
© 2015. B. Rangaswamy, Dr. N. Geethanjali & Dr. T. Ragunathan. This is a research/review paper, distributed under the terms of the
Creative Commons Attribution-Noncommercial 3.0 Unported License http://creativecommons.org/licenses/by-nc/3.0/), permitting all
non-commercial use, distribution, and reproduction inany medium, provided the original work is properly cited.

Global Journal of Computer Science and Technology: B
Cloud and Distributed
Volume 15 Issue 2 Version 1.0 Year 2015
Type: Double Blind Peer Reviewed International Research Journal
Publisher: Global Journals Inc. (USA)
Online ISSN: 0975-4172 & Print ISSN: 0975-4350

Improving the Read Performance of the Distributed File System
through Anticipated Parallel Processing

 By B. Rangaswamy, Dr. N. Geethanjali & Dr. T. Ragunathan
 Sri Krishnadevaraya University, India

Abstract- In the emerging Big Data scenario, distributed File systems (DFSs) are used for storing and
accessing information in a scalable manner. Many cloud computing systems use DFS as the main
storage component. The Big Data applications de-ployed in cloud computing systems more
frequently perform read operations and less frequently the write operations. So, improving the
performance of read access has become an im-portant research issue in DFS. In the literature, many
client side caching with appropriate pre fetching techniques are proposed for improving the
performance read access in the DFS. A speculation-based approach which uses client side caching
is also proposed in the literature for improving the performance of read access in the DFS. In this
paper, we have proposed a new read algorithm for the DFS based on anticipated parallel
processing. We have evaluated the per- formance of the proposed algorithm using mathematical and
simulation methods and the results indicate that the pro-posed algorithm performs better than the
speculation-based algorithm proposed in the literature.

Keywords: distributed system, speculation, asynch- ronous reading performance.

GJCST-B Classification : C.1.4, C.2.4

ImprovingtheReadPerformanceoftheDistributedFileSystemthroughAnticipatedParallelProcessing

Strictly as per the compliance and regulations of:

© 2015 Global Journals Inc. (US)

19

G
lo
ba

l
Jo

ur
na

l
of
 C
 o

m
p u

te
r
S c

ie
nc

e
an

d
T
ec

hn
ol
og

y

V
ol
um

e
X
V
 I
ss
ue

 I
I
V
er
sio

n
I

Ye
ar

 (

)
20

15
B

Improving the Read Performance of the
Distributed File System through Anticipated

Parallel Processing
B. Rangaswamy α, Dr. N. Geethanjali σ & Dr. T. Ragunathan ρ

Abstract- In the emerging Big Data scenario, distributed File
systems (DFSs) are used for storing and accessing
information in a scalable manner. Many cloud computing
systems use DFS as the main storage component. The Big
Data applications de-ployed in cloud computing systems
more frequently perform read operations and less frequently
the write operations. So, improving the performance of read
access has become an im-portant research issue in DFS. In
the literature, many client side caching with appropriate pre
fetching techniques are proposed for improving the
performance read access in the DFS. A speculation-based
approach which uses client side caching is also proposed in
the literature for improving the performance of read access in
the DFS. In this paper, we have proposed a new read
algorithm for the DFS based on anticipated parallel
processing. We have evaluated the per- formance of the
proposed algorithm using mathematical and simulation
methods and the results indicate that the pro-posed algorithm
performs better than the speculation-based algorithm
proposed in the literature.
Keywords: distributed system, speculation, asynch-
ronous reading performance.

I. Introduction

ot of data (text, images, video and audio) is getting
gen-erated due to the extensive use of social
media applications. This phenomena is referred as

Big Data in the literature.The availability of smart phones
which support many at-tractive applications facilitate the
users to upload the mul-timedia data into the web in a
exible manner. The main problem here is the availability
of scalable storage solutions which provide required
storage capacity and efficient read and write facilities.
Distributed File systems (DFSs) have been emerged as
the scalable storage facility for storing Big Data and for
accessing them in an efficient manner. Many cloud
computing systems use DFS as the main storage
component.

