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5

Abstract6

Pathfinding has been one of major research areas in video games for many years. It is a key7

problem that most of the video games are confronted with. Search algorithms such as the A*8

algorithm and the Dijkstra?s algorithm representing such regular grid, visibility graphs also9

have significant impact on the performance. This paper reviews the current widely used10

solutions for pathfinding and proposes a new method which is expected to generate a higher11

quality path using less time and memory than other existing solutions. The deployment of the12

methodologies and techniques is described in detail. The significance of the proposed method13

in future video games is addressed and the conclusion is given at the end.14

15

Index terms— pathfinding, A*, A* optimization, computer game.16

1 Introduction17

athfinding is the plotting, by a computer application, to find the shortest path between two points. It starts18
from a start node and reaches the goal node by repeatedly searching for the same, for finding a path between19
these points. Finding the optimal path is a complicated scenario. There are significant difference between the20
terms path and shortest path. In graph theory, the problem of finding a path between two vertices in a graph21
such that the sum of the weights this path’s edges is minimized is called a shortest path problem. Two primary22
problems of pathfinding are to find a path between two nodes in a graph and to find the optimal shortest path [4].23
Pathfinding in the context of video games concerns the way in which an object finds a path around obstacles; the24
best explained context is real-time strategy games in which the player leads units around a play area containing25
obstacles, but the variations of this approaches are found in many of the games. path finding has grown in26
importance as games and their environments have become more complex. Many Artificial Intelligence based27
platforms and the tools are developed for providing solutions to pathfinding problem. Many of them uses basic28
pathfinding and provides ready made plugins for users to incorporate in their games. Real-time strategy games29
sometimes contain large areas of open terrain which is often relatively simple to navigate through, although it is30
common for more than one unit to travel simultaneously; this makes it necessary to employ different, and often31
more complex algorithms and methods to avoid traffic problems and bottlenecks at some points in terrain. In32
strategy games the map is normally divided into subworlds and there are practical methods of applying some33
algorithms in the smaller problems to apply it to larger sets.34

2 II. A* Algorithm35

A* is a generic search algorithm that can be used to find solutions to many problems, pathfinding is just one of36
them. Many problem in the engineering are related to pathfinding problems. The lookahead effort in searching37
trees are found to provide improved results in pathfinding. The base of the A* algorithm arises from a view that38
the information from the problem domain can be incorporated in a formal mathematical manner to analyse the39
problem. The method shows that this approach will always try to find out a path by exploring minimum number40
of nodes to offer a minimum cost solution. A* is the most popular and widely used AI pathfinding algorithm41
proposed by Hart, Nilsson and Raphael in the year 1967. Due to its simplicity it guarantees, A* is almost always42
the search method of choice. This is because A* is guaranteed to find a shortest path on the graph. The problem43
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5 B) MANHATTAN DISTANCE

with A* is that a shortest path on the graph is not equivalent to a shortest path in the continuous environment.44
Another issue related to A* is that, when the map size is significantly larger, A* algorithm cannot find a minimum45
path to goal state in limited amount of time. Also for large maps A* uses memory extensively. Even though46
many other methods are emerging, A* and its variations are widely used in pathfinding. A* uses this heuristic to47
improve on the behavior relative to Dijkstra’s algorithm. When the heuristic evaluates to zero, A* is equivalent48
to Dijkstra’s algorithm. As the heuristic estimate increases and gets closer to the true distance, A* continues to49
find optimal paths, but runs faster. When the value of the heuristic is exactly the true distance, A* examines50
the fewest of the nodes .However it is generally impractical to write a heuristic function that always computes51
the true distance. As the value of the heuristic increases, A* examines fewer nodes but no longer guarantees an52
optimal path. In many applications this is acceptable and even desirable, in order to keep the algorithm running53
quickly. In order to expand less number of nodes as possible while searching for an optimal path, A* constantly54
make informed decision as possible about which node to expand next. Otherwise it is a wasting effort to use55
that particular method. If the algorithm constantly avoids nodes on optimal path, then there is less chance that56
the algorithm will come up with a solution. Suppose, we have some evaluation function f(n) to be calculated for57
some node n. The nodes with f values are considered for exploring next. The node with the minimum f value is58
explored then we can define the A* search algorithm as follows [8].59

