce framework

1. Per cluster node:
1.1) Single JobTracker per master

a. Responsible for scheduling the jobs’
component tasks on the slaves.

b. Monitors slave progress
c. Re-executing failed tasks

1.2) Single TaskTracker per slave
a. Execute the tasks as directed by the master.

MapReduce Core Functionality:
1. Code usually written in Java- though it can be

written inother languages with the Hadoop
Streaming API.

2. Two fundamental pieces:
a. Map step
i. Master node takes large problem input and

slices it into smaller sub problems; distributes
these to worker nodes.

ii. Worker node may do this again; leads to a
multi-level tree structure

iii. Worker processes smaller problem and hands
back to master

b. Reduce step
i. Master node takes the answers to the sub

problems and combines them in a predefined
way to get the output/answer to original
problem.

3. Data flow beyond the two key pieces (map and
reduce):

a. Input reader – divides input into appropriate
size splits which get assigned to a Map
function.

b. Map function – maps file data to smaller,
intermediate<key, value> pairs

c. Partition function – finds the correct reducer:
given the key and number of reducers, returns
the desired Reduce node.

d. Compare function – input for Reduce is pulled
from the Map intermediate output and sorted
according to this compare function.

e. Reduce function – takes intermediate values
and reduces to a smaller solution handed back
to the framework.

f. Output writer – writes file output.
4. A MapReduce Job controls the execution
i. Splits the input dataset into independent chunks.
ii. Processed by the map tasks in parallel.
5. The framework sorts the outputs of the maps.
6. A MapReduce Task is sent the output of the

framework to reduce and combine.
7. Both the input and output of the job are stored in a

file system.
8. Framework handles scheduling.

MapReduce Input and Output
1. MapReduce operates exclusively on <key, value>

pairs.
2. Job Input : <key, value> pairs.
3. Job Output : <key, value> pairs. Conceivably of

different types.
4. Key and value classes have to be serializable by

the framework.
5. Default serialization requires keys and values to

implement Writable.
6. Key classes must facilitate sorting by the

framework.
Execution of Input and output parameters in

typical MapReduce Framework
This execution of Map and Reduce algorithm is

further explained in the implementation section.

Understanding Map and Reduce

Let us consider a simple problem wherein we
have to search for a pattern ‘cs396t’ in a collection of
files. We would typically run a command like this:
grep -r “cs395t” <directory>

Now, suppose you have to do this search over
terabytes of data and you have a cluster of machines at
your disposal? How can you make this grep faster?
Build a distributed grep!

Now the question arises, do we really need to
consider a distributed grep? Why can’t we just use our
desktop for processing.Considering this in mind, let us
estimate how much time will the average desktop
system will take to process to search over terabytes of
data.

© 2014 Global Journals Inc. (US)

 8

Y
e
a
r

20
14

G
lo
ba

l
Jo

ur
na

l
of
 C

om
pu

te
r
Sc

ie
nc

e
an

d
Te

ch
no

lo
gy

 V

ol
um

e
X
IV

Is
su

e
IX

V
er
sio

n
I

(
DDDD DD DD

)
C

Improved Approaches to Handle Bigdata Through Hadoop

In general, Considering an average read speed
of 90MB/s: ~3.23 hours (Numbers are for Western
Digital 1TB SATA/300 drive)

If you use an SSD with read speed of 350MB/s:
~50 minutes (Numbers are for Crucial 128 GB m4 2.5-
Inch Solid State Drive SATA 6Gb/s)

