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Abstract-

 
For dictionary-based decompositions of certain types, it has been

 
observed that there 

might be a link between sparsity in the dictionary and sparsity in the decomposition. Sparsity in the 
dictionary has also been associated with the derivation of fast and efficient dictionary learning 
algorithms. Therefore, in this paper we present a greedy adaptive dictionary learning algorithm that 
sets out to find sparse atoms for speech signals. The algorithm learns the dictionary atoms on data 
frames taken from a speech signal. It iteratively extracts the data frame with minimum sparsity index, 
and adds this to the dictionary matrix. The contribution of this atom to the data frames is then 
removed, and the process is repeated. The algorithm is found to yield a sparse signal 
decomposition, supporting the hypothesis of a link between sparsity in the decomposition and 
dictionary. The algorithm is applied to the problem of speech representation and speech denoising, 
and its performance is compared to other existing methods. 
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Abstract- For dictionary-based decompositions of certain 
types, it has been observed that there might be a link between 
sparsity in the dictionary and sparsity in the decomposition. 
Sparsity in the dictionary has also been associated with the 
derivation of fast and efficient dictionary learning algorithms. 
Therefore, in this paper we present a greedy adaptive 
dictionary learning algorithm that sets out to find sparse atoms 
for speech signals. The algorithm learns the dictionary atoms 
on data frames taken from a speech signal. It iteratively 
extracts the data frame with minimum sparsity index, and adds 
this to the dictionary matrix. The contribution of this atom to 
the data frames is then removed, and the process is repeated. 
The algorithm is found to yield a sparse signal decomposition, 
supporting the hypothesis of a link between sparsity in the 
decomposition and dictionary. The algorithm is applied to the 
problem of speech representation and speech denoising, and 
its performance is compared to other existing methods. The 
method is shown to find dictionary atoms that are sparser than 
their time-domain waveform, and also to result in a sparser 
speech representation. In the presence of noise, the algorithm 
is found to have similar performance to the well established 
principal component analysis. 
Index-terms: adaptive dictionary, dictionary learning, 
sparse decomposition, sparse dictionary, speech 
analysis, speech denoising. 

  

PARSE signal representations allow the salient 
information within a signal to be conveyed with 
only a few elementary components, called atoms. 

For this reason, they have acquired great popularity over 
the years, and they have been successfully applied to a 
variety of problems, including the study of the human 
sensory system [1]–[3], blind source separation [4]–[6], 
and signal denoising [7]. Successful application of a 
sparse decomposition depends on the dictionary used, 
and whether it matches the signal features [8]. 

Two main methods have emerged to determine 
a dictionary within a sparse decomposition: dictionary 
selection and dictionary learning. Dictionary selection 
entails choosing a pre-existing dictionary, such as the 
Fourier basis, wavelet basis or modified discrete cosine 
basis, or constructing a redundant or overcomplete 
dictionary by forming a union of bases (for example the 
Fourier and wavelet bases) so that different properties of  
the signal can be  represented  [9].  Dictionary  learning, 
 
Author α σ : Department of Electronic Engineering, Queen Mary 
University of London, London E1 4NS, U.K.  

on the other hand, aims at deducing the dictionary from 
the training data, so that the atoms directly capture the 
specific features of the signal or set of signals [7]. 
Dictionary learning methods are often based on an 
alternating optimization strategy, in which the dictionary 
is fixed, and a sparse signal decomposition is found; 
then the dictionary elements are learned, while the 
signal representation is fixed. 

