
Improving the Read Performance of the Distributed File System1

through Anticipated Parallel Processing2

Nathan Ragu1, B. Rangaswamy2 and Dr. N. Geethanjali33

1 Sri Krishnadevaraya University4

Received: 14 December 2014 Accepted: 31 December 2014 Published: 15 January 20155

6

Abstract7

In the emerging Big Data scenario, distributed File systems (DFSs) are used for storing and8

accessing information in a scalable manner. Many cloud computing systems use DFS as the9

main storage component. The Big Data applications de-ployed in cloud computing systems10

more frequently perform read operations and less frequently the write operations. So,11

improving the performance of read access has become an im-portant research issue in DFS. In12

the literature, many client side caching with appropriate pre fetching techniques are proposed13

for improving the performance read access in the DFS. A speculation-based approach which14

uses client side caching is also proposed in the literature for improving the performance of15

read access in the DFS. In this paper, we have proposed a new read algorithm for the DFS16

based on anticipated parallel processing. We have evaluated the per- formance of the proposed17

algorithm using mathematical and simulation methods and the results indicate that the18

pro-posed algorithm performs better than the speculation-based algorithm proposed in the19

literature.20

21

Index terms— distributed system, speculation, asynch- ronous reading performance.22

1 Introduction23

ot of data (text, images, video and audio) is getting gen-erated due to the extensive use of social media24
applications. This phenomena is referred as Big Data in the literature.The availability of smart phones which25
support many at-tractive applications facilitate the users to upload the mul-timedia data into the web in a exible26
manner. The main problem here is the availability of scalable storage solutions which provide required storage27
capacity and efficient read and write facilities. Distributed File systems (DFSs) have been emerged as the scalable28
storage facility for storing Big Data and for accessing them in an efficient manner. Many cloud computing systems29
use DFS as the main storage component.30

The Big Data applications deployed in the cloud computing environment more frequently perform read31
operations and less frequently carry out write operations. Hence, improving the performance of the read32
operations in a Big Data environment has become one of the important research is-sues. So, for the DFS33
which is used for storing and accessing Big Data, it is important that it carries out the read access in a faster34
manner so that Big Data application execution time can be reduced.35

The DFS uses disk as the main storage device and data transfer rate of disk is very less in comparison with36
that of the dynamic or static random access memories used in the computer systems. To reduce the input/output37
(I/O) access time, many client side caching techniques have been proposed in the literature. These techniques38
allow the client node to download the requested Files from the server and store the same in the client side cache39
so that further read re-quests issued by the applications running in the client nodes will be satis read by reading40
the content from the local cache (client side cache). To avoid stale data problems in the client side caching41
techniques one of the following methods will be used: (i) Cache synchronization or cache invalidation pro-tocol42

1

Global Journals LATEX JournalKaleidoscope™
Artificial Intelligence formulated this projection for compatibility purposes from the original article published at Global Journals.
However, this technology is currently in beta. Therefore, kindly ignore odd layouts, missed formulae, text, tables, or figures.

8 PROPOSED ALGORITHM BASED ON ANTICIPATED PARALLEL
PROCESSING

(ii) Checking up with the server whether the data in the client side cache is valid or stale. If the data available43
in the cache is stale then the data has to be fetched from the server’s disk.44

In the literature, a speculation-based technique has been proposed for improving the performance of read45
access in the DFS ??6]. In this technique, the client application reads the data from the local cache and proceed46
with its execution (speculative execution). Simultaneously, the server systemis also contacted to check whether47
the data in the local cache is stale or valid by comparing the time stamp values of the cached copy and the copy48
available in the sever’s disk. If the data in the local cache is found to be valid, then the speculative execution is49
allowed to continue. If the data in the local cache is found to be stale, then the data is read from the server’s50
disk and the speculative execution will be rolled back.51

In this paper, we propose anticipated parallel processing-based algorithm which carries out executions by52
considering the local cache of the node (LN) where the client application program is getting53