Author α : Research Scholar Department of Computer Science and
Technology Sri Krishnadevaraya University Ananthapur, Andhra
Pradesh, India. e-mail: burujula1971@gmail.com
Author σ : Associate Professor Department of Computer Science and
Technology Sri Krishnadevaraya University Ananthapur,Andhra Pradesh,
India. e-mail: geethanjali.sku@gmail.com
Author ρ : Professor and Dean Department of Computer Science and
Engineering ACE Engineering College Hyderabad, India.
e-mail : ragu_savi@yahoo.com

The Big Data applications deployed in the cloud
computing environment more frequently perform read
operations and less frequently carry out write
operations. Hence, improving the performance of the
read operations in a Big Data environment has become
one of the important research is-sues. So, for the DFS
which is used for storing and accessing Big Data, it is
important that it carries out the read access in a faster
manner so that Big Data application execution time can
be reduced.

The DFS uses disk as the main storage device
and data transfer rate of disk is very less in comparison
with that of the dynamic or static random access
memories used in the computer systems. To reduce the
input/output (I/O) access time, many client side caching
techniques have been proposed in the literature. These
techniques allow the client node to download the
requested Files from the server and store the same in
the client side cache so that further read re-quests
issued by the applications running in the client nodes
will be satis read by reading the content from the local
cache (client side cache). To avoid stale data problems
in the client side caching techniques one of the following
methods will be used: (i) Cache synchronization or
cache invalidation pro-tocol (ii) Checking up with the
server whether the data in the client side cache is valid
or stale. If the data available in the cache is stale then
the data has to be fetched from the server's disk.

In the literature, a speculation-based technique
has been proposed for improving the performance of
read access in the DFS [6]. In this technique, the client
application reads the data from the local cache and
proceed with its execution (speculative execution).
Simultaneously, the server systemis also contacted to
check whether the data in the local cache is stale or
valid by comparing the time stamp values of the cached
copy and the copy available in the sever's disk. If the
data in the local cache is found to be valid, then the
speculative execution is allowed to continue. If the data
in the local cache is found to be stale, then the data is
read from the server's disk and the speculative
execution will be rolled back.

In this paper, we propose anticipated parallel
processing-based algorithm which carries out
executions by considering the local cache of the node
(LN) where the client application program is getting

L

© 2015 Global Journals Inc. (US)1

20

G
lo
ba

l
Jo

ur
na

l
of
 C
 o

m
p u

te
r
S c

ie
nc

e
an

d
T
ec

hn
ol
og

y

V
ol
um

e
X
V
 I
ss
ue

 I
I
V
er
sio

n
I

Ye
ar

 (

)
20

15
B

Improving the Performance of the Distributed file System Through Anticipated Parallel Processing

executed and also the local cache of the node (NN)
which is placed near to LN (where the same data is
available). Based on the time stamp value available in
the server for the data, the cache content of LN or NN
will be considered. If the data available in LN and NN
are stalethen the data will be read from the server's disk.
We have evaluated the performance the proposed
algorithm through mathematical analysis and simulation
experiments. The re-sults indicate that our proposed
algorithm performs better than the earlier speculation-
based algorithm proposed in the literature.

This paper is organized as follows. In the next
section, we describe the techniques discussed in the
literature for im-proving the performance of the DFS. In
section 3, we discuss our proposed approach in detail.
In section 4, we have done the detailed performance
evaluation of the algorithms using mathematical analysis
and simulation modeling. Section 5 concludes the
paper.

II. Relatedwork

In this section, we discuss First we describe the
techniques discussed in the literature for improving the
performance of the DFS.

Many client-side caching techniques have been
used to im-prove the performance of distributed File
systems. A cooper-ative caching technique is discussed
in the paper [2]. In this type of technique, the server
maintains a directory which stores the details of File
blocks stored in each and every local caches available
in client nodes. Whenever a client applica-tion program
issues read request for a block, First the local cache is
verified and then the cache directory maintained in the
server is verified to see whether the requested File block
is available or not. If the File block is not available in the
local cache and in any of the caches maintained in the
client nodes then it will be read from server's disk where
the DFS is deployed. This technique is suffering from the
problem known as single point of failure.

In order to eliminate the single point of failure,
researchers have come out with a technique known as
"Decentralized Caching Technique" which was proposed
in [8]. The authors proposed a hint based approach in
which the cache directory of the local cache maintains
hints regarding in which local cache of the client nodes
the File block probably be found. This technique
proposed the meta data in the form of hints to be
distributed to client nodes and hence the single point of
failure can be eliminated.

A new type of caching technique called
collective caching was discussed in [4]. If the subtasks
of a client application runs in multiple client nodes then
the caches available in these client nodes may be
logically combined to act as a single cache so that all
the subtasks can read the File blocks from this uni_ed
cache provided these blocks are available there.