Early dictionary learning methods by Olshausen 
and Field [2] and Lewicki and Sejnowski [10] were 
based on a probabilistic model of the observed data. 
Lewicki and Sejnowski [10] clarify the relation between 
sparse coding methods and independent component 
analysis (ICA), while the connection between dictionary 
learning in sparse coding, and the vector quantization 
problem was pointed out by Kreutz–Delgado et al. [11]. 
The authors also proposed finding sparse 
representations using variants of the focal 
underdetermined system solver (FOCUSS) [12], and 
then updating the dictionary based on these 
representations. Aharon, Elad, and Bruckstein [13] 
proposed the K-SVD algorithm. It involves a sparse 
coding stage, based on a pursuit method, followed by 
an update step, where the dictionary matrix is updated 
one column at the time, while allowing the expansion 
coefficients to change [13]. More recently, dictionary 
learning methods for exact sparse representation based 
on   minimization [8], [14], and online learning 
algorithms [15], have been proposed. 

Generally, the methods described above are 
computationally expensive algorithms that look for a 
sparse decomposition, for a variety of signal processing 
applications. In this paper, we are interested in targeting 
speech signals, and deriving a dictionary learning 
algorithm that is computationally fast. The algorithm 
should be able to learn a dictionary from a short speech 
signal, so that it can potentially be used in real-time 
processing applications. 

a) Motivation 

The aim of this work is to find a dictionary 
learning method that is fast and efficient. Rubinstein et 
al. have shown that this can be achieved by means of 
“double sparsity” [16]. Double sparsity refers to seeking 
a sparse decomposition and a dictionary             such 
that  the atoms in      are  sparse over  the fixed 
dictionary        ,  such as Wavelets or the discrete cosine 

transform (DCT). Also, in previous results in [17], it was 

S 

© 2014   Global Journals Inc.  (US)

G
lo
ba

l 
Jo

ur
na

l 
of
 C

om
pu

te
r 
Sc

ie
nc

e 
an

d 
Te

ch
no

lo
gy

  
  

  
 V

ol
um

e 
X
IV

  
Is
su

e 
V
III

 V
er
sio

n 
I 

  
  
 

  31

Y
e
a
r

20
14

  
 

(
DDDD DDDD

)
E

e-mails: maria.jafari@eecs.qmul.ac.uk,
mark.plumbley@eecs.qmul.ac.uk.

I. Introduction



found
 
that dictionary atoms learned from speech signals 

with a sparse
 
coding method based on ICA (SC-ICA) 

[18], are localized in
 
time and frequency. This appears 

to suggest that for certain
 
types of signals (e.g., speech 

and music) there might be a link
 
between sparsity in 

decomposition and sparsity in dictionary.
 

This is further supported by the success of 
transforms such as

 
the Wavelet transform whose basis 

functions are localized, and
 

are well-suited to the 
analysis of natural signals (audio, images,

 
biomedical 

signals), often yielding a sparse representation.
 

Thus, in this paper we propose to learn sparse 
atoms as in

 
[16], but rather than learning atoms that are 

sparse over a fixed
 
base dictionary, we directly learn 

sparse atoms from a speech
 
signal. In order to build a 

fast transform, the proposed algorithm
 
seeks to learn an 

orthogonal dictionary from a set of local frames
 
that are 

obtained by segmenting the speech signal. Over several
 

iterations, the algorithm “grabs” the sparsest data 
frame, and

 
uses a Gram–Schmidt-like step to 

orthogonalize the signal away
 
from this frame.

 

The advantage of this approach is its 
computational speed and

 
simplicity, and because of the 

connection that we have observed
 
between sparsity in 

the dictionary and in the representation, we
 
expect

 
that 

the signal representation that is obtained with the
 

learned dictionary will be also sparse.
 

b)
 

Contributions
 

In this paper, we consider the formulation of our 
algorithm

 
from the point of view of minimizing the 

sparsity index on
 
atoms.We seek the sparsity of the 

dictionary atoms alone rather
 
than of the decomposition, 

and to the authors’ knowledge this
 
perspective has not 

been considered elsewhere.1

c) Organization of the Paper 

 
Further, we

 
propose a 

stopping rule that automatically selects only a subset
 
of 

the atoms. This has the potential of making the 
algorithm even

 
faster, and to aid in denoising 

applications by using a subset of
 
the atoms within the 

signal reconstruction.
 

