
© 2015. Harsha Singhani & Dr. Pushpa R. Suri. This is a research/review paper, distributed under the terms of the Creative Commons
Attribution-Noncommercial 3.0 Unported License http://creativecommons.org/licenses/by-nc/3.0/), permitting all non-commercial use,
distribution, and reproduction inany medium, provided the original work is properly cited.

Global Journal of Computer Science and Technology: C
Software & Data Engineering
Volume 15 Issue 5 Version 1.0 Year 2015
Type: Double Blind Peer Reviewed International Research Journal
Publisher: Global Journals Inc. (USA)
Online ISSN: 0975-4172 & Print ISSN: 0975-4350

Testability Assessment Model for Object Oriented Software based
on Internal and External Quality Factors

 By Harsha Singhani & Dr. Pushpa R. Suri
 Kurukshetra University, India

Abstract- Software testability is coming out to be most frequent talked about subject then the
underrated and unpopular quality factor it used to be in past few years. The correct and timely
assessment of testability can lead to improvisation of software testing process. Though many
researchers and quality controllers have proved its importance, but still the research has not gained
much momentum in emphasizing the need of making testability analysis necessary during all
software development phases. In this paper we review and analyse the factors affecting testability
estimation of object oriented software systems during design and analysis phase of development life
cycle. These factors are then linked together in the form of new assessment model for object oriented
software testability. The proposed model will be evaluated using analytical hierarchical process
(AHP).

Keywords: software testability, testability factors, object oriented software testability assessment
model.

GJCST-C Classification : D.2.2

TestabilityAssessmentModelforObjectOrientedSoftwarebasedonInternalandExternalQualityFactors

Strictly as per the compliance and regulations of:

Testability Assessment Model for Object
Oriented Software based on Internal and

External Quality Factors
Harsha Singhani α & Dr. Pushpa R. Suri σ

Abstract- Software testability is coming out to be most frequent
talked about subject then the underrated and unpopular
quality factor it used to be in past few years. The correct and
timely assessment of testability can lead to improvisation of
software testing process. Though many researchers and
quality controllers have proved its importance, but still the
research has not gained much momentum in emphasizing the
need of making testability analysis necessary during all
software development phases. In this paper we review and
analyse the factors affecting testability estimation of object
oriented software systems during design and analysis phase
of development life cycle. These factors are then linked
together in the form of new assessment model for object
oriented software testability. The proposed model will be
evaluated using analytical hierarchical process (AHP).
Keywords: software testability, testability factors, object
oriented software testability assessment model.

I. Introduction

estability is one of the qualitative factors of
software engineering which has been accepted in
McCall and Boehm software quality model, which

build the foundation of ISO 9126 software quality model.
Formally, Software testability has been defined and
described in literature from different point of views IEEE
[1] defines it as “The degree to which a system or
component facilitates the establishment of test criteria
and performance of tests to determine whether those
criteria have been met” and ISO [2] has defined
software testability as functionality or “attributes of
software that bear on the effort needed to validate the
software product”.

Author

α:

Research Scholar, Department of Computer Science and

Applications, Kurukshetra University, Kurukshetra, Haryana, India.

e-mail: harshasinghani@gmail.com

Author

σ:

Department of Computer Science and Applications,
Kurukshetra University, Kurukshetra, Haryana, India.

e-mail: pushpa.suri@yahoo.com

In this paper we have proposed a testability

evaluation model for assessment during design and
analysis phase based on external quality factors and
their relation with internal object oriented programming
features which affect testability as shown earlier in our
work [7].This paper is organized as follows: Section2
gives brief overview of software testability related work.
Section3 gives the details of internal object oriented
features needed for testability assessment followed by
section 4 which gives the details of external quality
factors linked and affected due to these features.
Section 5 describes the proposed assessment model. It
is followed by conclusion and future scope in section 6.

