SV GLOBAL JOURNAL OF COMPUTER SCIENCE AND TECHNOLOGY: G
EesenpEemnnene [NTERDISCIPLINARY

f’ﬁ‘ Volume 14 Issue 3 Version 1.0 Year 2014

& ") Type: Double Blind Peer Reviewed International Research Journal
Publisher: Global Journals Inc. (USA)
Online ISSN: 0975-4172 & Print ISSN: 0975-4350

A Tool based Edge Server Selection Technique using Spatial Data
Structure

By Debabrata Sarddar, Sandip Roy & Rajesh Bose

Kalyani University, /ndia

Abstract- Space partitioning is the process of dividing a Euclidean space into a non-overlapping
regions. Kdimensional tree is such space-partitioning data structure for partitioning a Euclidean plane
like the surface of earth. This paper describes a tool-based logically partitioning technique of earth
surface using K-dimensional tree to segregate the edge servers over the earth surface into a non-
overlapping regions for the particular Content Delivery Network. Consequently selecting an edge
server based on Least Response Time lo ad balancing algorithm is introduced to improve end-user
response time and fault tolerance of the host server.

Keywords: content delivery network, K-d tree, least response time, load balancing, nearest neighbor
search, spatial data structure.

GJCST-G Classification: E.1

EEE

© 2014. Debabrata Sarddar, Sandip Roy & Rajesh Bose. This is a research/review paper, distributed under the terms of the Creative
Commons Attribution-Noncommercial 3.0 Unported License http://creativecommons.org/licenses/by-nc/3.0/), permitting all non-
commercial use, distribution, and reproduction inany medium, provided the original work is properly cited.

A Tool based Edge Server Selection Technique
using Spatial Data Structure

Debabrata Sarddar *, Sandip Roy ° & Rajesh Bose °

Abstract- Space partitioning is the process of dividing a
Euclidean space into a non-overlapping regions. K-
dimensional tree is such space-partitioning data structure for
partitioning a Euclidean plane like the surface of earth. This
paper describes a tool-based logically partitioning technique
of earth surface using K-dimensional tree to segregate the
edge servers over the earth surface into a non-overlapping
regions for the particular Content Delivery Network.
Consequently selecting an edge server based on Least
Response Time load balancing algorithm is introduced to
improve end-user response time and fault tolerance of the
host server.

Keywords: content delivery network, K-d tree, least
response time, load balancing, nearest neighbor search,
Spatial data structure.

I. [INTRODUCTION

Content Delivery Network (CDN) is a large
distributed network of multiple data centers
scattered over the earth surface [1] [3]. Today
CDNs deliver a huge number of internet content
including text, scripts and images and also on-demand
streaming media files. Content providers pay CDN
operators (e.g. Akamai, Mirror Image Internet etc.) for
delivering the aforesaid contents to their customer to
improve the overall network performance [2].

In this paper we have introduced a tool for
partitioning earth surface using K-d Tree and also a
closest edge server is selected based upon proposed
least response time load balancing strategy.

B Visitors

Figure 1 : An example of Content Delivery Network over
the earth surface.

Author a: Department of Computer Science & Engineering, University
of Kalyani, Kalyani, India. e-mail: dsarddar1@gmail.com

Author o: Department of Information Technology, Brainware Group of
Institutions, Kolkata, India. e-mail: sandiproy86@gmail.com

Author p: Senior Project Engineer, Simplex Infrastructures Ltd. Kolkata,
India. e-mail: bose.rajo0028@gmail.com

[I. BACKGROUND STUDIES

a) Content Delivery Network (CDN)

Increasing the global availability of the internet
content, improving the page load time and reducing the
bandwidth cost CDN edge servers are scattered over
the earth surface. When users from different location are
requesting for a particular web content which is
algorithmically direct to the nearest edge server to
achieve the goal. In this paper we have instigated a
technique for partitioning earth surface using the K
dimensional tree (K-d tree) and select the nearest edge
server using least response time load balancing method
which is discussed below.