The structure of the paper is as follows: the 
problem that we seek to address is outlined in Section II, 
and our sparse adaptive dictionary algorithm is 
introduced in Section III, along with the stopping rule. 
Experimental results are presented in Section IV, 
including the investigation of the sparsity of the atoms 
and speech representation, and speech denoising. 
Conclusions are drawn in Section VII. 

   

Given a one-dimensional speech signal       , we 
divide this into overlapping frames   , each of     length 
                                                             
1
The approach proposed in\[16]looks for as parse dictionary over a 

base dictionary, as well as as
 
parse decomposition, and there for 

eisquite different to them ethod proposed here.
 

samples, with an
 
overlap of     samples. Hence, the   th 

frame        
 
is given by

 
 

                                                                                           (1)
 

 
where                       . Then we construct a new 

matrix

 

                    whose 
     

th column corresponds to 
the signal block    ,

 

and whose 
      

th element is given by

 
                                                                 

 
 

                  

                                                                     (2)

 

 

where                     , and        

 

.

 

The task is to learn a dictionary        consisting 
of     atoms      ,

 

that is    , providing a sparse 
representation for the

  

signal blocks    . We seek a 
dictionary and a decomposition

 

of         , such that [19]

 

                                                                                       

(3)

 
where      are the expansion coefficients, and

 
 

                                                                                       

(4)

  
The   -norm     

 
counts the number of non-zero 

entries in
 
the vector   , and therefore the expression in 

(4) defines the
 
decomposition as “sparse,” if        is 

small. In the remainder
 

of this paper, we use the 
definition of sparsity given later in (5).

 The dictionary is learned from the newly 
constructed matrix   . In the case of our algorithm, we 
begin with a matrix containing

 
    columns, and we 

extract the first     columns according
 
to the criterion 

discussed in the next section.
 

   
  

To find a set of sparse dictionary atoms we 
consider the sparsity index         [20] for each column     , of      , defined as 

                                                                                       
(5) 

    
 
 

 
 

  
 

                                                                                       (6)
 

  
 

where and   denote the   -and    -norm, 
respectively. The sparsity index measures the sparsity of 
a signal, and is such that the smaller   , the sparser the 
vector   . Our aim is to    sequentially extract new atoms  
from    to populate the dictionary matrix   , and we do 
this by finding, at each iteration, the column of   with 
minimum sparsity index

Practical implementation of the algorithm 
begins with the definition of a residual matrix 

                           , where               is a residual column 

Fast Dictionary Learning for Sparse Representations of Speech Signals
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II. Problem Statement

III. Greedy Adaptive Dictionary
Algorithm (GAD)



 
     

  
  

 
 

   
  
    

 
    
  

 
 

  
 

   

We call our method the greedy adaptive 
dictionary (GAD)

 

algorithm [21].

 

Aside from the advantage of producing atoms 
that are directly

 

relevant to the data, the GAD algorithm 
results in an orthogonal

 

transform. To see this, consider 
rewriting the update equation in

 

step 6 in Algorithm 1 as 
the projection of the current residual

 

     onto the atom 
space, in the style of Matching Pursuit [22], [23]:

 

                                                                                      (7)

 

It follows from step 4 in Algorithm 1, that the 
denominator in

 

the right-hand-side of (7) is equal to 1, 
and therefore the equation

 

corresponds to the residual 
update in step 6. Orthogonal

 

dictionaries have the 
advantage being easily invertible, since if

 

the matrix     

 

is 
orthogonal, then                

 

, and evaluation of

 

the 
inverse simply

 

requires the use of the matrix transpose.

 

a)

 

Termination Rules

 

We consider two possible termination rules:

 

1.

 

The number of atoms  

 

to be extracted is pre-
determined,

 

so that up to   atoms are learned. 
Then, the termination

 

rule is:

 

•

 

Repeat from step 2, until       , where         .

 

2.