In [7] an aggressive proactive technique was
proposed for the effective pre fetching of _le blocks
based on hints. In [3], locality aware cooperative
caching was proposed.

The Hadoop DFS (HDFS) [9] is a open-source
project and it is a cluster-based File system. The HDFS
is an attractive File system and provides scalable
storage solutions for Big Data applications.

In [6], a speculation-based method was
proposed to improve the performance of the DFS. This
technique uses only the local cache for the speculative
execution purpose.

III. Proposed Algorithm based on
Anticipated Parallel Processing

In this section we discuss regarding anticipated
parallel ex- ecution, disadvantages of speculation-based
algorithm and then the proposed algorithm.

a) Anticipated Parallel Execution
The main idea behind anticipated parallel

execution is to do some task before it is known whether
that task will be required at all. Later we come to know
that whether the task is required or not by checking
various conditions. If the task is required then the effect
of the task execution is used and the results produced
by the task are considered. If the task is not required
then the effect of the task execution is undone and the
results produced by the task are not utilized. This type of
task execution will reduce the waiting time for mmany
cases and hence the performance can be improved.

Anticipated parallel execution technique is
followed in mod-ern pipelined processors particularly for
the efficient han-dling of conditional branch instructions.
In this type of pro-cessors, the conditional branch
instructions are allowed to go through the various
stages of the pipeline. Here the assumption is that the
condition may not satisfied and hence the branch will
not take place. Whether the condition is satisfied or not
for an instruction is known at the execution stage of the
pipeline. If the condition is not satisfied, the instruction
executions continue in the pipeline. If the con-dition is
satisfied then the pipeline is drained and then the
instruction will be fetched from the target address
(branch address) [1]. Anticipated parallel executions are
used in op-timization phase of the compilation process
[5].

b) Disadvantages of Speculation-based algorithm
In the literature a speculation-based method

has been pro-posed for improving the performance of
read operations [6]. In this paper, the authors assumed
that caches are main-tained in the client systems and
the server will be contacted to check whether the
content in the local (client side cache) is stale or valid by
checking the time stamp of the cached copy and the
copy available in the server's disk. Whenevera client

© 2015 Global Journals Inc. (US)

21

G
lo
ba

l
Jo

ur
na

l
of
 C
 o

m
p u

te
r
S c

ie
nc

e
an

d
T
ec

hn
ol
og

y

V
ol
um

e
X
V
 I
ss
ue

 I
I
V
er
sio

n
I

Ye
ar

 (

)
20

15
B

Improving the Performance of the Distributed file System Through Anticipated Parallel Processing

application program requests for a File and if the File is
available in the local cache then one speculative execu-
tion will be started which reads the content from the
local cache and proceed its execution. Meanwhile the
server system is contacted to know whether the cached
copy of theFile is stale or valid. If the cached copy of the
File is valid then the speculative execution will be
allowed to continue. If the cached copy of the File is
stale then the speculative execution will be rolled back
and then the file content is read from the server's disk
and then the execution will continue. In this algorithm,
the client program checks only the local cache and if the
content is not available there the it accesses the content
from the server's disk. Note that, the same content may
be available in other client nodes connected in the DFS
environment. This speculation-based algorithm does
consider the availability of data in other client nodes. So,
there is a scope of proposing an improved read
algorithm by considering the local caches present in
other systems.

c) Proposed Algorithm
In this subsection, we discuss _rst regarding the

assumptions of the caching system maintained in the
DFS. Next, we describe the three parts of the proposed
algorithm and then the proposed algorithm.

i. Assumptions
We have considered a cluster-based DFS to

propose our algorithm. In the DFS, we have assumed
that one name node (name sever system) and two or
more data nodes are present. The purpose of the name
node is to store the meta data (global directory - File
attributes and other details). The data nodes are used
for storing the files and executing user (client)
application programs. The name node and data nodes
are connected through local area network. All the data
nodes are maintaining their own local caches and cache
operations are managed by a cache manager module
deployed in the data nodes. The cache managers
maintain cache directory (CD) in which the information
regarding which Files are stored in the local cache is
available. In the CD of a data node, the address of the
nearest data node is also stored. Here, we have
considered only the File level caching (entire File will be
downloaded from the server's disk and stored in the
cache). We have assumed that caching is done only
during read access and write operations will not initiate
any cache operation. We have also assumed that the no
cache synchronization or invalidation protocol is fol-
lowed in order to avoid communication delay. Each
client program whenever it reads the content form the
cache, it has to verify with the name node whether the
content read from the cache is valid or stale. We have
also assumed that three copies of the same _le is kept
in three different data nodes in order to support the
reliability feature.

ii. Three parts of the algorithm

Our algorithm consists of three parts. The first
part describes the steps to be followed for the main
thread of execution of the read procedure of the DFS.
The second part describes the steps to be followed by
the anticipated execution (AE1) and the third part
describes the steps to be followed by the anticipated
execution (AE2).