2 Year ()54

3 201555

4 B56

Improving the Performance of the Distributed file System Through Anticipated Parallel Processing executed and57
also the local cache of the node (NN) which is placed near to LN (where the same data is available). Based on58
the time stamp value available in the server for the data, the cache content of LN or NN will be considered. If the59
data available in LN and NN are stalethen the data will be read from the server’s disk. We have evaluated the60
performance the proposed algorithm through mathematical analysis and simulation experiments. The re-sults61
indicate that our proposed algorithm performs better than the earlier speculationbased algorithm proposed in62
the literature.63

This paper is organized as follows. In the next section, we describe the techniques discussed in the literature64
for im-proving the performance of the DFS. In section 3, we discuss our proposed approach in detail. In section 4,65
we have done the detailed performance evaluation of the algorithms using mathematical analysis and simulation66
modeling. Section 5 concludes the paper.67

5 II.68

6 Relatedwork69

In this section, we discuss First we describe the techniques discussed in the literature for improving the70
performance of the DFS.71

Many client-side caching techniques have been used to im-prove the performance of distributed File systems.72
A cooper-ative caching technique is discussed in the paper [2]. In this type of technique, the server maintains a73
directory which stores the details of File blocks stored in each and every local caches available in client nodes.74
Whenever a client applica-tion program issues read request for a block, First the local cache is verified and then75
the cache directory maintained in the server is verified to see whether the requested File block is available or not.76
If the File block is not available in the local cache and in any of the caches maintained in the client nodes then it77
will be read from server’s disk where the DFS is deployed. This technique is suffering from the problem known78
as single point of failure.79

In order to eliminate the single point of failure, researchers have come out with a technique known as80
”Decentralized Caching Technique” which was proposed in ??8]. The authors proposed a hint based approach81
in which the cache directory of the local cache maintains hints regarding in which local cache of the client nodes82
the File block probably be found. This technique proposed the meta data in the form of hints to be distributed83
to client nodes and hence the single point of failure can be eliminated.84

A new type of caching technique called collective caching was discussed in [4]. If the subtasks of a client85
application runs in multiple client nodes then the caches available in these client nodes may be logically combined86
to act as a single cache so that all the subtasks can read the File blocks from this uni_ed cache provided these87
blocks are available there.88

In ??7] an aggressive proactive technique was proposed for the effective pre fetching of _le blocks based on89
hints. In [3], locality aware cooperative caching was proposed.90

The Hadoop DFS (HDFS) ??9] is a open-source project and it is a cluster-based File system. The HDFS is91
an attractive File system and provides scalable storage solutions for Big Data applications.92

In [6], a speculation-based method was proposed to improve the performance of the DFS. This technique uses93
only the local cache for the speculative execution purpose.94

7 III.95

8 Proposed Algorithm based on Anticipated Parallel Processing96

In this section we discuss regarding anticipated parallel ex-ecution, disadvantages of speculation-based algorithm97
and then the proposed algorithm.98

2

9 a) Anticipated Parallel Execution99

The main idea behind anticipated parallel execution is to do some task before it is known whether that task100
will be required at all. Later we come to know that whether the task is required or not by checking various101
conditions. If the task is required then the effect of the task execution is used and the results produced by the102
task are considered. If the task is not required then the effect of the task execution is undone and the results103
produced by the task are not utilized. This type of task execution will reduce the waiting time for mmany cases104
and hence the performance can be improved.105

Anticipated parallel execution technique is followed in mod-ern pipelined processors particularly for the efficient106
han-dling of conditional branch instructions. In this type of pro-cessors, the conditional branch instructions are107
allowed to go through the various stages of the pipeline. Here the assumption is that the condition may not108
satisfied and hence the branch will not take place. Whether the condition is satisfied or not for an instruction is109
known at the execution stage of the pipeline. If the condition is not satisfied, the instruction executions continue110
in the pipeline. If the con-dition is satisfied then the pipeline is drained and then the instruction will be fetched111
from the target address (branch address) [1]. Anticipated parallel executions are used in op-timization phase of112
the compilation process [5].113