 

The reconstruction error at the current iteration    

 

is 
defined,

 

and the rule is:

 

•

 

Repeat from step 2 until

 

                                                                                       

(8)

 

Where  

 

is the approximation of the speech 
signal      

 

,

 

obtained at the

  

th

 

iteration from                   

 
 

, 
  by

 

reversing the framing process;  

 

is the 
dictionary learned

 

so far, as defined in step 5 of 
Algorithm 1.

 

  

We compared theGADmethod to PCA [24] and 
K-SVD [13].

 

K-SVD was chosen because it learns data-
determined dictionaries,

 

and looks for a sparse 
representation. PCA was chosen

 

because it is a well-
established technique, commonly used in

 

speech 
coding and therefore it sets the benchmark for the 
speech

 

denoising application.

 

We used the three algorithms to learn 512 
dictionary atoms

 

from a segment of speech lasting 1.25 
s. A short data segment

 

was used because this way the 
algorithm can be used within

 

real-time speech 
processing applications. The data was taken

 

from the 
female speech signal “supernova.wav” by “Corsica S,”

 

downloaded from The Freesound Project database [25], 
and

 

downsampled to 16 kHz. We also used the male 
speech signal

 

“Henry5.mp3” by “acclivity,” downloaded 
from the same

 

database, and downsampled to 16 kHz.

 

The K-SVD Matlab Toolbox [26] was used to 
implement the

 

K-SVD algorithm. K-SVD requires the 
selection of several parameters.

 

We set the number of 
iterations to 50, as recommended

 

in [13], and the 
number of nonzero entries   

 

in the coefficient

 

update 
stage to 10, which we found empirically to give

 
 

Table1:

 

Comparing The Computational Complexity For 
The Pca, K-Svd, And

 

Gad Algorithms. The Table Shows 
The Average Computational

 

Time For Each Algorithm, 
Obtained Over 100 Trials

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

a more accurate, although not as sparse, signal 
representation

 

than         , as used in [13]. The dictionary 
size was set to 512

 

and the memory usage to “high.”

 

a)

 

Computational Complexity

 

In Table I, we report the computational times of 
the algorithms,

 

when learning a dictionary from speech 
segment of 1.25s, and averaged over 100 trials. Two 
versions of the K-SVD

 

were also compared: the original 
version which is fully based

 

on Matlab M-code, and the 
second version, which combines

 

M-code with optimized 
MEX functions written in C. The experiments

 

were 
conducted on a Quad-Core Intel Xeon Mac at

 

2.66 GHz, 
using Matlab Version 7.6.0.324 (R2008a) and under

 

the 
Mac OS X Version 10.5.8 operating system.

 

 
 

vector corresponding to the th column of    . The 
residual matrix changes at each iteration , and is
initialized to . The dictionary is then built by selecting 
the residual vector that has lowest sparsity index, as 
indicated in Algorithm 1.

Algorithm 1 Greedy adaptive dictionary (GAD) algorithm
1. Initialize:                [ ] {empty matrix},                ,

2. repeat
3. Find residual column of     with lowest     - to

      -norm ratio:

4. Set the th atom equal to normalized      :

5. Add to the dictionary:

6. Compute the new residual
for all columns

7. until “termination” (see Section III-A)

Fast Dictionary Learning for Sparse Representations of Speech Signals
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IV. Experiments



requires around 1 hour and 45

 

minutes to learn the 
dictionary. Therefore, we expect that optimizing

 

the code 
for GAD will lead to even faster computational

 

complexity.

 

b)

 

Learned Atoms

 

We begin by visually inspecting some

 

examples 
of the atoms

 

learned with the three algorithms, and then 
considering the sparsity

 

of the atoms and signal 
representation.

 

Fig. 1(a) shows examples of the overlapping 
data blocks

 

found in the columns of the matrix     , from 
which each dictionary

 

is learned, while the remaining 
plots in the figure show

 

examples of the atoms learned 
with PCA, K-SVD and GAD.