This seems to be a huge amount of time
considering the real time of data demanding requests
from the internet. This is an approx. time only for
searching through a collection of files. It would be huge
amount of time when asked to sort a terabyte of data.
This definitely proves to be a wonder solution to the
amount of time it takes to sort and work through huge
collection of data. But, keeping this in mind, I could
actually build a distributed system which does the same
amount of work in this time. Can we ? The answer is an
absolute NO!
Algorithmic Analysis :
var a = [1,2,3];
for (i=0; i<a.length; i++)
a[i] = a[i] * 2;
for (i=0; i<a.length; i++)
a[i] = a[i] + 2;
I can change it to:
function map(fn, a) {
for (i = 0; i<a.length; i++)
a[i] = fn(a[i]);
}
map(function(x){return x*2;}, a);
map(function(x){return x+2;}, a);
function sum(a) {
var s = 0;
for (i = 0; i<a.length; i++)
 s += a[i];
return s;
}
function join(a) {
var s = "";
for (i = 0; i<a.length; i++)
 s += a[i];
return s;
}
alert(sum([1,2,3]));
alert(join(["a","b","c"]));
function reduce(fn, a, init) {
var s = init;
for (i = 0; i<a.length; i++)
 s = fn(s, a[i]);
return s;
}
function sum(a) {
return reduce(function(a, b){return a+b;}, a, 0);
}
function join(a) {
return reduce(function(a, b){return a+b;}, a, “”);
}

alert(sum([1,2,3]));
alert(join(["a","b","c"]));

1. Passing functions as arguments – functional
programming.

2. map – does something to every element in an array
– can be done in any order! (amendable to
parallelization)

3. So, if you have 2 CPUs, map will run twice as fast.
4. map is an example of embarrassingly parallel

computation.
Suppose you have a huge array with elements

which are all the webpages from the Internet. To search
the whole internet:

1. you just need to pass a string_searcher function to
map

2. reduce will be an identity function
3. run a MapReduce job on a cluster
4. that’s it! You are searching the Internet by writing

just a few lines of code!
MAP- function that takes key/value pairs as input and
generates an intermediate set of key/value pairs.
REDUCE- function that merges all the intermediate
values associated with the same intermediate key.
User needs to define these two functions.
map: (k1, v1)  lis t(k2, v2)
reduce: (k2, list(k2, v2))  lis t(v2)

EXAMPLE - WORD COUNT

Problem : counting occurrences of words in a large
collection of documents.
map(String key, String value):
 // key: document name
 // value: document contents
for each word w in value:
EmitIntermediate(w, "1");
reduce(String key, Iterator values):
 // key: a word
 // values: a list of counts

© 2014 Global Journals Inc. (US)

G
lo
ba

l
Jo

ur
na

l
of
 C

om
pu

te
r
Sc

ie
nc

e
an

d
Te

ch
no

lo
gy

 V

ol
um

e
X
IV

Is
su

e
IX

V
er
sio

n
I

 9

Y
e
a
r

20
14

(
DDDD DDDD

)
C

Improved Approaches to Handle Bigdata Through Hadoop

int result = 0;
for each v in values:
result += ParseInt(v);
Emit(AsString(result));
Other than map and reduce, user needs to provide:

1. names of input and output files
2. optional tuning parameters (size of split, M, R, etc.)

User’s code is linked with MapReduce library
and the binary is submitted to a task runner.

Other Examples of MapReduce :
1. Distributed grep

a. map emits a line if it matches the given pattern
b. reduce just copies input to output

2. Counting URL access frequency
a. map processes web server logs and outputs

<URL, 1>
b. reduce sums all numbers for a single URL

3. Inverted index
a. map function parses document and emits

<word, docID>
b. reduce gets all pairs for a given word and emits

<word, list(docID)>
Implementing Map and Reduce in real world Scenarios :

Map and Reduce can achieve the following
achieving great scalability and speed.

1. Exploit parallelism in the computation.
2. Massively scalable – can run on hundreds or

thousands of machines.
3. Hide the details of cluster management tasks like

scheduling of tasks, partitioning of data, network
communication from the user.

4. Fault tolerant (in large clusters failures are a norm
rather than being an exception)

Opportunities for Parallelism using Map and Reduce:
1. Input – all key/value pairs can be read and

processed in parallel by map
2. Intermediate grouping of data – essentially a

sorting problem; can be done in parallel and
results can be merged.