Search Algorithm A*: For any sub graph G and goal set T, let f(n) be the actual cost of an optimal path60
which go through n, from s to a preferred goal node of n. Determination of f(n) is the primary interest. In A*61
algorithm we see that, the function f(n) can be written as the sum of two functions:f(n)=g(n)+h(n)62

where g(n) is the actual cost from s to the node n, and h(n) is the actual cost from n to the preferred goal63
node of n. Let g ?(n) be the estimate of g(n). An excellant choice for g ?(n) is the minimum cost that has64
found so far. We observe g ?(n) ? g(n). The arcs are shown with arrowheads and costs. Starting from s, we65
get successors n1, n2. The estimates g ?(n) and g ?(n2) are 3 and 7 respectively. Suppose A* expands n1 next66
with successors n2,n3. At this stage g ?(n3)=3 + 2 = 5, and g ?(n2) is lowered to 3 + 3 = 6. The value of g67
?(n1) remains equal to 3. Next we must have an estimate h ?(n) of h(n). Here we rely on information from the68
problem domain. Many minimum cost path problems through a paragraph has some information to estimate h69
?. In a city example where our paths are roads, we can use airline distance as the heuristic function. If h is any70
lower bound, then we can say that algorithm is admissible [8].There are variations of A* to optimize algorithm71
so that less memory is used.72

3 Consider the subgraph shown in73

The traditional A* algorithm has shortages as follows:74
1. It is slow in searching speed is slow and is poor applicability in the large scale path search environment. For75

example to get the optimal diagonal path in the 100*100 grid environment needs for searching 513 nodes at least.76
2. Due to the limitations of the traditional A* algorithm, the algorithm always lead to fall into failing situation77
in the unknown and complex grid environment. 3. The traditional A* doesn’t support path search operation78
between multi nodes at the same time which means generating different path from multistarts to multi-target79
needs to retry.80

4 a) Heuristics81

Heuristics is a method used for experience based problem solving, which may or may not end up with an optimal82
solution. Algorithm’s behavior based on the heuristic and cost functions can be very useful in a game. The83
trade off between speed and accuracy can be exploited to make your game faster. One way to construct an exact84
heuristic is to precompute the length of the shortest path between every pair of points. This is not feasible for85
most game maps. However, there are ways to ap proximate this heuristic:86

? Fit a coarse grid on top of the fine grid. Precompute the shortest path between any pair of coarse grid87
locations. ? Precompute the shortest path between any pair of waypoints. This is a generalization of the coarse88
grid approach.89

In a special circumstance, the heuristic can be exact without precomputing anything. If there is a map with90
no obstacles and no slow terrain, then the shortest path from the starting point to the goal should be a straight91
line.On a grid, there are well-known heuristic functions to use92

5 b) Manhattan Distance93

The standard heuristic for a square grid is the Manhattan distance. Look at cost function and find the minimum94
cost D for moving from one space to an adjacent space. In the simple case, we can set D to be 1.The heuristic95
on a square grid where you can move in 4 directions should be D times the Manhattan distance:96

Function heuristic(node) dx=abs(node.x-goal.x) dy=abs(node.y-goal.y) return d*(dx+dy) Set D to the lowest97
cost between adjacent squares. In the absence of obstacles, and on terrain that has the minimum movement cost98
D, moving one step closer to the goal should increase g by D and decrease h by D. When we find f (which is set99
to g + h) will stay the same; thats a sign that the heuristic and cost function scales match.100
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6 c) Grids101