 

The sparsity index relating to 
each atom is also given.

 

The atoms extracted with PCA [Fig. 1(b)] are 
not localized.

 

Comparing them with Fig. 1(a), they do 
not appear to be capturing

 

any particular features of the 
speech signal.

 

The K-SVD atoms [Fig. 1(c)] exhibit some 
structure that generally

 

seems to correspond to that of 
the original data blocks.

 

The atoms obtained with the 
GAD algorithm are illustrated in

 

Fig. 1(d). Those atoms 
extracted earlier, shown on the first two

 

lines, are quite 
similar to the original data, and are also the

 

sparsest 
atoms, as indicated by the low sparsity index. Atoms

 

extracted later, shown on the last two lines in the figure, 
capture

 

mostly “noise”-like characteristics, or less 
meaningful features

 

of the signal.

 

c)

 

Sparsity of Atoms and Representation

 

We have seen in Fig. 1 how the GAD algorithm 
yields atoms

 

that are initially quite sparse and then 
become more “noise”-

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

  

Figure 1: Examples of the frames of the original speech signals, and of the atoms learned with the PCA, K-SVD, and 
GAD algorithms

like. To investigate this further, 100 segments were taken 
from

 

the original speech data, each lasting 1.25 s. PCA, 
K-SVD and

 

GAD were used to learn dictionaries from 

each segment. The

 

sparsity index      

 

for each atom was 
then evaluated, and the average

 

across the 100 trials 
was taken.

 

 
 

 
 

 

 
  

 
 

 

Fast Dictionary Learning for Sparse Representations of Speech Signals

GAD and K-SVD (v2) only need about 2 
minutes, and PCA needs as little as 7sec. However, note 
how the K-SVD version based exclusively on M-code 
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correspond to the columns in   

 

that are extracted

 

by 
GAD, and therefore they are the sparsest within the 
speech

 

segment.

 

The results are shown in the first column of 
Table II, and they

 

validate our expectations: GAD yields 
atoms that are sparser

 

than the original signal blocks, 
and than all the algorithms. However,

 

when we used the 
termination rule in (8) (shown in Table II

 

as GAD-TR), 
with                    , the average sparsity index

 

for the GAD 
atoms decreased from 16.2 to 12.6. On average,

 

GAD-
TR was found to learn less than 110 atoms, which from

 

Fig. 2 can be seen to correspond to those atoms that 
are sparsest.

 

The algorithms perform in a similar way on 
the male speech.

 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 

 

Figure 2 : Sparsity index for atoms GAD, PCA, and K-
SVD algorithms, learned

 

from a female speech signal, 
and averaged

 

over 100 trials

 

 
 

 
 

 
 

 

 
  
  

 

 
 
 
 
 
 
 
 
 
 
 
 

figure for each method, and for both the female and 
male speech

 

signals, as shown in the second column of 
Table II. This also includes

 

values for the sparsity index 
for the original signal blocks

 

in  . The lowest 
representation sparsity index value is obtained

 

with K-
SVD, thanks to the strong sparsity constraint imposed 
by

 

the algorithm on the signal decomposition. This 
entails limiting

 

the number of nonzero elements in the 
signal representation to

 

a small number (we use        

 

). 
The signal transformed with

 

the GAD algorithm is 
sparser than in the time domain, and than

 

the 
coefficients obtained with PCA when all atoms are used 
in

 

the signal reconstruction, for both signals. Moreover, 
the representation

 

becomes even sparser when GAD is 
used with the

 

termination rule.

 

Thus, as well as a dictionary whose atoms are 
sparse GAD

 

leads to a sparse decomposition. This 
confirms the concepts discussed

 

in Section I-A.

