Dual-Region Reputation based Resource Management in Mobile Ad Hoc Networks

By K. Surendra & K. Delhi Babu
Sree Vidyanikethan Engineering College, India

Abstract- A mobile ad hoc network (MANET) is a kind of wireless ad hoc network. It is a self-configuring network of mobile routers connected by wireless links. Since MANETs do not have a fixed infrastructure, it is a challenge to manage both mobility as well as resource utilizations for Ad hoc networks. In this paper, I propose a Reputation management scheme, called reputation factor (RF) effective resource selection using the reputation based approaches for node selection. The developed resource allocation algorithm is based on different parameters like time, cost, number of processor request etc. The developed priority algorithm is used for a better resource allocation of jobs in the network environment used for the simulation of different models or jobs in an efficient way. After the efficient resource allocation of various jobs, an evaluation is being carried out which illustrates the better performance. Performance is evaluated by using simulation.

GJCST-E Classification : C.2.2 C.2.3
Dual-Region Reputation based Resource Management in Mobile Ad Hoc Networks

K. Surendra α K. Delhi Babu σ

Abstract- A mobile ad hoc network (MANET) is a kind of wireless ad hoc network. It is a self-configuring network of mobile routers connected by wireless links. Since MANETs do not have a fixed infrastructure, it is a challenge to manage both mobility as well as resource utilizations for Ad hoc networks. In this paper, I propose a Reputation management scheme, called reputation factor (RF) effective resource selection using the reputation based approaches for node selection. The developed resource allocation algorithm is based on different parameters like time, cost, number of processor request etc. The developed priority algorithm is used for a better resource allocation of jobs in the network environment used for the simulation of different models or jobs in an efficient way. After the efficient resource allocation of various jobs, an evaluation is being carried out which illustrates the better performance. Performance is evaluated by using simulation.

I. Introduction & Background

We can described the life cycle of mobile ad hoc network into the first, second and third generations. Present adhoc network are viewed as the third generation. The original ad hoc network can be followed back to 1970's. In 1970's, these are called Packet Radio Network (PRNET). The Defense Advanced Research Project Agency started examination of utilizing parcel changed radio correspondence to give solid correspondence in the middle of PCs and urbanized PRNET. Essentially PRNET utilizes the blend of Areal Location of Hazardous Atmospheres and Carrier Sense Multiple Access for various get to and separation vector directing.

To dynamically identify the optimal selection of Reputation values per mobile node based on the following:
1. Minimize the network cost based on resource management.
2. By using Reputation based approaches.
3. RF combines the strength of grid based location management and pointer forwarding strategy to achieve high scalability and low signaling cost.
4. The communication module acts as an interface for the RMS to communicate to neighbors RMS. The main purpose of this module is to exchange.
does not move, the local region moves with the mobile node.

- The home region keeps location summary information of the node, i.e., the coordinate of the center and radius of the node’s local region. Whenever the local region moves due to movement of the node, the location servers in the home region are updated with the location summary information.
- To locate the local region of a destination node, the source node sends a location query to the destination node’s location servers. The coordinates of the center of a home region is statically determined, whereas the radius is dynamically determined on a per-node basis, depending on the node’s mobility and service characteristics. The home region size, determined by its radius denoted by Rh, is a key factor balancing the tradeoff between the overhead for location queries/updates and the robustness of the location service.
- Specifically, a larger home region covers more location servers on average and consequently increases the chance of a successful location query. However, a larger home region also leads to larger overhead for location queries and updates. Because Rh is dynamic, the size of the home region is dynamic and not necessarily restricted by the size of the rectangular region.

b) Worldwide Mobile Information System (GloMo)
- The objective of the undertaking is to make the mobile environment a five star native in the Defense Information Infrastructure by giving easy to use integration and access to administrations for remote mobile clients.
- Self arranging/self mending networks; both level and various leveled multihop steering calculations like ATM networks over remote.
- Georouting; Satellite interchanges networks; heterogeneous networking with IP overlays; end-to-end network improvements; and security & survivability for ad-hoc networks.
- The NTDR framework is a DA-coordinated, test, mobile parcel information radio network that connects Tactical Operations Centers in a brigade area.
- The NTDR gives a self-arranging, self-recuperating, network capacity. Radio network administration is given by a Network Management Terminal.
- The main role of the NTDR is to give information transport to the Army Battle Command System robotized frameworks to units at brigade and beneath
- Lessons gained from this test handling give a bit of the specialized gauge for radios being intended