3. Output – All reducers can work in parallel. Each
individual reduction can be parallelized.

© 2014 Global Journals Inc. (US)

 10

Y
e
a
r

20
14

G
lo
ba

l
Jo

ur
na

l
of
 C

om
pu

te
r
Sc

ie
nc

e
an

d
Te

ch
no

lo
gy

 V

ol
um

e
X
IV

Is
su

e
IX

V
er
sio

n
I

(
DDDD DD DD

)
C

Improved Approaches to Handle Bigdata Through Hadoop

MASTER : (in reference to fig 1)

1.

Only 1 Master per MR computation.

2.

Master:

a.

assigns map and reduce tasks to the idle
workers.

b.

informs the location of input data to mappers.

c.

stores the state (idle, in-progress, completed) and
identity of each worker machine.

d.

for each completed map task, master stores the
location and sizes of intermediate files produced
by the mapper; this information is pushed to
workers which have in-progress reduce tasks.

3.

Split the input into M pieces and start copies of
program on different machines.

4.

One invocation acts as the master which assigns
work to idle machines.

5.

Map task:

a.

read the input and parse the key/value pairs.

b.

pass each pair to user-defined Map function

c.

write intermediate key-value pairs to disk in R files
partitioned by the partitioning function.

d.

pass location of intermediate files back to master.

6.

Master notifies the reduce worker.

7.

Reduction is distributed over R tasks which cover
different parts of the intermediate key’s domain.

8.

Reduce task:

a.

read the intermediate key/value pairs.

b.

sort the data by intermediate key (external sort
can be used)

(note: many different keys can map to the same
reduce task)

c.

iterate over sorted data and for each unique key,
pass the key and set of values to user-defined
Reduce function.

d.

output of Reduce is appended to final output for
the reduce partition.

9.

MR completes when all map and reduce tasks have
finished.

MapReduce OUTPUT:

 1.

The output of MR is R output files (one per reduce
task).

2.

The partitioning function for intermediate keys can
be defined by the user.

By default, it is “hash(key) mod R” to generate well

balanced partitions.

3.

Result files can be combined or fed to another MR
job.

MapReduce Fault tolerance : Worker Failures

 1.

Master pings every worker periodically (alternatively,
the worker can send a heartbeat message
periodically)

2.

If worker does not respond, master marks it as
failed.

3.

Map worker:

a.

any completed or in-progress tasks are reset to
idle state.

b.

completed tasks need to be re-run since output is
stored on a local file system

c.

all reduce workers notified of this failure (to
prevent duplication of data)

4.

Reduce worker:

a.

any in-progress tasks are reset to idle state.

b.

no need to re-run completed tasks since output
stored in global file system.

 Fault tolerance : Master Failure

 1.

Master periodically checkpoints its data structures.

2.

On failure, new master can be elected using some
leader election algorithm.

3.

Theoretically, the new master can start off from this
checkpoint.

4.

Implementation: MR job is aborted if the master
fails.

 Fault tolerance : Network Failure

 1.

Smart replication of input data by underlying file
system.

2.

Workers unreachable due to network failures are
marked as failed since its hard to distinguish this
case from worker failure.

3.

Network partitions can slow down the entire
computation and may need a lot of work to be
redone.

 Fault tolerance : File System/Disk Failure

 1.

Depend on the filesystem replication for reliability.

2.

Each data block is replicated f number of times.
(Default : 3)

 Fault tolerance: Malformed Input

 1.

Malformed input records could cause the map task
to crash.

2.

Usual course of action: fix the input.

3.

But what if this happens at the end of a long-running
computation?

4.

Acceptable to skip some records (sometimes)

a.

Word count over very large data set.

5.

MR library detects bad records which cause
crashes deterministically.

 Fault tolerance: Bugs in User Code

 1.

Bugs in user provided Map and Reduce functions
could cause crashes on particular records.

2.

This

case similar to the failure due to malformed
input.

 Task Granularity:

 1.

M map tasks and R reduce tasks.

2.

M and R much larger than the number of machines.

 a.

Improves dynamic load balancing (add/remove
machines)

 b.

