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5

Abstract6

Seismic data compression (SDC) is crucially, confronted in the oil Industry with large data7

volumes and Incomplete data measurements. In this research, we present a comprehensive8

method of exploiting wave packets to perform seismic data compression .Wave atoms are the9

modern addition to the collection of mathematical transforms for harmonic computational10

analysis. Wave atoms are variant of 2D wavelet packets that keep an isotropic aspect ratio.11

Wave atoms have a spiky frequency localization that cannot be attained using a filter bank12

based on wavelet packets and offer a significantly sparser expansion for oscillatory functions13

than wavelets ,curvelets and Gabor atoms.14

15

Index terms— seismic data compression (SDC), curvelets, wavelets, wave atom.16

1 Introduction17

odern seismic surveys with higher accuracy memorization that led to ever increasing amounts of seismic data18
[1and 2]. Management of these large datasets becomes important for transmission, storage processing and19
Interpretation. To make the storage more efficient and to reduce the broadcast and cost, many seismic data20
compression (SDC) algorithms have been developed. During the oil and gas exploration process, the main21
strategy used by the companies is the construction of sub surface images, which are used both to identify the22
reservoirs and also to plan the hydrocarbons distillation .The construction of those images begins with seismic23
survey that produces a huge amount of seismic data. Then, obtained data is transmitted to the processing center24
generate the subsurface image.25

A typical seismic survey can produce hundreds of terabytes of data. Compression algorithms are subsequently26
desirable to make the storage more effective, and to reduce time and costs related to network and satellite27
broadcast. Multi-resolution methods are genuinely associated to image processing, biological, computer Vision28
and systematic computing. The curvelet transform is a multiscale directional transform that permits almost29
best non-adaptive sparse representation of objects with edges. It has generated enhancing importance in the30
community of applied mathematics and signal processing over the years. A review on the curvelet transform31
includes its history beginning from wavelets, its logical relationship to other multi resolution multidirectional32
methods like contourlets and shearlets, its basic theory and discrete algorithm. Further, we agree recent33
applications in video/image processing, seismic exploration, fluid mechanics, imitation of partial different34
equations, and compressed sensing [3].35

For seismic data compression(SDC) ,the most important consideration is how to represent seismic signals36
efficiently ,that is to say ,using few coefficients to faith fully represent the signals ,and therefore preserve the useful37
information after maximally possible compression .It is easy to comprehend that compression effectiveness is used38
for different expansion bases. Many orthogonal transforms have been used for data compression .Discrete Fourier39
Transform (DCT) was the first generation orthogonal transform used in Data compression. Haar Transform40
use of rectangular basis functions .Slant Transform is an attempt to match basis vectors to the areas stable41
luminance slope. It has better decor relation efficiency .Discrete cosine Transform is one of the extensive families42
of sinusoidal transforms. The mainly efficient transform for decor relating input data is the Karhunen loeve43
Transform also known as Hotelling transform and Eigenvector transform [4].44
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5 C) WAVE ATOMS

Curvelets as a multi-scale, anisotropic multidimensional transform were introduced, very quickly to be used45
for seismic data processing and migration using a mapping migration method .Curvelets can build the local46
slopes information into the representation of the seismic data, and which was proved to be effective in the sparse47
decomposition of seismic data.48

For example, wavelet ??5 and 6] based compression algorithm can represent seismic data using only a fraction49
of the original data size. In this paper, Wave atom transform presents its advantage M Global Journal of C50
omp uter S cience and T echnology Volume XV Issue I Version I Year ( ) over wavelets, curve lets [7] for51
conventional image compression .Their features are well suited to seismic data properties and have led to better52
results in terms of signal -to -noise ratio. Wave atoms come from the property that they also provide an optimally53
sparse representation of wave propagators, a mathematical effect of autonomous interest, with applications to54
fast numerical solvers for wave equations.55

2 II. Image Compression -Transforms a) Wavelets56

During the last decade the appearance of many transforms called Geometric wavelets have paying attention of57
researchers working on image analysis. These novel transforms propose a new representation comfortable than58
the traditional wavelets multi-scale representation .We are responsive that for a particular type of images ,we can59
do better by choosing for this kind of specific images, a more suitable tool than classical wavelets ??8,9 and10].60

The orthogonal transforms have been broadly studied and used in image analysis and processing. To61
defeat the limitations of Fourier analysis many extra orthogonal transforms have been developed .The most62
important criteria to be fulfilled by the basis functions are localization in equally space and spatially frequency63
and orthogonality. Various efficient and sophisticated wavelet-based schemes have been developed. In Image64
compression, the use of orthogonal transform is dual. Primary, it décorrelates the image components and allows65
to identify the redundancy .Subsequent, it offers a high level of compression of the energy in the spatial frequency66
domain .These two properties permit to select the most related components of the signal in order to accomplish67
competent compression. Many orthogonal transforms possess these three characteristics and have been used for68
data compression. Continuous Ridgelet Transform is defined as1, 2 , ,1 2 1 269