10 b) Disadvantages of Speculation-based algorithm114

In the literature a speculation-based method has been pro-posed for improving the performance of read operations115
??6]. In this paper, the authors assumed that caches are main-tained in the client systems and the server will be116
contacted to check whether the content in the local (client side cache) is stale or valid by checking the time stamp117
of the cached copy and the copy available in the server’s disk. Whenevera client application program requests118
for a File and if the File is available in the local cache then one speculative execution will be started which reads119
the content from the local cache and proceed its execution. Meanwhile the server system is contacted to know120
whether the cached copy of theFile is stale or valid. If the cached copy of the File is valid then the speculative121
execution will be allowed to continue. If the cached copy of the File is stale then the speculative execution will be122
rolled back and then the file content is read from the server’s disk and then the execution will continue. In this123
algorithm, the client program checks only the local cache and if the content is not available there the it accesses124
the content from the server’s disk. Note that, the same content may be available in other client nodes connected125
in the DFS environment. This speculation-based algorithm does consider the availability of data in other client126
nodes. So, there is a scope of proposing an improved read algorithm by considering the local caches present in127
other systems.128

11 c) Proposed Algorithm129

In this subsection, we discuss _rst regarding the assumptions of the caching system maintained in the DFS. Next,130
we describe the three parts of the proposed algorithm and then the proposed algorithm.131

i. Assumptions132
We have considered a cluster-based DFS to propose our algorithm. In the DFS, we have assumed that one133

name node (name sever system) and two or more data nodes are present. The purpose of the name node is to134
store the meta data (global directory -File attributes and other details). The data nodes are used for storing the135
files and executing user (client) application programs. The name node and data nodes are connected through136
local area network. All the data nodes are maintaining their own local caches and cache operations are managed137
by a cache manager module deployed in the data nodes. The cache managers maintain cache directory (CD) in138
which the information regarding which Files are stored in the local cache is available. In the CD of a data node,139
the address of the nearest data node is also stored. Here, we have considered only the File level caching (entire140
File will be downloaded from the server’s disk and stored in the cache). We have assumed that caching is done141
only during read access and write operations will not initiate any cache operation. We have also assumed that142
the no cache synchronization or invalidation protocol is followed in order to avoid communication delay. Each143
client program whenever it reads the content form the cache, it has to verify with the name node whether the144
content read from the cache is valid or stale. We have also assumed that three copies of the same _le is kept in145
three different data nodes in order to support the reliability feature.146

ii. Three parts of the algorithm Our algorithm consists of three parts. The first part describes the steps to be147
followed for the main thread of execution of the read procedure of the DFS. The second part describes the steps148
to be followed by the anticipated execution (AE1) and the third part describes the steps to be followed by the149
anticipated execution (AE2).150

/ We have analyzed the performance of the algorithms through mathematical and simulation modeling. In this151
section, we discuss first regarding the assumptions. Next, we discuss regarding performance evaluation through152
mathematical model. Finally, we discuss regarding the results of the simulation experiments.153

12 a) Assumptions154

We have made the following assumptions by considering various factors related to main memory, disk and local155
area network. (i) Block size is 4 KB. (ii) All data and name nodes are connected in a network. (iii) Average156
communication delay is 4 ms. (iv) Transferring meta data from name node to requested data node is 0.125 ms157

3

15 CONCLUSION

(v) Average block access time for disk is 12 ms (vi) Average block access time formain memory is 0.005 ms (vii)158
Local cache hit ratio is lc and remote cache hit ratio is nc.159

13 b) Mathematical Model160

Based on the assumptions discussed in the above subsection we calculate the average access time for the161
speculation and anticipated parallel processingbased algorithms. We call average block read access time as162
ABRAT. We have calculated the time required to access a file block from the remote data node as 4.01 ms.163

Average Block Read Access Time (with speculation) = lc * (Main memory access time + Time stamp collection164
time) + (1-lc) * (Main memory access time + Time stamp collection time + Block access time for Disk +165
Block transfer communication time + Main memory access time). If we apply the above equation, ABRAT for166
speculation-based approach is calculated as (16.26 -16.13 lc)ms. (Formula 1)167

Note that, we have not considered overhead involved in starting the the speculative execution.168
Average We have Fixed the lc value as 0.3 and measured the values which is depicted in Fig. ??. For the nc169

values 0.2 and above, the proposed anticipatedparallel processing based algorithm (APA) performs better than170
the speculation-based algorithm (SPA). In Fig. 2. we have _xed lc value as 0.4 and varied the nc values from 01.171
to 0.6. We can observe the similar trend in both the Figures (Fig. ?? and Fig. 2). We have Fixed lc value as 0.5172
and varied nc values from 0.1 to 0.5 and observed the performance of the algorithms. For the nc values 0.11 and173
above the proposed anticipated parallel processing-based algorithm performs better than the speculation-based174
algorithm which is depicted in Fig. 3. We can observe similar trends in Fig. 4 and Fig. ??.175