Speeds up recovery

 i.

less work needs to be redone

© 2014 Global Journals Inc. (US)

G
lo
ba

l
Jo

ur
na

l
of
 C

om
pu

te
r
Sc

ie
nc

e
an

d
Te

ch
no

lo
gy

 V

ol
um

e
X
IV

Is
su

e
IX

V
er
sio

n
I

 11

Y
e
a
r

20
14

(
DDDD DDDD

)
C

Improved Approaches to Handle Bigdata Through Hadoop

ii. I work already completed by a failed task can be
distributed across multiple idle workers.

c.

Bounds:

1.

Master makes O(M+R) scheduling decisions

2.

Master maintains O(M*R) state in memory.

3.

M is chosen such that each task works on one
block of data.

4.

R is usually constrained by users to reduce the
number of output files.

Requirements of applications using MapReduce

1.

Specify the Job configuration

a.

Specify input/output locations

b.

Supply map and reduce functions via
implementations of appropriate interfaces and/or
abstract

classes.

2.

Job client then submits the job (jar/executablesetc)
and the configuration to the JobTracker.

 What are Hadoop/MapReduce limitations?

 1.

Cannot control the order in which the maps or
reductions are run

2.

For maximum parallelism, you need Maps and
Reduces to not depend on data generated in the
same MapReduce job (i.e. stateless)

3.

A database with an index will always be faster than
a MapReduce job on unindexed data.

4.

Reduce operations do not take place until

all Maps
are complete (or have failed then been skipped)

5.

General assumption that the output of Reduce is
smaller than the input to Map; large data
sourceused to generate smaller final values.

III.

Conclusion

Traditional data processing and storage
approaches are facing many challenges in meeting the
continuously increasing computing demands of Big
Data. This work focused on MapReduce, one of the key
enabling approaches for meeting Big Data demands by
means of highly parallel Processing on a large number
of commodity nodes.

Issues and challenges MapReduce faces when
dealing with Big Data are identified and categorized
according to four main Big Data task types: data
storage, analytics, online processing, and security and
privacy. Moreover, efforts aimed at improving and
extending MapReduce to address identified challenges
are presented. By identifying MapReduce challenges in
Big Data, this paper provides an overview of the field,
facilitates better planning of Big Data projects and
identifies opportunities for future research.

References RéférencesReferencias

1.

H. Yang and S. Fong, "Countering the concept-drift
problem in Big Data using iOVFDT," IEEE
International Congress on Big Data, 2013.

2.

S. Ghemawat, H. Gobioff and S. Leung, "The
Google file system," ACM SIGOPS Operating
Systems Review, 2003.

3.

J. Dean and S. Ghemawat, "MapReduce: Simplified
data processing on large clusters," Commun ACM,
51(1), pp. 107-113, 2008.

4.

Apache Hadoop, http://hadoop.apache.org

5.

Z. Xiao and Y. Xiao, "Achieving accountable
MapReduce in cloud computing," Future Generation
Computer Systems, 30,pp. 1-13, 2014.

6.

W. Zeng, Y. Yang and B. Luo, "Access control for
Big Data using data content," IEEE International
Conference on Big Data, 2013.

7.

C. Parker, "Unexpected challenges in large scale
machine learning," Proc. of the 1st International
Workshop on Big Data, Streams and
Heterogeneous Source Mining: Algorithms,
Systems, Programming Models and Applications,
2012.

8.

www.ibm.com/software/data/infosphere/hadoop/ma
preduce/

9.

hadoop.apache.org/docs/r1.2.1/mapred_tutorial.ht
ml

10.

research.google.com/archive/mapreduce-
osdi04.pdf

© 2014 Global Journals Inc. (US)

 12

Y
e
a
r

20
14

G
lo
ba

l
Jo

ur
na

l
of
 C

om
pu

te
r
Sc

ie
nc

e
an

d
Te

ch
no

lo
gy

 V

ol
um

e
X
IV

Is
su

e
IX

V
er
sio

n
I

(
DDDD DD DD

)
C

Improved Approaches to Handle Bigdata Through Hadoop

	Improved Approaches to Handle Bigdata through Hadoop
	Authors
	I. Introduction
	II. Whatis Hadoop?
	III. Conclusion
	References RéférencesReferencias