III. Proposed Work

To diminish the general network activity caused by mobility administration and parcel conveyance herewith we propose proficient mobility administration.
- The proposed plans to oversee both mobility and in addition asset uses for Ad hoc networks.
• For ideal home area size and nearby locale size (characterized by their particular radii meant by Rh and Rl) for every mobile hub in light of the mobile hub's runtime mobility and administration qualities to minimize the general network expense caused for location administration and information parcel conveyance.
• To rapidly distinguish the ideal determination of Reputation qualities every mobile hub taking into account the accompanying:
  • Minimize the network expense taking into account asset administration.
  • By utilizing Reputation based methodologies.
  • RF joins the quality of framework based location administration and pointer sending system to accomplish high versatility and low flagging expense.
  • Simulation utilizing NS2.
  Mobility in remote networks can take diverse structures, for example,
  Terminal mobility: the capacity for a client terminal to keep on getting to the network when the terminal moves;

a) **Client mobility**

The capacity for a client to keep on getting to network administrations from distinctive terminals under the same client personality when the client moves.

b) **Administration mobility**

The capacity for a client to get to the same administrations paying little respect to where the client is.

In addition, a terminal or a client may be considered by a network to have "moved" regardless of the possibility that the terminal or the client has not transformed its physical location. This may happen when the terminal changed its association starting with one kind of remote network then onto the next, e.g., from Mobility administration is the essential innovation to empower the consistent access to cutting edge remote networks and mobile administrations.

Future IP-based remote networks, for example, a wide range of media administrations including ongoing administrations, for example, voice and feature gushing and also non-continuous administrations, for example, email, web-perusing, and FTP. Fundamental necessities of mobility administration in cutting edge remote networks ought to include: first and foremost, the backing of all types of mobility; second, the backing of mobility for both constant and non-ongoing applications; third, the backing of clients consistently moving crosswise over heterogeneous remote networks in the same or diverse administrative areas.

Fourth, the backing of an on-set client application session to proceed without noteworthy interferences as the client moves. This session congruity ought to be kept up when a client changes its network connection focuses or moves starting with one sort of remote network then onto the next; and last, the backing of worldwide wandering, i.e., the capacity for a client to move into and use distinctive administrators' networks of home areas.

c) **Location administration**

A procedure that empowers the framework to focus a mobile gadget's present location, i.e., the present network connection point where the mobile gadget can get activity from the framework.

d) **Handoff administration**

A procedure that empowers a mobile gadget to change its network connection point while keeping its on-going activity continuous. In the event that the network connection point change includes the meandering into another network with an alternate administrator, then network access control is likewise included in the handoff process. Network access control incorporates confirmation (check the character of a client), approval (figure out if a client ought to utilize the network administration), and bookkeeping (gather data on the assets utilized by a client).

The framework model exhibited in this paper is in light of the taking after presumptions. Every hub has an interesting id and it can't be parodied.

• The network is sufficiently thick so that every hub has at least two one-bounce neighbors.
• A remote interface of every hub underpins indiscriminate mode operation: a hub dependably listens to each transmission within its one-jump neighborhood despite the fact that it doesn't involve in those transmissions.
• Links are bidirectional. At time t, if hub B can get a message from hub A, hub An ought to have the capacity to get a message from hub B at time t too.
• A radio wire utilized on every hub is an omni-directional antenna which empowers its transmission to be observed by its one-jump neighbors.
• Each hub is free from one another, no conspiracy.
• We don't consider pernicious hubs, just egotistical hubs seeking to moderate their own asset.
• Flood to get a hub's location.
• Excessive flooding messages
• Central static location server.
• Not blame tolerant
• Too much load on focal server and close-by hubs
• The server may be far away/ parcelled
• Every hub goes about as server for a couple of others.
• Good for spreading load and enduring disappointments.
• Limited assets and physical security.
• Intrinsic common trust helpless against assaults.
• Lack of approval offices.