 

d)

 

Representation Accuracy

 

The accuracy

 

of the signal approximation given 
by each algorithm

 

can be assessed with the 
reconstruction error  , as defined

 

in (8), after the 
dictionary has been learned

 

                                                                                       
(9)

 

Where

   

is the signal approximation obtained 

 

from                            , 

 

and     

 

is the right pseudo-
inverse of    . This

 

is plotted in Fig. 3 for each algorithm, 
as the number of atoms

 

omitted in the signal 
reconstruction goes from 0 to 462 (or,

 

the total number 

 

Next, we seek to determine how sparse is the 
representation obtained with the GAD method. We do 
this by considering the transform coefficients obtained 
with all methods, for each block, and across the 100 
speech segments taken from the speech signal, each 
lasting 1.25s. The sparsity index of the transform 
coefficients is found each time. We then average across 
the 100 segments and across all blocks to obtain a 
single

of atoms used goes from 512 down to 50). K-SVD has a 
nonzero reconstruction error even when all atoms are 
included in the signal approximation, because the 
transform is not complete, and therefore it does not 
result in an exact reconstruction.

Fast Dictionary Learning for Sparse Representations of Speech Signals

beginning are the sparsest, and after around 200 atoms 
have been extracted, the sparsity index is close to its 
maximum value. The behavior observed here is in 
agreement with what was observed in Fig. 1. It also 
shows that the atoms obtained with the other algorithms 
are not as sparse as those extracted by GAD. The 
original data blocks that are considered in the figure 

sparse atom is characterized by a low sparsity index. 
The plot shows that the atoms learned by GAD in the 

Fig. 2 shows the atom sparsity index for the 
framed speech data in the columns of   , and for the 
atoms learned with PCA, K-SVD and GAD. Recall that a 
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G
lo
ba

l 
Jo

ur
na

l 
of
 C

om
pu

te
r 
Sc

ie
nc

e 
an

d 
Te

ch
no

lo
gy

  
  

  
 V

ol
um

e 
X
IV

  
Is
su

e 
V
III

 V
er
sio

n 
I 

  
  
 

  35

Y
e
a
r

20
14

  
 

(
DDDD DDDD

)
E

Table 2 : Mean Value And Standard Deviation (Std) For 
The Sparsity Index Of The Atoms And The Signal 
Representation Obtained With The Pca, K-Svd, And Gad 
Algorithms Compared To That Of The Original Signal 
Blocks. The Values For The Original Data Blocks And 
For Pca, K-Svd, And Gad Were Averaged Across 100 
Trials, And 512 Atoms

In general, the results show that all algorithms 
perform quite well when few atoms are omitted in the 
reconstruction. As more and more atoms are omitted, 



 
 

 
  

 
 

 
 

 
 

 

 
  

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3:

 

Reconstruction error for the GAD, PCA, and K-
SVD algorithms, averaged

 

over 100 trials

 

are used in the reconstruction). This corresponds to the 
number,

 

identified in Fig. 2, below which the GAD atoms 
are sparsest,

 

and above which the sparsity index 
reaches its maximum value.

 

K-SVD yields signal 
approximations that suffer most from the

 

reduction in 
the number of atoms.

 

The dictionary constructed by

 

GAD separates 
the coherent

 

components from the incoherent 
components. The latter can be

 

discarded from the 
representation to reduce incoherent background

 

noise. 
This suggests that the GAD algorithm might be

 

suitable 
for denoising applications. Hence, we will consider this

 

problem in the following section.

 

    

 

 

The term denoising refers to the removal of 
noise from a

 

signal. Sparse transforms have been found 
to be among the most

 

successful methods for denoising 
[27], and dictionary learning

 

methods have been used 
for this application [13].

 

Table III shows the tolerance of the PCA, K-
SVD, and GAD

 

algorithms to a noise level changing 
from 10 dB to 10 dB, as

 

the number of atoms in the 
reconstruction is reduced from 512

 

to 50.