b) K-dimensional Tree (K-d tree)

K-d Tree is space partitioning data structure for
arranging coordinate points (latitude, longitude) over the
earth surface. It can be sub-divided the earth surface
into a non-overlapping regions [4] [5] [7]. In this context
we have described an efficient edge server searching
technique using K-d tree.

c) Least Response Time

The Least Response Time is a one of the most
popular load balancing technique is used in this context
[13] [14]. Using the aforesaid load balancing algorithm,
to regulate how to dispense load among the edge
servers. This paper we have used the network “ping”
command to get average response time of the edge
servers which are scattered over the earth surface [10].

[II. PROPOSED ALGORITHM

In our proposed algorithm we have prepared an
efficient tool for CDN provider which is supervising a
CDN to select low latency edge server. The set of edge
servers are considered as the set of coordinate points P
(e.g. latitude and longitude) scattered over geographical
region and here we build a K-d tree using P which is
scattered over the earth surface as shown in figure 2
and logically partition the edge servers into a non-
overlapping region as like figure 3 [6]. Using function
kd_closestpointsearch, we have found nearest edge
servers of the current location of end-user (e.g. Kolkata)
[8] [9] [11]. Then we can calculate accurate network
latency using “ping” command over the closest edge
servers’ IP address to find the minimum average latency
time for delivering web content of a particular host
server [10]. Executing “ping” command we get status

© 2014 Global Journals Inc. (US)

Global Journal of Computer Science and Technology (G) Volume XIV Issue III Version I E Year 2014

Global Journal of Computer Science and 'l‘cchn(‘)log’\' (G) Volume XIV Issue Il Version I E Year 2014

and result information of the edge server, if the status
value is 0 means server is active otherwise 1 signifies
the server is dead.

Our proposed algorithm is developed using
Matlab R2012b which is described below [11] [12]. In

figure 3, the black maker is depicted that the current
location of end-user and the closest edge server,
among different edge servers, is waiting to send the
web content to the end user that is our primary
challenge.

Location of Edge Server

=0 T T

B0

Kinoston QT" tondon

”J\%‘\ﬂ“ Chicagn
a—f\w lzlamakad
30- - Pesw Delhi B
§ /hD‘LKjaIa g Mexico - =
= Calomto n
@ ok ~ singapore |
:g o
E Hara[?
Sl Canherra SantiagoBuenos Aires Cape Twn
<3 ra
B0 _
= 1 1 I 1 I

180 240 300 360

Longitude [deg]

Figure 2 : Location of edge servers over the earth surface

A examgle of Ked Tree

lelamahad

0 Colombo

Latitude deg)

o Srapore

Hargre

Kingston Mon

Cricago

ME::IE':'

Snm'iag-:- Cape Town

Canben

| | Buengs Aires I |

0 100 150

20 20 m) a0

Longitude [deg)

Figure 3 : Location of edge servers over the earth surface using K-d Tree

a) Algorithm for selecting edge server using K-d Tree
1. plot_stuff €1
2. if (plot_stuff)
2.1 close all; end
3. Asetlat = {lat, lat, lats, ..
assigned in [1 x M] array
4. A setlon = {lon,, lon,, lon,, ..
are assigned in [1 x M] array
sz = size(lon)
6. fori€1tosz
6.1 iflon(i) <=0
6.1.1 lon(i) = lon(i)+360
6.2 end

., laty} of latitudes are

., lony} of longitudes

o

© 2014 Global Journals Inc. (US)

7. end

8. fori€1tosz
81 X(:, 1) =lon
8.2 X (;,2) = lat

9. End

10. mylon = 88.3697200 // Longitude of current location
(e.g. Kolkata)

11. mylat = 22.5697200 // Latitude of current location
(e.g. Kolkata)

12, ifmylon <=0
12.1 mylon = mylon+360

13. end

14. point = [mylon mylat]