/* A client program (C) running in a data node
(D1) has issued read procedure to read the contents of
the _le F2 */
I) Algorithm for main thread of execution

if AE1 and AE2 are not created or AE1 and AE2
are terminated then

D1 contacts name node to get addresses of
data nodes where F2 is stored.
C contacts the nearest data node to read F2.
F2 is transferred to C and cached at local cache.
end if
(II) Algorithm for anticipated execution (AE1)
if F2 is available in the local cache then
Anticipated parallel execution AE1 is created
C reads F2
Read Time stamp value of F2 into T1.
Wait for name node to send time stamp value of F2
recorded
in its directory (T2)
if T1 >= T2 then
AE1 will continue its execution
else
AE1 will be terminated
end if
end if
(III) Algorithm for anticipated execution (AE2)
C veri_es the CD of D1 to get the address of the nearest
data node (D2) where F2 is available.
if F2 is available in D2 then
Anticipated parallel Execution (AE2) starts.
Read time stamp value of F2 from D2 into T3.
Wait for name node to send time stamp value of F2
recorded
in its directory (T2)
if T3 >= T2 then
AE2 will continue its execution
else
AE2 will be terminated
end if
end if

(Note that request message is sent to name
node to send the time stamp value of F2 and then both
the algorithm steps II and III are executed in parallel.)

© 2015 Global Journals Inc. (US)1

22

G
lo
ba

l
Jo

ur
na

l
of
 C
 o

m
p u

te
r
S c

ie
nc

e
an

d
T
ec

hn
ol
og

y

V
ol
um

e
X
V
 I
ss
ue

 I
I
V
er
sio

n
I

Ye
ar

 (

)
20

15
B

Improving the Performance of the Distributed file System Through Anticipated Parallel Processing

We have analyzed the performance of the
algorithms through mathematical and simulation
modeling. In this section, we discuss first regarding the
assumptions. Next, we discuss regarding performance
evaluation through mathematical model. Finally, we
discuss regarding the results of the simulation
experiments.

a) Assumptions
We have made the following assumptions by

considering various factors related to main memory,
disk and local area network. (i) Block size is 4 KB. (ii) All
data and name nodes are connected in a network. (iii)
Average communication delay is 4 ms. (iv) Transferring
meta data from name node to requested data node is
0.125 ms (v) Average block access time for disk is 12
ms (vi) Average block access time formain memory is
0.005 ms (vii) Local cache hit ratio is lc and remote
cache hit ratio is nc.

b) Mathematical Model
Based on the assumptions discussed in the

above subsection we calculate the average access time
for the speculation and anticipated parallel processing-
based algorithms. We call average block read access
time as ABRAT. We have calculated the time required to

access a file block from the remote data node as 4.01
ms.

Average Block Read Access Time (with
speculation) = lc * (Main memory access time + Time
stamp collection time) + (1- lc) * (Main memory access
time + Time stamp collection time + Block access time
for Disk + Block transfer communication time + Main
memory access time). If we apply the above equation,
ABRAT for speculation-based approach is calculated as
(16.26 - 16.13 lc)ms. (Formula 1)

Note that, we have not considered overhead
involved in starting the the speculative execution.

Average Block Read Access Time (with
anticipated parallel processing) = lc* (Main memory
access time + Time stamp collection time) + nc * (Main
memory access time + Time stamp collection time +
Block transfer communication time + Remote Main
memory access time) + (1- lc - nc) * (Time stamp
collection time + Main memory access time + Remote
Main memory access time + Meta Data Collection Time
+ Block access time for Disk + Block transfer
communication time + Main memory access time). The
ABRAT for anticipated parallel processing-based
approach is computed as (20.26 - 20.01c - 16.13c1)ms
(Formula 2).

Figure 1: Remote Cache Hit Ratio Vs Average Read Access Time
(Local cache hit ratio value is 0.3)

We have varied the local cache hit ratio (lc) and
remote cache hit ratio (nc) and calculated ABRAT values

IV. Evaluation of Performance

both for speculation- and anticipated parallel
processing-based approaches by applying the formulas

1 and 2.

