
NeuralGDFS: Neural Network Guided DFS for Progressive1

Cluster Performance on Large Data Set2

Suyog Dixit1 and Dr. Pankaj Dashore23

14

Received: 14 December 2014 Accepted: 1 January 2015 Published: 15 January 20155

6

Abstract7

GlusterFS is the most advanced Distributed File System. GlusterFS uses Devis Meyer?s8

Hashing algorithm as a one way hashing function to save file across the cluster network. Based9

on GlusterFS, we introduce a new kind of DFS known as NeuralGDFS. NeuralGDFS will10

incorporate the probabilistic neural network to identify the most probable Brick in which11

requested file might be located. We also studied GlusterFS performance in virtual cloud12

environment.13

14

Index terms—15

1 Introduction16

emands for data storage capacity is increasing day by day. Proprietary DFS leading in storage industry are17
unable to cope up with the costing, simplicity & customizability as per the requirements of data enterprises.18

GlusterFS is developed to solve these problems and extended NAS for the cloud environments.19
Gluster allows storage clustering of large number of individual computer nodes to deliver a high performance20

centrally managed pool. Depending on the workload, capacity and performance can be increased from few21
terabytes to multiple petabytes. It is possible to connect on-site nodes as well as public cloud infrastructure22
nodes like Amazon Web Services or Microsoft Azure.23

2 a) Gluster Elastic Scaling24

Gluster can cluster hard-disk, processor and corresponding input/output resources of multiple thousands of25
inexpensive computer nodes so that an organization can create a very large storage pool. On demand,26
if organization wishes to add more storage, they can directly add more hard-disks. If organization needs27
performance, more levels of virtual RAIDs can be configured by installing more hard-disks distributed among28
different computer nodes.29

Elasticity in Gluster refers to direct proportionality of number of units with the performance. Necessary30
requirement to achieve elasticity is not to use metadata. Scalable and reliable architecture of fully distributed31
Gluster server nodes uses parallelism.32

There are scenarios with performance throughput exceeding 22GB/s [1].33
Author ? ?: Computer Science Department, MITM, Indore, India. e-mails: suyog@suyogdixit.com,34

dashorepankaj@gmail.com b) No Metadata with the elastic hash algorithm All other distributed file systems35
keep track of physical allocation of data by indexing file system. But this creates a single point of failure and36
significant bottlenecks. This also results into logarithmic scaling of the whole system. To avoid this performance37
chokepoint, Gluster finds location of file using Elastic Hashing algorithm which is based on Davis Meyer’s one-way38
hashing algorithm. Hence, Gluster does not require a metadata sever. With the input of directory name with39
filename on Davis Meyer algorithm a hash is generated. Davis Meyer’s hashing algorithm has determinism and40
uniformity. Each pathname corresponds unique numerical value.41

For the collision of files to the same brick, encryption operations are required (to find same hash value for two42
files).43

Gluster also uses SuperFastHash whose collisions can be easily found eg, finks collides with vinic.44

1

Global Journals LATEX JournalKaleidoscope™
Artificial Intelligence formulated this projection for compatibility purposes from the original article published at Global Journals.
However, this technology is currently in beta. Therefore, kindly ignore odd layouts, missed formulae, text, tables, or figures.

5 B) PROBABILISTIC NEURAL NET

3 How DHT Works45

When open() is called, distribute translator is provided with the filename. To determine its location in GlusterFS,46
translator runs the filename into hashing algorithm. returnctypes.c_uint32(glusterfs.gf_dm_hashfn(filename,47
len(filename)))48

if__name__==”__main__”: printhex(gf_dm_hashfn(sys.argv [1]).value)49
We installed GlusterFS on Virtualized environment Proxmox 3.0 KVM virtualization on 4 Ubuntu 14.04 LTS50

instances. We calculated hash as follows:51
ganeshji@ubuntu2:~$ python gf_dm_hash.py camelot.blend 0x99d1b6fL52
Distribute translator queries to see if it has the mappings for that directory cached. If it doesn’t, it looks53

all the distribute sub-volumes for the DHT mappings for that directory. Let’s look on the mappings: The54
trusted.glusterfs.dht value ends in two uint32 values. By investigating start and end values, most probable55
location can be found. In our case 0x00000000 <= 0x099d1b6f <= 0x3ffffffe query was sent to brick b. If the56
file is there, great. That was pretty fast and proficient.57