15. tree = kd_buildtree(X, plot_stuff) // Build K-d Tree

16. [index vals,vec vals,node number]=
kd_closestpointsearch (iree, point) // Finding the
closet point using K-d Tree

b) Function for finding closest edge server of the end-
user’s current location
function [index vals, vector vals, final node] =
kd_closestpointsearch (tree, point, node_number)
/[Initialize the global variable
1. global tree cell
2. global safety check
3. A set ipaddr = {ipaddr1, ipaddr2, ipaddr3, ...,
ipaddrM} of IP addresses in [1 X M] string array
4. if(nargin==2)
4.1 safety check=0
4.2 node number=1
4.3 tree cell=tree
4.4 final_node=node number
4.5 clear tree
5. end
/[if the current node is a leaf then output its results
6. if(strcmp (tree_cell (node _number).type, ‘leaf!))
7. index vals=tree_cell(node _number).index
8. vector vals=tree cell(node number).nodevector
9. final_node=node number
10. [status, result]
= dos (['ping -n 1 "ipaddr (index_vals,:)])
11. Return
12. End
// if the current node is not a leaf
/lcheck to see if the point is to the left of the split
dimension if it is to the left then recurse to the left
13. If(point(tree_cell(node_number).splitdim) < =tree_cel
I(node_number).splitval)
13.1 if (isempty (tree_cell (node_number).left))
// in case the left node is empty, then output current
results
13.1.1 index vals
=tree_cell (node_number).index
13.1.2 vector vals
=tree_cell (hode_number).nodevector
13.1.3 final_ node=node number;
13.1.4 [status, result]
= dos (['ping -n 1 "ipaddr (index_vals,:)])
13.2 Return
14. else

14.1 index vals=tree_cell (node_number).index

14.2 vector_vals

=tree_cell (hode_number).nodevector

14.3 final_node=node number

14.4 [status, result]

= dos (['ping -n 1 "ipaddr (index_vals,:)])

14.5 [index vals, vector vals, final _node]
=kd_closestpointsearch(0,point,tree_cell(node_nu
mber).left)

14.6 End

15. else
/! as the point is to the right of the split dimension
recurse to the right
16. if (isempty(tree_cell(node_number).left))
/! In case the left node is empty, then output current
results
16.1 index vals=tree_cell(node_number).index
16.2 vector_vals
=tree_cell (hode_number).nodevector
16.3 final_node=node number
16.4 [status, result]
= dos (['ping -n 1 "ipaddr (index_vals,:)])
16.5 Return
17. else
17.1 index vals=tree_cell (node_number).index
17.2 vector_vals
=tree_cell (node_number).nodevector
17.3 final_node=node number
17.4 [status, result]
= dos (['ping -n 1 "ipaddr (index_vals,:)])
17.5 [index_vals, vector vals, final_node]
=kd_closestpointsearch(0,point,tree_cell(node_num
ber).right);
18. end
19. end

V. SIMULATION ANALYSIS

Step 1 : Latitude and Longitude value of
different edge servers are assigned in lat and lon array
variables, which are enlisted in table 1 and negative
value of longitude are transformed by adding 360° which
are listed in table 2.

Table 1 : Latitude and Longitude of different edge
servers over the earth surface

Location of Latitude Longitude
edge server
Kolkata 22.5667°N 88.3667°E
Singapore 1.3000°N 103.8000°E
Colombo 6.9344°N 79.8428°E
London 51.5072°N 0.1275°W
Chicago 41.8819°N 87.6278°W
New Delhi 28.6139°N 77.2089°E
Ankara 39.9300°N 32.8600°E
Islamabad 33.7167°N 73.0667°E
Santiago 33.4500°S 70.6667°W
Mexico 19.000°N 99.1333°W
Kingston 44.2333°N 75.6919°W
Buenos Aires 34.6033°S 58.3817°W
Harare 17.8639°S 31.0297°E
Cape Town 33.9253°S 18.4239°E
Canberra 35.3075°S 149.1244°E