( , , ) ( ) ( , )a b Rf a b f x x x x dx dx ? ? ? = ??(1)70
Where Ridgelets are expressed through Radon Transform as:1/ 2 , ,1 2 (( cos(( , , ) ( , ) ( ) / Rf a b Rf r a71

t b a ? ? ? = ? ? -1 / 2 dt (2)72
Where R f is Radon transform defined by1 2 1 2 1 2 ( , ) ( , ) ( sin cos ) Rf t f x x x x t dx dx ? ? ? ? = ? +73

? ? (3) A curvelet is defined as function 1 2 ( , ) x f x x = at the scale 2 j ? , orientation l ? and position ( , ) 174
/ 2 , 1275

( 2 , 2 )j l j j k l x R k k ? ? ? ? = by:(4)76
Curve let computation steps:77
Step 1: Decomposition into sub bands78
Step 2: Partitioning79
Step: Ridgelet analysis(Radon Transform + Wavelet transform 1D) Block size can change from a sub band to80

another one; the following algorithm will be applied81
Step 1: Apply a wavelet transform (J sub bands).82
, , 2 ( , , ) , , , ( ) ( )j i l k R c j l k f l k f x x d ? ? = = ?83
x Wavelets are much modified to isotropic structure; they are not modified for anisotropic structure. This84

transform cannot effectively represent textures and exceptional details in images for lacking of directionality.85
2D wavelet transforms produce high energy coefficients along the contours ??11 and 12]. To overcome this86
limitation, a few solutions have been proposed . A first solution consists in using directional filter banks tuned87
at fixed scales, orientations and positions. Another solution is exploit an adaptive directional filtering based on88
a numerical model. So, two important approaches fixed and adaptive have been developed. Figure ?? 1. shows89
difficulties of wavelet transform to represent regularity of a contour compared to new multi-scale transformed90
where geometric anisotropy and rotations are taken into description.91

3 Year ( )92

4 Seismic Data Compression using Wave Atom Transform93

Step 2: Initialize the block size: ?? ?????? =?? ?? .94
Step 3: For j=1, —–, J do95
Step 4: Partition the sub bands ?? ?? in blocks ?? ?? .96
Step 5: if (J modulo 2=1) then ?? ?? +1 = 2?? ?? otherwise ?? ?? +1 = ?? ??97
Step 6: Apply Ridgelet transform to each block.98

5 c) Wave atoms99

In the standard wavelet transform, only the estimate is decomposed, when, we pass from phase to another.100
While in the wavelet packets, the decomposition could be pursued into the other sets, which is not optimal .The101
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optimality is linked to the greatest energy of decomposition. The notion is then to fetch for the way yielding to102
the maximum energy through the different sub bands.103

Wave atom [15] is a novel member in the family of oriented, multiscale transforms for image processing and104
also numerical analysis. For the sake of completeness, we remember here some fundamentals notations followingf105
?(?)= ? e ?ix? f(x)dx(5)106

(6)Figure 3 : (? ?) diagram107
Wave atoms are noted as, with subscript. The indexes are integer -valued related to a point in the phase-space108

defined as follows. x ? = 2 ?j n, , C 1 2 j ? max i=1,2 |m i | ? C 2 2 j , they suggest two parameters are109
enough to index a lot of known wave packet architectures. The index indicates whether the decomposition is110
multi scale (?=1) or not (?=0); and ? indicates whether basis elements are localized and poorly directional (?=1)111
or, on the opposite side extended and fully directional (?=0) ??16,17 and18]. We think that the description112
in terms of ? and ? will clarify the connections between various transforms of modern harmonic analysis.113
Wavelets correspond to ?=?=1, for ridge lets ?=1, ?=0 ??19 and 20], Gabor transform ?=?=0 and curvelets114
correspond to ?=1,?=1/2. Wave atoms are defined for ?=?=1/2. In 2D domain the construction presented115
above can be modified to certain applications in image processing or numerical analysis: The orthobasis variant.116
??22,23 and24]. A two-dimensional orthonormal basis function in frequency plane with four bumps is formed by117
individually taking products of 1D wave packets .Mathematical formulation and implementations for 1D case are118
detailed in the earlier section.2D wave atoms are indexed by µ=(j,m,n), where m=(m 1 ,m 2 ) and n=(n 1 ,n 2 ).119
creation is not a simple tensor product since there is only one scale subscript j .This is similar to the non-standard120
or multi-resolution analysis wavelet bases where the point is to enforce same scale in both directions in order to121
retain an isotropic aspect ratio.? µ + (x 1 , x 2 ) =? m1 j (x 1 ?2 ?j n 1 ) ? m2 j (x 2 ?2 ?j n 2 ). (7)122