14 c) Simulation Experiments176

We simulated both speculation-and anticipated parallel processing based algorithms. We conducted the177
simulation experiments by Fixing the number of Files present in the data node and by varying the number178
of cache blocks of local and remote caches and number of blocks in the File.179

The performance of the proposed algorithm (APA) and the speculation-based algorithm proposed in the180
literature (SP) are shown in Figures 6 to 10. We have Fixed the number of Files present in the DFS as 50 and181
capacity of LC and NC as 100 blocks and have varied number of blocks present in the Files from 25 to 100 and182
conducted simulation experiments. The performance is shown in Fig. ??. We observe that APA requires less183
access time than SP for all cases. Next, we have Fixed the number of Files as 50 and capacity of LC and NC as184
200 blocks and varied number of blocks present in the Files from 25 to 100. The observed performance is shown185
in Fig. ??. We observe that APA performs better than SP. Similar trends can be observed in Fig. ??, Fig. ??186
and Fig. ??0.187

Both the results of evaluation through mathematical and simulation techniques indicate that the proposed188
anticipated V.189

15 Conclusion190

In this paper, we have proposed an anticipated parallel processing based read algorithm for improving the191
performance of the DFS. We have also carried out performance analysis for the speculation-based read and192
proposed algorithms using mathematical analysis and by conducting simulation experiments. The results of our193
analysis indicate that our proposed algorithm requires less read access time than the speculation based read194
algorithm proposed in the literature. 1 2195

1© 2015 Global Journals Inc. (US)
2© 2015 Global Journals Inc. (US) 1

4

2015

Figure 1: Global) 2015 B

2015

Figure 2:) 2015 B

5

15 CONCLUSION

Figure 3:

12015

Figure 4: Figure 1 :) 2015 B

6

2

Figure 5: Figure 2 :

3

Figure 6: Figure 3 :

7

15 CONCLUSION

4

Figure 7: Figure 4 :

520156789

Figure 8: Figure 5 :) 2015 BFigure 6 :Figure 7 :Figure 8 :Figure 9 :

8

Figure 9:

Figure 10:

9

15 CONCLUSION

Figure 11:

10

[Jiang et al. ()] ‘A localityaware cooperative cache management protocol to improve network _le system196
performance’. S Jiang , F Petrini , X Ding , X Zhang . Distributed Computing Systems, 2006. ICDCS 2006.197
26th IEEE International Conference on, 2006. p. .198

[Liao et al. ()] ‘Collective caching: application-aware client-side _le caching’. W Liao , K Coloma , A Choudhary199
, L Ward , E Russell , S Tideman . High Performance Distributed Computing, 2005. HPDC-14. Proceedings.200
14th IEEE International Symposium on, 2005. IEEE.201

[Dahlin et al. ()] ‘Cooperative caching: Using remote client memory to improve _le system performance’. M D202
Dahlin , R Y Wang , T E Anderson , D A Patterson . Proceedings of the 1st USENIX Conference on Operating203
Systems Design and Implementation, OSDI ’94, (the 1st USENIX Conference on Operating Systems Design204
and Implementation, OSDI ’94Berkeley, CA, USA) 1994. USENIX Association.205

[Bernstein et al. ()] ‘Proving safety of speculative load instructions at compiletime’. D Bernstein , M Rodeh , M206
Sagiv . Lecture Notes in Computer Science B. Krieg-Br ~Aijckner (ed.) 1992. Springer. 92 p. .207

11

	1 Introduction
	2 Year ()
	3 2015
	4 B
	5 II.
	6 Relatedwork
	7 III.
	8 Proposed Algorithm based on Anticipated Parallel Processing
	9 a) Anticipated Parallel Execution
	10 b) Disadvantages of Speculation-based algorithm
	11 c) Proposed Algorithm
	12 a) Assumptions
	13 b) Mathematical Model
	14 c) Simulation Experiments
	15 Conclusion