© 2014 Global Journals Inc. (US)

Global Journal of Computer Science and Technology (G) Volume XIV Issue III Version I E Year 2014

Global Journal of Computer Science and ’l‘cchn(‘)l(‘)g’\' (G) Volume XIV Issue III Version I E Year 2014

Table 2 : Latitude and Modified Longitude of different
edge servers over the earth surface

Location of Latitude Longitude Modified
Edge Longitude
Servers
Kolkata 22.5667 88.3667 88.3667
Singapore 1.3000 103.8000 103.8000
Colombo 6.9344 79.8428 79.8428
London 51.5072 -0.1275 359.8725
Chicago 41.8819 -87.6278 272.3722
New Delhi 28.6139 77.2089 77.2089
Ankara 39.9300 32.8600 32.8600
Islamabad 33.7167 73.0667 73.0667
Santiago -33.4500 -70.6667 289.3333
Mexico 19.0000 -99.1333 260.8667
Kingston 44.2333 -75.6919 284.3081
Buenos Aires -34.6033 -58.3817 301.6183
Harare -17.8639 31.0297 31.0297
Cape Town -33.9253 -18.4239 341.5761
Canberra -35.3075 149.1244 149.1244

Table 3 : IP Address and Domain name of different edge
servers over the earth surface

Location IP Address Domain Name
of Edge
Servers
Kolkata 203.197.118.81 www.jaduniv.edu.in
Singapore | 137.132.21.27 www.nus.edu.sg
Colombo 192.248.17.88 www.cmb.ac.lk
London 212.113.11.22 www.lse.ac.uk
Chicago | 198.101.129.15 www.uchicago.edu
New Delhi 103.27.9.20 www.du.ac.in
Ankara 80.251.40.153 www.ankara.edu.tr
Islamabad 61.5.158.124 www.islamabadairport.co
m.pk
Santiago | 158.170.64.116 www.udesantiago.cl
Mexico 128.123.3.2 www.nmsu.edu
Kingston | 130.15.126.136 www.queensu.ca
Buenos 190.224.163.23 | www.buenosairesherald.co
Aires 4 m
Harare 196.201.17.237 WWW.Caaz.Cco.zZw
Cape 41.72.141.237 www.capetown.travel
Town
Canberra 137.92.97.88 www.canberra.edu.au

Table 4 : Status information of edge server and Average
Network Latency time of closest edge server

Location | IP Address Status | Average
of Edge time(ms)
Servers
Canberra 137.92.97.88 Dead Request timed
out
Kolkata 203.197.118.81 | Active 260
Colombo 192.248.17.88 Active Destinationhost
unreachable
Singapore | 137.132.21.27 Active 238

© 2014 Global Journals Inc. (US)

Finding Content Object(s) Using Kd tree
B0

g0t
4ot
o} H)

201

Latitude [deg]
=

20h

30F

-40
]

SID 1 Dh 1 éﬂ ZDID 2%0 360 35ID ADID
Longitude [deg]

Figure 4 : Nearest edge server selection by our
proposed methodology, example Selected edge server
Singapore(Red Marker) & User’s current location

Kolkata (Black Marker)

Step 2 : The IP Address of different location of edge
servers are assigned in ipaddr variables and the IP
Address of edge servers along with domain names are
listed in table 3.

Step 3 : The edge servers are decomposed using K-d
tree as shown in figure 3.

Step 4 : Using kd_closestpointsearch function we have
search closest edge server of the current location of
end-user and consequently find out the accurate
network latency time using “ping” command.

Step 5 : The connection is established between least
average response time active edge server located at
Singapore and end-user from Kolkata for sending the
web content as shown in figure 4.

V. CONCLUSION

Our proposed tool and simulation results
proclaim minimum network latency and minimum packet
loss in selection of closest edge server over the earth
surface. In this paper we have used K-d tree algorithm
for decomposing the earth surface. Usage of
kd_closestpointsearch method helps us to find the
nearest edge server of the end-user. Our proposed tool
can be used in wireless network and wired network for
delivering the web content efficiently to improve the
throughput of total network.