A grid map uses a uniform subdivision of the world into small regular shapes some-times called tiles. Common102
grids in use are square, triangular, and hexagonal. Grids are simple and easy to understand. If were using grids103
for pathfinding, units are not constrained to grids, and movement costs are uniform, We may want to straighten104
the paths by moving in a straight line from one node to a node far ahead when there are no obstacles between105
the two. If units can move anywhere within a grid space, or if the tiles are large, think about whether edges or106
vertices would be better choice for our application. A unit usually enters a tile at one of the edges (often in the107
middle) and exits tile at another edge. With pathfinding on tiles, the unit moves to the center of the tile, but108
with pathfinding on edges, the unit will move directly from one edge to the other. Obstacles in a grid system109
typically have their corners at vertices. The shortest path around an obstacle will be to go around the corners.110
With pathfinding on vertices, the unit moves from corner to corner. This produces the least wasted movement,111
but paths need to be adjusted to account for the size of the unit. This is referred as Vertex movement.112

7 III.113

8 Proposed Work114

After performing the literature survey, it is clear that a lot more improvements and optimisations are possible115
in the field of pathfinding in video games. So in our paper, we are intended to work on the pathfinding and the116
path planning in games using the Artificial Intelligence principles. The proposed work is aimed at combining117
different approaches for pathfinding to effectively find out paths in video game environments using less resources118
by utilizing Artificial Intelligence Concepts.119

In our paper, we put forward an Efficient Pathfinding Algorithm for video games by120
? Optimizing search techniques.121
? Effective terrain mapping.122
? Improving Heuristics.123
We here use the direction based approach for pathfinding. New approach is applied in a grid based environment.124

As most of the game worlds are divided into grids for simplicity, this method has scope in all of them. This125
method can also be extended to all types of grid based worlds.126

To find the shortest paths between two points in a map, is an important topic in mathematics and algorithm127
research. In the present gaming industry, pathfinding has its own requirements:128

1. We do not really care too much whether a path is optimal in a mathematical sense, so long as it is virtually129
short enough. 2. We do not want to devote too much resource for pathfinding in the gaming environment which130
which is usually resource constrained.131

9 a) Direction Based Heuristics132

In order to apply some sort of optimisation in pathfinding algorithms, the first thing needed is an efficient133
approach for pathfinding. The method I use here is applied on grid based maps. It uses the direction to the goal134
state as the heuristic function A grid map example In the above figure there is a starting and an ending point.135
The Heuristic Information needed is the relative position of a particular node to the end node. We start with136
the Start node. In order to calculate the information regarding the relative position of the goal node, In our137
approach, we use four letters (For explanation purpose). They are L, R, U, D which represents Left, Right, Up138
and Down respectively. Every node will have a Heuristic information which gives a clear idea about the relative139
position of that node with the goal node. In the above figure, the Heuristic Key can be recorded as L0 (Where140
’L’ represents left and ’0’ indicates that end state is in the same horizontal level as that of the start state.) The141
following figure gives more clear idea about direction based Heuristics142

10 Grid showing direction based heuristics of all cell143

As in the above figure, there are 8 Heuristic Keys applied in a pathfinding environment which are explained using144
table145

11 Direction Keys used for determining the direction of explo-146

ration147

These information is used to determine which are the next nodes to be explored in order to reach the goal faster.148
For example, when the Heuristic key of a node is LU it has children in the top and in the left side. We then149
check whether those cells are free or not. A cell is said to be free if it is not previously explored or its not a non150
traversable cell. If there are no free children for a particular node, then we change the direction key by making151
L as R, R as L, U as D, D as U and ’0’ is kept as such. In usual practice with lightly obstructed map, this is not152
required in general. We continue to explore new children obtained through the changed Heuristic key.153

The method continues as such till it reaches the goal state. The above explained method is just a framework of154
the method. As it is very simple and straight, many optimizations are possible for the above mentioned method.155
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16 EVALUATION