e) Solution Strategy
The Reputation of the node can be calculated based on below assumptions:
i. The time used to send the packet to their adjacent nodes and
ii. The number of processor requests it attains
The equation to find the neighbors based on the above two parameters is:
Reputation Factor (RF) for individual node
= (min-time, max-processing power)
i.e., \( RF = T_{\text{min}} \) & \( RF = P_{\text{max}} \)

f) Algorithm
Processing a ReputationFactor
i. select one cluster /** selection of one grid
ii. select src, des, neighbours /** identify source, neighbours, destination
iii. source(S) -> RReq (msg) /** sender sends RReq to all its neighbours
iv. S -> Adj-node -> Rec (msg) /** source node receives all of it’s neighbour concerned factors
v. S -> cal (RF) /** calculation of RF values
vi. RF -> > T_{\text{min}}, RF -> > P_{\text{max}}/** cross-checking all the values
vii. S -> discovered (neighbour) /** now source node select this adj node
viii. S -> D /** now source sends alerts to destination via selected adj node

g) Implementation Performance
Let us consider the 5 nodes

<table>
<thead>
<tr>
<th>Inputs</th>
<th>Node-B</th>
<th>Node-C</th>
<th>Node-D</th>
</tr>
</thead>
<tbody>
<tr>
<td>Min-Time</td>
<td>10ms</td>
<td>12ms</td>
<td>5ms</td>
</tr>
<tr>
<td>Max-Proc. Power</td>
<td>100w</td>
<td>120w</td>
<td>130w</td>
</tr>
</tbody>
</table>

Intermediate Process : cross-checking based on conditions
Output : Node D
The Process now processed as follows :

- Let us assume the total number of nodes = 1000
- i.e.,
  node1, node2, node3, node4, ........................node99, node100.
- Suppose the ‘node 1’ contains ‘5 neighbours’ it is easy to find RF
- If ‘node 35’ contains ‘100 neighbours ’ it is very hard to resolve RF
- Finally, the Reputation Factor (RF) for individual node = (min-time, max-processing power)
i.e., \( RF = T_{\text{min}} \) & \( RF = P_{\text{max}} \)

Where the \( T_{\text{min}} \) indicates the minimum-time parameter & \( P_{\text{max}} \) indicates the maximum-Processing Power parameter
i. **Case Studies**

*Table 2: Process Flow using RF*

<table>
<thead>
<tr>
<th>Inputs</th>
<th>Intermediate Process</th>
<th>Outputs</th>
</tr>
</thead>
<tbody>
<tr>
<td>15-nodes</td>
<td>RF$_{h10}$</td>
<td>Adj node can be easily identified</td>
</tr>
<tr>
<td>20-nodes</td>
<td>RF$_{h20}$</td>
<td>Adj node identification is slightly hard</td>
</tr>
<tr>
<td>40-nodes</td>
<td>RF$_{h40}$</td>
<td>Hard to resolve</td>
</tr>
<tr>
<td>80-nodes</td>
<td>RF$_{h80}$</td>
<td>Very Hard to find Reputation factor</td>
</tr>
</tbody>
</table>

Where the indication of hardness level is h80 >> h40 >> h20 >> h10

ii. **Performance Evaluation**

The below graph compares the Dual-Region mobility management and Reputation Management System.

![Graph comparing Dual-Region and Reputation Management systems](image)

*Fig: Comparison of DrMOM and RMS with respect to the Time*

The x-axis represents the Parameter Min Time and the y-axis represents the cost in terms of no. of nodes.

Similarly, The below figure shows the comparison of DrMOM and RMS with respect to the power.

![Graph comparing Dual-Region and Reputation Management systems](image)

*Fig: Comparison of Dr MOM and RMS with respect to the Processing Power*

The evaluation is measured in terms of cost factor i.e., based on max-power and number of nodes, the comparison is takes place.

### IV. Conclusion

A Reputation-based system as an extension to the existing resource management for detecting the neighbour nodes in mobile ad-hoc networks. The proposed system is evaluated by implementing it on ns2 Simulator. Although they could save their resources by not forwarding packets for others, their packets would not be delivered as well. Some simulation results are provided to validate work and show its performance.

And also the evaluation of proposed system is expressed in the presence of nodes who forward only the necessary amount of packets so that they are not detected as malicious. This means that they try to keep their reputation in between the two thresholds which was categorized as suspicious nodes. To refer to this type of nodes, we use the term “partially cooperative”.

### References Références Referencias

This page is intentionally left blank