REFERENCES REFERENCES REFERENCIAS

1. Nygren, E., Sitaraman, R. K., and Sun, J. (2010).
The Akamai Network: A Platform for High
Performance Internet Applications. ACM SIGOPS
OSR, 44(3), 2-19.

2. Parikh, J., Prokop, H., Sitaraman, R., Dilley, J.,
Maggs, B., and Weihl, B. (2002). Globally

Distributed Content Delivery. [EEE INTERNET
COMPUTING, 50-58.

~

10.

11.

12

13.

14.

15.

Repantis, T., Cohen, J., Smith S., and Wein, J.
(2010). Scaling a Monitoring Infrastructure for the
Akamai Network. ACM SIGOPS Operating Systems
Review, 44(3), 20-26.

Bentley, J. L. (1975). Multidimensional binary search
trees used for associative searching.
Communications of the ACM, 18(9) 509.
doi:10.1145/361002.361007.

Chandran, S. Introduction to kd-trees. University of
Maryland Department of Computer Science.
Rosenberg, J. B. (1985). Geographical Data
Structures Compared: A Study of Data Structures
Supporting Region Queries. IEEE Transactions on
Computer-Aided Design of Integrated Circuits and
Systems, 4(1), 53-67. doi:10.1109/TCAD.1985.
1270098.

Moore A. An introductory tutorial on KD trees.
Clarkson, K. L. (1983). Fast algorithms for the all
nearest neighbors problem, 24th [EEE Symp.
Foundations of Computer Science, (FOCS '83), pp.
226-232. doi:10.1109/SFCS.1983.16.

Vaidya, P. M. (1989). An O(n log n) Algorithm for the
All-Nearest-Neighbors ~ Problem. Discrete and
Computational Geometry, 4(1), pp.101-115. doi:10.
1007/BF02187718.

Sarddar, D., Roy, S. and Bose, R. (2014). An
Efficient Edge Servers Selection in Content Delivery
Network Using Voronoi Diagram. IJRITCC, 2(8),
2326-2330.

Friedman, J. H., Bentely, J., and Finkel, R. A. (1977).
An Algorithm for Finding Best Matches in
Logarithmic Expected Time. ACM Transactions on
Mathematical Software 3, 209-226.

Vemulapalli, P. (2010). Kd tree implementation in
Matlab. Retrieved from MATLAB CENTRAL
website:http://www.mathworks.in/matlabcentral/filee
xchange/26649-kdtree-implementation-in-matlab
Patel, V. P., Patel, H. D., and Patel, J. P. (2012). A
Survey on Load Balancing in Cloud Computing.
IJERT, 1(9).

Kherani, F. F. and Vania, J. (2014). Load Balancing
in cloud computing, IJEDR, 2(1), 907-912.
Mata-Toledo, R. and Gupta, P. (2010). Green data
center: how green can we perform. Journal of
Technology Research, Academic and Business
Research Institute, 2(1), 1-8.

© 2014 Global Journals Inc. (US)

Global Journal of Computer Science and Technology (G) Volume XIV Issue III Version I H Year 2014

Global Journal of Computer Science and Technology (G) Volume XIV Issue III Version I E Year 2014

A TOOL BASED EDGE SERVER SELECTION TECHNIQUE USING SPATIAL DATA STRUCTURE

This page is intentionally left blank

© 2014 Global Journals Inc. (US)

	A Tool based Edge Server Selection Technique using Spatial DataStructure
	Authors
	Keywords
	I. Introduction
	II. Background Studies
	a) Content Delivery Network (CDN)
	b) K-dimensional Tree (K-d tree)
	c) Least Response Time

	III. Proposed Algorithm
	a) Algorithm for selecting edge server using K-d Tree
	b) Function for finding closest edge server of the enduser’scurrent location

	IV. Simulation analysis
	V. conclusion
	References Références Referencias