In this work, We aim to implement the above direction concept so as to reduce the memory overheads and hence156
execution time.157

12 b) Comparison with Other Algorithms in A Small Grid158

The new method is compared with other basic grid based pathfinding algorithms and results are analyzed. Here159
this analysis is made for some fixed grid environments. Preliminary analysis is conducted only to analyse the160
number of nodes explored in the Direction based Heuristics method and in other methods for a small graph.161

This algorithm is compared with other algorithms such as breath first search„ A* algorithm. Comparison162
results are shown below. Even though A* solves a given problem based on heuristics a necessary condition has163
to be satisfied. Basic comparison with the A* algorithm indicates that, this approach converges to the direction164
of goal as in the A* algorithm. Comparison with the other two algorithms also shows that the new approach165
converges to the direction of the goal state, even faster than Breadth First Search. These have to be proved166
mathematically.167

13 c) Converging Behavoiur of Direction Hueristics168

The method based on Direction Heuristic converges towards the goal state faster than Breadth First Search in169
tested environments. This makes it more usable. It also explores less number of nodes to reach final state. This is170
a good expected behaviour for a pathfinding algorithm. The proposed method explores less number of neighbors171
and hence the number of nodes processed each time is reduced. By using perfect data structures we can make it172
more appealing. So that the optimization for this particular work mainly concentrate on a data struture which173
can process nodes faster and which converges to the goal nodes so easily. The converging behaviour and thus174
the improvement of the work in obtaining a path in less time need to be theoretically proved. The converging175
behaviour of the algorithm of the algorithm can be explained as176

14 ? Compared to A* and other algorithms like Breadth177

First Search, the direction Heuristic approach explores less node each time. This is because of the fact that only178
those nodes in the direction of the goal node is considered in for expansion.179

? Each time this approaches avoids a certain direction, in many of the cases the same direction is chosen. This180
implies that the portions in the graph which are not relevant is not searched181

15 d) Applying The Concept of Direction Based Heuristics On182

A Star Algorithm183

Developed in the context of learning based heuristics our method speeds up search by expanding and evaluating184
only necessary nodes in the map. Further, this method eliminates redundant nodes from the graph which reduces185
additional memory over-heads. Using this heuristic function, we are able to identify a large set of cells which186
can be skipped. We have implemented the direction oriented Heuristic function normally in a simple grid based187
environment. The aim is to study the behaviour of the algorithm. Following are the scenarios taken under188
consideration:189

? A square grid of typical size is used. The algorithm works on every kind of grid based maps. But for the190
ease of calculation of results and observing the performance, square worlds are considered.191

? The territory type used is spacious maps and lightly obstructed maps. The method is based on finding out192
the cells to be expanded out of many neighboring cells. So this is perfectly applicable in the above mentioned193
types. Also it can be applied on mazes. But for experimental purpose I used maps with less obstacle density.194

Every edge has given same weight as we are considering diagonal direction also. This is a mandatory step195
in the implementation. Expanding diagonal nodes improves the realistic movement which is very essential in196
game playing. There are a total of eight neighbors for a node under consideration. Sup-pose we are considering a197
particular node which can be denoted by (x,y) in a grid based environment. Then we can consider the neighboring198
nodes as a set: {(x-1,y-1),(x,y-1),(x+1,y-1), (x1,y),(x+1,y), (x-1,y+1),(x,y+1),(x+1,y+1)} Our particular aim is199
to eliminate some nodes from the above eight neighbors to optimize the result. Popular algorithms like the A200
star algorithm and Breadth First Search algorithm expands every node so that all nodes are to be processed.201

Here Simple direction based Heuristics is applied for the implementation. We used the same datastructures as202
used by the A* algorithm and Breadth First Search algorithm to study the behaviour of the algorithm. From the203
above implementation, we could see that the proposed approach always finds solution without fail. A* algorithm204
can find out a solution pretty faster and the drawback is it eats up lot of memory. So an efficient optimization205
applied as this would greatly enhance the approach An example for game world simulated in browser IV.206