The Fourier transform of ( 7) is separable and its dual orthonormal basis is defined by Hilbert transformed123
[25] wavelet packets in (9)? ? µ + (? 1 , ? 2 ) = ? ? m1 j (? 1 )e ?i2 ?j n 1 ? 1 ? ? m2 j (? 2 )e ?i2 ?j n 2 ? 2124
(8) ? µ ? (x 1 , x 2 ) = H? m1 j (x 1 ?2 ?j n 1 ) H? m2 j (x 2 ?2 ?j n 2 ).(9)125

Combination of ( ??) and ( 9) provides basis functions with two bumps in the frequency plane, symmetric126
with respect to the origin and thus directional wave packets oscillating in a single direction are generated. ? µ127
(1) = ? µ + +? µ ? 2 , ? µ (2) = ? µ + ?? µ ? 2(10)|m i | = i=1.2 max 4n j + 1(11)128

III.129

6 Results and Discussion130

This section demonstrates some numerical examples to explain the properties and potential of the wave atom131
frame and its ortho basis variation. Now we illustrate the potential of the wave atoms with example. In the132
example, we consider the compression properties, i.e the decay rate of the coefficients of images under the133
wave atom bases. Besides the wave atom orthobasis and the wave atom frame, we include other two bases for134
comparison: the daubechies db5 wavelet, and a wavelet packet that uses db5 filter and shares the same wavelet135
packet tree with our wave atom or thobasis.136

The quality of reconstructed image is usually specified in terms of peak signal to noise ratio (PSNR).137
Together form the wave atom frame and are jointly denoted by ?µ . Wave atom algorithm is based on the138

apparent generalization and its complexity is O (N 2 LogN).139
In practice, one may want to work with the original orthonormal basis instead of tight frame. Since each basis140

function oscillates in two distinct directions, instead of one. This is called the orthobasis variant.? µ + x ? µ +141
(x) =? µ 1 (x) +? µ +2 (x) ? µ + x142

For some integer depends on j. we check that this property holds with n 0 = 0, n 1 = 1 and n 2 = 2. The143
rationale for this restriction is that a window needs to be right-handed in both directions near a scale doubling144
,and that this parity needs to match with the rest of the lattice .The rule is that is right -handed for m odd145
and left-handed for m even, so for instance would not be admissible window near a scale doubling, where as is146
admissible? m,+ j ? 2 2 (? 1 ) ? 2 2 (? 2 )? 3 2 (x 1 ) ? 3 2 (x 2 ) n j147

(by a dot in Figure ?? 5.). The PSNR values were calculated using the following expression:1 2 1 2 ’ 2 1 1148
max( ( , )) 20 log10 [ ( , ) ( , )] M M i j M M f i j psnr dB f i j f i j = = × × = ? ??(12)149

Here M1 and M2 are the size of the image. f (i,j) is the Original image, f?(i,j) is the decompressed image.150
From Table 1, we note that PSNR of waveatom Decompressed image is high for any no of coefficients used for151
reconstruction. From Table 2, it is observed that, curvelet representation has more redundant data compared152
to waveatoms and wavelets. Table 3 shows that, execution time required is less in case of wavelets compared to153
waveatoms and curvelets. Hence waveatom is the best alternative of the other two techniques.154

7 Conclusions155

We have shown that for a seismic data images, we can find a transform that is more appropriate than Curvelets and156
wavelets. Using Wave atom transform we obtained better PSNR and Compression Ratio than other transforms.157
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7 CONCLUSIONS

1

Figure 1: Figure 1 :

2

Figure 2: Figure 2 :
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Figure 3: ? ? =?2 j m 1 (
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4

Figure 4: Figure. 4 .

3

Figure 5: Figure. 3 .
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4

Figure 6: Figure 4 :
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5

Figure 7: Figure 5 :
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Figure 8: Figure. 5 .
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6

Figure 9: Figure 6 :
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Figure 10: Figure. 6
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Figure 11: Seismic
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7

Figure 12: Figure 7 :

1

S.no. No. of coefficients
used for decompres-
sion

wavelet PSNR of decompressed
image in dB curvelet

waveatom

1 5536 38.6992 38.0497 42.9066
2 6536 39.2739 38.5499 43.5110
3 7536 39.8192 39.0153 44.0314
4 8536 40.3407 39.4428 44.4903
5 9536 40.8406 39.8336 44.9026

Figure 13: Table 1 :
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2

S.no. No. of coefficients used for decom-
pression

wavelet Compression ratio
curvelet

waveatom

1 5536 47 342 94
2 6536 43 311 86
3 7536 39 285 78
4 8536 36 262 72
5 9536 33 242 67

Figure 14: Table 2 :

3

S.no. No. of coefficients used
for decompression

wavelet Execution time in sec-
onds curvelet

waveatom

1 5536 0.484 4.902 0.929
2 6536 0.491 8.334 3.260
3 7536 0.756 9.612 3.384
4 8536 0.178 2.907 1.413
5 9536 0.272 3.174 0.930

Figure 15: Table 3 :
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