© 2015 Global Journals Inc. (US)

23

G
lo
ba

l
Jo

ur
na

l
of
 C
 o

m
p u

te
r
S c

ie
nc

e
an

d
T
ec

hn
ol
og

y

V
ol
um

e
X
V
 I
ss
ue

 I
I
V
er
sio

n
I

Ye
ar

 (

)
20

15
B

Improving the Performance of the Distributed file System Through Anticipated Parallel Processing

Figure 2 : Remote Cache Hit Ratio Vs Average Read Access Time
(Local cache hit ratio value is 0.4)

We have Fixed the lc value as 0.3 and
measured the values which is depicted in Fig. 1. For the
nc values 0.2 and above, the proposed anticipated-
parallel processing based algorithm (APA) performs
better than the speculation-based algorithm (SPA). In
Fig. 2. we have _xed lc value as 0.4 and varied the nc
values from 01. to 0.6. We can observe the similar trend
in both the Figures (Fig. 1 and Fig. 2). We have Fixed lc
value as 0.5 and varied nc values from 0.1 to 0.5 and
observed the performance of the algorithms. For the nc
values 0.11 and above the proposed anticipated parallel
processing-based algorithm performs better than the
speculation-based algorithm which is depicted in Fig. 3.
We can observe similar trends in Fig. 4 and Fig. 5.

c) Simulation Experiments
We simulated both speculation- and anticipated

parallel processing based algorithms. We conducted
the simulation experiments by Fixing the number of Files
present in the data node and by varying the number of
cache blocks of local and remote caches and number of
blocks in the File.

The performance of the proposed algorithm
(APA) and the speculation-based algorithm proposed in
the literature (SP) are shown in Figures 6 to 10. We have
Fixed the number of Files present in the DFS as 50 and
capacity of LC and NC as 100 blocks and have varied
number of blocks present in the Files from 25 to 100 and
conducted simulation experiments. The performance is
shown in Fig. 6. We observe that APA requires less
access time than SP for all cases. Next, we have Fixed
the number of Files as 50 and capacity of LC and NC
as 200 blocks and varied number of blocks present in

the Files from 25 to 100. The observed performance is
shown in Fig. 6. We observe that APA performs better
than SP. Similar trends can be observed in Fig. 8, Fig. 9
and Fig. 10.

Both the results of evaluation through
mathematical and simulation techniques indicate that
the proposed anticipated

© 2015 Global Journals Inc. (US)1

24

G
lo
ba

l
Jo

ur
na

l
of
 C
 o

m
p u

te
r
S c

ie
nc

e
an

d
T
ec

hn
ol
og

y

V
ol
um

e
X
V
 I
ss
ue

 I
I
V
er
sio

n
I

Ye
ar

 (

)
20

15
B

Improving the Performance of the Distributed file System Through Anticipated Parallel Processing

Figure 3 : Remote Cache Hit Ratio Vs Average Read Access Time
(Local cache hit ratio value is 0.5)

parallel processing based approach performs
better than the speculation-based technique proposed
in the literature.

V. Conclusion

In this paper, we have proposed an anticipated
parallel processing based read algorithm for improving
the performance of the DFS. We have also carried out
performance analysis for the speculation-based read
and proposed algorithms using mathematical analysis
and by conducting simulation experiments. The results
of our analysis indicate that our proposed algorithm
requires less read access time than the speculation
based read algorithm proposed in the literature.

References Références Referencias

1. D. Bernstein, M. Rodeh, and M. Sagiv. Proving
safety of speculative load instructions at compile-
time. In B. Krieg-Br ~ Aijckner, editor, ESOP '92,
volume 582 of Lecture Notes in Computer Science,
pages 56{72. Springer Berlin Heidelberg, 1992.

2. M. D. Dahlin, R. Y. Wang, T. E. Anderson, and D.
A.Patterson. Cooperative caching: Using remote
client memory to improve _le system performance.
In Proceedings of the 1st USENIX Conference on
Operating Systems Design and Implementation,
OSDI '94, Berkeley, CA, USA, 1994. USENIX
Association.

3. S. Jiang, F. Petrini, X. Ding, and X. Zhang. A locality-
aware cooperative cache management protocol to
improve network _le system performance. In
Distributed Computing Systems, 2006. ICDCS 2006.
26th IEEE International Conference on, pages 42{42,
2006.