16 Evaluation207

Evaluating of the proposed system is perhaps the most important part of a our work. For precisely208
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17 Global Journal of C omp uter S cience and T echnology209

Volume XV Issue I Version I Year ( ) evaluating the results a common benchmark should be considered where210
all the algorithms under consideration can be executed. As we know A* algorithm is the most popular algorithm211
for pathfinding. Based on the time of excecution, Comparisons are made between a* algorithm and direction212
heuristic approach Every game world is represented as grids in the evaluation. For world representation a multi213
dimensional array is used. For getting the stable results in every platform, world representations in all such cases214
should be same. In most of the game worlds are represented using arrays. By using the same representation,215
results obtained are standard results which can be applied universally. A screen shot for running benchmark for216
the performance evaluation is given where it uses a 150 × 150 grid. The experiment is done in browser.217

Map is represented using a 2D array for obtaining standard results.218
First, both the algorithms are run several times and values are taken for execution time. The time thus219

calculated in milliseconds is plotted. An important observation is that the time taken by the proposed method is220
always less than that of A*. Both the algorithms, A* and Direction Heuristic approach are run thousand times221
and the average of the execution time is calculated for a grid of same size and obstacle density but randomly222
distributed obstacles. This result is given as the first instance. Fifteen such instances are calculated and result223
is plotted. By doing this we will get a result which is stable. Here also we have better performance for proposed224
algorithm Comparision between A* and direction Heuristics for 15 randon worlds of same size V.225

18 Conclusion226

In our work, we have introduced a new Heuristic method for speeding up Pathfinding on uniform cost maps227
which are represented using grids. The new approach selectively expands certain nodes from grid map so that228
minimum number of nodes are explored. The most important highlight of this work is identification of the nodes229
to be explored and proper usage of efficient data structure. we prove that unnecessary nodes are not expanded in230
this approach, or Direction Heuristics would try to minimize the number of nodes to be explored and yet come231
up with a solution in less time.232

One of the important observation is that applying the new logic will not affect the solution. the solution is233
guaranteed by the new heuristic. it is simple yet highly efficient ,it reduces the amount of the memory needed234
by wisely choosing the nodes to be explored. It does not require any pre-processing and therefore it is a very235
fast method. Due to its simplicity it can easily be combined with other pathfinding methods, speedup methods236
and path smoothing methods to get a solution faster and there is scope for research in all these combinations.237
Direction based heuristic approach is highly competitive to other works from literature especially when dealing238
with large maps. When compared to the most popular A* algorithm and its optimized variation which is using239
priority queue for implementing data structures, Direction Based Heuristics is found to show improve ments.240

The process speed up the path finding process by implementing an efficient data structure to handle the nodes241
for the evaluatation. This reflects in improvement in time when compared to traditional list based linear data242
structures. By efficiently deciding the number of nodes that are to be explored, new approach needs to process243
less number of nodes than other. This results in a memory efficient solution, Memory efficiency obtained by244
using Direction Heuristics is a key highlight when compared to A* algorithm which uses more memory. An245
interesting direction for further work is to extend Direction Based Heuristic approach to other type of grids like246
hexagonal and triangular grids. This can be easily achieved by employing proper direction keys for obtaining247
goal information pretty faster. Utility libraries and the pathfinding plug-ins can be developed by employing this248
idea so that it is avaliable as a package for the pathfinding. Much remains to be done in the field of Artificial249
Intelligence and pathfinding. Most of the research is oriented towards other areas like robotics and very few has250
been done towards their application in tile based games. We hope that our work would certainly benefit the251
game industry.252
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Figure 3:

[Note: ? On a square grid that allows 4 directions of movement, use Manhattan distance?]

Figure 4:
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