If the file’s is not found there, hopefully there’s a file there exists a file with the same filename of zero bytes,58
mode 1000 with the extended feature ”trusted.glusterfs.dht.linkto”. This is a sticky-pointer, also known as DHT59
link pointer. This tells the distribute translator that ”File is moved to?” This is usually generated while renaming60
a file. Two network calls will be no big deal If file is not found at brick b, the client calls dht_lookup_everywhere.61
This sends queries to each distributed sub-volume. In our research setup there is 4x3 volume space, that means62
4 queries out of distribute, and 3 queries each out of replicate for a total of 12 lookups. We can understand that63
this happens in parallel but that’s still a lot of overhead.64

Imagine a scenario in which we look for files that don’t exist repeatedly, this adds a lot of wasted lookups as65
the client queries every distribute sub-volume every time the file doesn’t exist. If that is for example a magneto66
app, there’s commonly a long include path that gets searched for each of 1000 includes. It’s common for 3000067
non-existent files to be referenced for a single shop home page load.68

Quick solutions could be including paths while querying, which practically not possible for each open() request.69
Next could be a use of metadata server, which is again a problem as discussed in section I[B]. Next solution could70
be setting a flag for future ease that this file does not exist. But none of the solution is found to be an efficient71
solution to be problem IV.72

4 Neural Network Backed DFS a) Pattern Parallel Training73

Pattern parallel training is a method in which full artificial neural network and full set of training data is replicated74
on each cluster node. This can also speed up the training of the network because nodes broadcasts their computed75
weights over the network.76

5 b) Probabilistic Neural Net77

The Probabilistic Neural Network (PNN) model, described by D.F. Specht is a neural implementation of78
the Parzen windows probability density approximation method, mainly (but not exclusively) oriented toward79
classification problems. It was originally devised to provide a neural tool capable of very fast training on real-80
world problems; as compared with the backpropagation, for a given level of performance, the speedup reported81
was about 200000:1 [2] Neural network have confusion, compression and diffusion properties. We will try to82
classify hash function based on a neural network. Let us define our neural network as:83

Where f i are transfer functions, W i are weights and B i (i=0,1,2) are the bias of the i th neuron layer. As we84
wish to have a distributed setup, no single point of failure and parallel computation, we take each of the node85
of Gluster as a node of neural network. The repeated iteration improves the randomness of the relation between86
H and D and thus strengthens the cryptosystem [3]. Learning of Neural Network will be a continuous process,87
which also works as a cache system. We also suggested one more layer after output layer as decision layer. This88
will give final outcome that where a file resides. Figure 2 shows the suggested neural network setup for our89
NeuralGDFS. A new approach has a fundamental limitation. Let us choose a division of the bricks to store the90
basic directory structure. It contains directories with allocated GFIDs (GlusterFS ID). This gives ”structure” to91
the network. Files in a given directory is then spread/hashed across many servers. But this is again a direction92
towards a metadata server.93

Solutions like ”directory-span” option which limits a given directory’s scale-out factor are not effective or ideal94
because their limits restrict sub-directories’ spanning and also impose on the parent directory’s spanning.95

Rebalance needs to bring the cluster into a balance state by moving data is a time consuming process. While96
renaming a file, name and cache do not co-reside, causing current design to put the file out of balance, and97
also is a very state operation triggering probable inconsistencies during its execution. E. Parzen estimated a98
non-parametric method of KDE (Kernal Density Estimation) for estimation of probability density estimation.99

Where, K is kernel positive function, n integrates to one and has mean zero, h is smoothing parameter called100
bandwidth.101

We used KDE.m [5] on MATLAB this example, the data are a synthetic sample of 70 FileIDs drawn from the102
standard normal and 70 points from a normal distribution with mean 6 and variance 2.103

2

6 NeuralGDFS104

In the NeuralGDFS, we keep training probabilistic neural network with random file calls. It is always most105
probable that a nearby file is called which can be easily computed by probabilistic neural network. MATLAB106
2014b was used to simulate the Neuro-DFS environment. No internal tool of MATLAB was used for creation or107
simulation of neural network.108

To increase the efficiency of our neural network, example vector will use cached location of last called file.109
These are frequently updated as per the misses of neural network. Output layer is not full connected with hidden110
layer. This is because we wish to have classification of file among the bricks. Hence, node for a given brick is111
connected only to that brick’s output node and not all (See Figure 2). Brick node activation can be calculated112
via corresponding brick cache product with File as input feature vector. Brick output activation can be then113
calculated as: Where, N is the total Number of Bricks in cluster space and ? is a smoothing factor. Smoothing114
factor can be customized while installing NeuralGDFS. If smoothing factor is very large, it will unable to classify115
a file and if it’s too very small, then our Neural Network will not generalize well.116