 

This is 
evaluated with the improvement in signal-to-noise

 

ratio 
(ISNR):

 

                                                                                     (10)

 

 
 

 
 

 
 

When all atoms are used in the reconstruction, 
the complete

 

transforms PCA and GAD, yield an ISNR of 
0 dB, while K-SVD

 

gives a nonzero ISNR, since the 
approximation is not exact.

 

Generally, K-SVD has been 
shown to perform well for tasks

 

such as image 
denoising [7], and the results in Table III show

 

that this 
is also true for speech: the algorithm yields the highest

 

ISNR values across all experiments. For the remaining 
algorithms,

 

when the noise is low (10 dB), reducing the 
number

 

of atoms in the reconstruction leads to 
distortion in the signal

 

approximation. As the level of 
noise increases, the high ISNR

 

Table 3

 

:

 

ISNR For The Gad, Pca, And K-Svd Algorithms. 
All Isnr

 

Values Are Expressed In Decibels (Db)

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

values for PCA and GAD indicate that there are benefits 
in reducing

 

the number of atoms used in the signal 
approximation.

 

It is well-known that PCA can reduce the 
level of

 

noise present,

 

because it decomposes the 
space into signal and noise subspaces

 

[28], and the 
results in Table III show that the performance of

 

GAD is 
similar.

 

It should be emphasized that the advantage of 
using the GAD

 

algorithm over PCA is that methods 
based on sparse representations

 

do not enforce 
decorrelation on the data. This results in

 

greater 
flexibility in adapting the representation to the data, and

 

uncovering previously unobserved structure in the data. 
Moreover, sparse representations allow the use of 
powerful and efficient tools for signal analysis.

Fast Dictionary Learning for Sparse Representations of Speech Signals

Where  is the original signal,      is the 
observed distorted (noisy) signal, and   is the source 
approximated by the transform. As the signal 
approximation becomes closer to the original source, 
ISNR increases.

the reconstruction error increases. PCA performs best, 
because the transform arranges the signal components 
so that most energy is concentrated in a small number 
of components, corresponding to those extracted
earlier. The GAD transform also gives good signal 
approximations as more atoms are excluded from the 
reconstruction, although its performance seems to
worsen as the number of omitted atoms becomes more 
than 300 (or less than 200 atoms

© 2014   Global Journals Inc.  (US)
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V. Application to Speech Denoising



 
  

  

 
 

 
 

 
 

 

 
 

 
 

 
 

 

 
 

 
 

 
waveform domain [30]. On the other hand, in its

 

present 
form GAD is a general algorithm that can be used with

 

a 
variety of data because it does not make any 
assumptions on

 

its characteristics.

 
Although the GAD algorithm is currently at the 

theoretical

 

stage, it is a fast method that might in future 
be used in real practical

 

applications such as speech 
coding. In this case, like with

 

PCA, this method would 
require the transmission of the signal

 

adaptive

 
dictionary. Other applications to which we are 
particularly

 

interested in applying the GAD method 
include image

 

processing and biomedical signal 
processing. Biomedical applications

 

typically give rise to 
large data sets, for instance, in

 

microarray experiments 
the expression values of thousands of

 

genes are 
generated. Therefore, in this case the algorithm would

 
have to be extended to deal with large data sets. We are 
also

 

considering the application of this approach to the 
problem of

 

source separation.

 

  In this paper, we have presented a greedy 
adaptive dictionary

 

learning algorithm, that finds new 
dictionary elements that are

 

sparse. The algorithm 
constructs a signal-adaptive orthogonal

 

dictionary, 
whose atoms encode local properties of the signal.

 

The 
algorithm has been shown to yield sparse atoms and a 
sparse

 

signal representation. Its performance was 
compared to that of

 

PCA and K-SVD methods, and it 
was found to give good signal

 

approximations, even as 
the number of atoms in the reconstructions

 

decreases 
considerably.

 It results in better signal reconstruction than K-
SVD and it

 
has good tolerance to noise and does not 

exhibit distortion when
 

noise reduction is performed at 
low noise levels.
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reviewers for
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