4. W.-k. Liao, K. Coloma, A. Choudhary, L. Ward, E.
Russell, and S. Tideman. Collective caching:
application-aware client-side _le caching. In High
Performance Distributed Computing, 2005. HPDC-
14. Proceedings. 14th IEEE International Symposium
on, pages 81{90. IEEE, 2005.

© 2015 Global Journals Inc. (US)

25

G
lo
ba

l
Jo

ur
na

l
of
 C
 o

m
p u

te
r
S c

ie
nc

e
an

d
T
ec

hn
ol
og

y

V
ol
um

e
X
V
 I
ss
ue

 I
I
V
er
sio

n
I

Ye
ar

 (

)
20

15
B

Improving the Performance of the Distributed file System Through Anticipated Parallel Processing

Figure 4: Remote Cache Hit Ratio Vs Average Read Access Time
(Local cache hit ratio value is 0.6)

5. D. Lilja and P. Bird. The Interaction of Compilation
Technology and Computer Architecture. Springer
US, 1994. [6]

6. E. B. Nightingale, P. M. Chen, and J. Flinn.
Speculative execution in a distributed File system. In
Proceedings of the Twentieth ACM Symposium on
Operating Systems Principles, SOSP '05, pages
m191{205, New York, NY, USA, 2005. ACM.

7. R. H. Patterson, G. A. Gibson, E. Ginting, D.
Stodolsky, and J. Zelenka. Informed prefetching and
caching. In Proceedings of the Fifteenth ACM

Symposium on Operating Systems Principles, SOSP
'95, pages 79{95, New York, NY, USA, 1995. ACM.

8. P. Sarkar and J. Hartman. Efficient cooperative
caching using hints. In Proceedings of the Second
USENIX Symposium on Operating Systems Design
and Implementation, OSDI '96, pages 35{46, New
York, NY, USA, 1996. ACM.

9. K. Shvachko, H. Kuang, S. Radia, and R. Chansler.
The hadoop distributed _le system. In Mass Storage
Systems and Technologies (MSST), 2010 IEEE 26th

Symposium on, pages 1{10. IEEE, 2010.

Figure 5 : Remote Cache Hit Ratio Vs Average Read Access Time
(Local cache hit ratio value is 0.7)

Improving the Performance of the Distributed file System Through Anticipated Parallel Processing

© 2015 Global Journals Inc. (US)1

26

G
lo
ba

l
Jo

ur
na

l
of
 C
 o

m
p u

te
r
S c

ie
nc

e
an

d
T
ec

hn
ol
og

y

V
ol
um

e
X
V
 I
ss
ue

 I
I
V
er
sio

n
I

Ye
ar

 (

)
20

15
B

Figure 6 : Number of blocks Vs Average Read Access Time (LC & NC – 100 blocks)

Figure 7: Number of blocks Vs Average Read Access Time (LC & NC – 200 blocks)

Figure 8 : Number of blocks Vs Average Read Access Time (LC & NC – 300 blocks)

Figure 9: Number of blocks Vs Average Read Access Time (LC & NC – 400 blocks)

Improving the Performance of the Distributed file System Through Anticipated Parallel Processing

© 2015 Global Journals Inc. (US)

27

G
lo
ba

l
Jo

ur
na

l
of
 C
 o

m
p u

te
r
S c

ie
nc

e
an

d
T
ec

hn
ol
og

y

V
ol
um

e
X
V
 I
ss
ue

 I
I
V
er
sio

n
I

Ye
ar

 (

)
20

15
B

Figure 10: Number of blocks Vs Average Read Access Time (LC & NC – 500 blocks)

Improving the Performance of the Distributed file System Through Anticipated Parallel Processing

© 2015 Global Journals Inc. (US)1

28

G
lo
ba

l
Jo

ur
na

l
of
 C
 o

m
p u

te
r
S c

ie
nc

e
an

d
T
ec

hn
ol
og

y

V
ol
um

e
X
V
 I
ss
ue

 I
I
V
er
sio

n
I

Ye
ar

 (

)
20

15
B

	Improving the Read Performance of the Distributed File Systemthrough Anticipated Parallel Processing
	Author
	Keywords
	I.Introduction
	II. Relatedwork
	III. Proposed Algorithm based onAnticipated Parallel Processing
	a) Anticipated Parallel Execution
	b) Disadvantages of Speculation-based algorithm
	c) Proposed Algorithm

	IV. Evaluation of Performance
	a) Assumptions
	b) Mathematical Model
	c) Simulation Experiments

	V. Conclusion
	References Références Referencias