Given with the FileID, the node’s brick activations will be calculated and its sum will be forwarded to output117
layer via classes as bricks. From here, decision layer will take the largest activation will output the brick of118
FileID.119

Almost no training is required hence it is very fast. And as our NeuralGDFS is also based on Network parallel120
training, rest of the layers also responds very fast. But still as everything depends on Brick’s cache, network’s121
consistency problems may arise.122

Solution of this is in our architecture of NeuralGDFS. It has tight coupling of whole cluster system with123
probabilistic neural network. At first when open() is called, we will send our request to DHT module as well as124
PNN module. If DHT responds first with the corresponding Brick, Cache will updated and then PNN will adjust125
itself. If there is miss on DHT, PNN’s brick will be contacted for file. If still there is a miss, broadcast request126
to all bricks will be sent for the search. To verify that neural network approximates a function well, we tested127
MATLAB with own Neural Network. Figure 3 shows number of epochs taken by neural network for learning.128
Although our PNN will be much faster as it will not be a back propagation neural network. We studied a sample129
funtion learning on MATLAB.130

7 Benchmarking Performance131

In our study for Gluster, we used IOzone tool for benchmarking. We applied variety of file operations on our132
kernel virtualized Ubuntu machines. We used 64 MB Cache surveillance hard-disks and not SSD as most of the133
industrial environments do.134

The persistent rate was less than the burst rate as it does not get advantages of cache or buffer memory in135
the harddrive.136

Read and Write tests were conducted for different sizes with different number of records with number of137
methods. By comparing even with the two node we can obverse significant increase in the reading and writing138
speed with respect to a single virtual machine. It can be observed from figure 5 that for similar size of file with139
similar number of records, higher speed are illustrated in the case of Gluster.140

8 Global141

9 Brick Classification142

In our MATLAB experiment, we have taken FilesID as two element input vector to its associated Brick. Then143
we converted Brick into its vector form. We then created a new probabilistic neural network. After its testing,144
its vector output are converted into indices. Then our network classified this new vector with our network. See145
generated figure 6 which shows how our network classified the FilesID into corresponding brick.146

10 Conclusion147

Gluster filesystem is a self-integrated, multiprocol, highly scalable upto 72 brontobytes of data supporting148
infiniband. It can be updated to NeuralGDFS which uses neural network for alternate classification of files149
among bricks. We suggested procedures which can be developed for better handling of misses of files. This in150
turn, reduces network lookups and jams. 1 2 3 4151

1© 2015 Global Journals Inc. (US)
2© 2015 Global Journals Inc. (US) 1
3Global Journals Inc. (US)
4NeuralGDFS: Neural Network Guided DFS for Progressive Cluster Performance on Large Data Set

3

10 CONCLUSION

1

Figure 1: Figure 1 :

Figure 2: DH

Figure 3:

Figure 4: Global

2

Figure 5: Figure 2 :

4

3

Figure 6: Figure 3 :

Figure 7:

2

Figure 8: Figure 2 :

34

Figure 9: Figure 3 :HFigure 4 :

5

10 CONCLUSION

5

Figure 10: Figure 5 :

6

Figure 11: Figure 6 :

6

[Gluster ()] Cloud Storage for the Modern Data Center, Gluster . 2011.152

[Ancona et al. ()] ‘Implementing probabilistic neural networks The PNN model’. F Ancona , A M Colla , S153
Rovetta , R Zunino , EB S . Neural Comput 1998. 51.154

[Kernel Density Estimator -File Exchange -MATLAB Central (2015)] Kernel Density Estimator -File155
Exchange -MATLAB Central, http://www.mathworks.com/matlabcentral/fileexchange/156
14034-kernel-density-estimator Apr-2015. p. 15.157

[Lian et al. ()] One-way Hash Function Based on Neural Network, S Lian , J Sun , Z Wang . 2007. p. . (CoRR)158

[Dahl et al. ()] ‘Parallelizing neural network training for cluster systems’. G Dahl , T Mcavinney , Newhall . ?159
Comput. Networks, ? 2008.160

7

http://www.mathworks.com/matlabcentral/fileexchange/14034-kernel-density-estimator
http://www.mathworks.com/matlabcentral/fileexchange/14034-kernel-density-estimator
http://www.mathworks.com/matlabcentral/fileexchange/14034-kernel-density-estimator

	1 Introduction
	2 a) Gluster Elastic Scaling
	3 How DHT Works
	4 Neural Network Backed DFS a) Pattern Parallel Training
	5 b) Probabilistic Neural Net
	6 NeuralGDFS
	7 Benchmarking Performance
	8 Global
	9 Brick Classification
	10 Conclusion