II. Software Testability Related Work

Software Testability actually acts as a software
support characteristic for making it easier to test. As
stated by Binder [8] and Freedman [9] a Testable
Software is one that can be tested easily, systematically
and externally at the user interface level without any ad-
hoc measure. Whereas Voas [10] describe it as
complimentary support to software testing by easing
down the method of finding faults within the system by
focussing more on areas that most likely to deliver these
faults. Hence, over the years Testability has been
diagnosed as one of the core quality indicators, which
leads to improvisation of test process. The insight
provided by testability at designing, coding and testing
phase is very useful as this additional information helps
in product quality and reliability improvisation [11][12].
All this has lead to a notion amongst practitioners that
testability should be planned early in the design phase
though not necessarily so. As seen by experts like
Binder it involves factors like controllability and
observability i.e. ability to control software input and
state along with possibility to observe the output and
state changes that occur in software. So, overall testable
software has to be controllable and observable [8]. But

T

© 2015 Global Journals Inc. (US)

9

G
lo
ba

l
Jo

ur
na

l
of
 C
 o

m
p u

te
r
S c

ie
nc

e
an

d
T
ec

hn
ol
og

y

V
ol
um

e
X
V
 I
ss
ue

 V
 V

er
sio

n
I

Ye
ar

20
15

 (

)
C

The testability research actually is done from the
prospect of reducing testing effort and testing cost
which is more than 40% of total development cost of any
software [3]. Still, the research in the field of testability
has not been done in much detail. It mainly affects the
efficiency of overall software development team from
project managers, software designers to software
testers. As they all need testability assessment in

decision making, software designing, coding and
testing[4].So keeping that in mind, we will take this study
further. As discussed in our previous work about
testability and testability metrics[5], [6], it has been
found that testability research has taken a speed up in
past few years only and much of the work has been
done using various object oriented software metrics.

over the years more such quality factors like
understandability, traceability, complexity and test–
support capability have contributed to testability of a
system [4].

Software testability measurement refers to the
activities and methods that study, analyze, and measure
software testability during a software product life cycle.
Unlike software testing, the major objective of software
testability measurement is to find out which software
components are poor in quality, and where faults can
hide from software testing. In the past, there were a
number of research efforts addressing software
testability measurement. Now these measurements can
be applied at various phases during software
development life cycle of a system. The studies mostly
revolve around the measurement methods or factors
affecting testability along with how to measure software
testability at various phases like Design Phase[8], [12]–
[18] and Coding Phase[19]–[22]. Lot of stress has been
given upon usage of object oriented metrics for object
oriented software testability evaluation during these
researches. The metrics investigated related to object
oriented software testability assessment mostly belong
to static software metrics category. These metrics were
mostly adapted from CK [23], MOOD [24], Brian [25],
Henderson-Sellers [26] metric suite along with others
[27]. Lot of empirical study has been done by
researchers like Badri [28], Bruntink [29] and Singh [30]
in showing the correlation of these metrics with unit
testing effort. Few studies done by Baudry and Genero
[31]–[34] have been focussed on UML diagram features
from software testability improvisation prospect as found
during review of these design diagrams. All this work
has been explained in depth in our previous research
work [4],[5].

We would take this study further keeping focus
mainly on object oriented system as object oriented
technology has become most widely accepted concept
by software industry nowadays. But testability still is a
taboo concept not used much amongst industry mainly
due to lack of standardization, which may not be
imposed for mandatory usage but just been looked
upon for test support[35]. We would actually like to
propose a model for testability evaluation based on key
programming features and quality factors which in turn
make testing easier or difficult within this software. We
have followed the steps as mentioned below to
formalize the model:

• Identification of internal design features for object
oriented software testability assessment

• Identification of static metrics out of many popular
metrics for each of these.

• Identification of external factors affecting software
testability.

• Establishing link between theses external quality
factors and internal features which are evaluated
through selected object oriented metrics.

• Establishing link between testability and these
identified external factors which indirectly link it to
identified internal features.

• The Model is followed with evaluation using AHP
technique.

III. Testability Factors Identification

Before proposing the testability assessment
model we have to first identify the key object oriented
programming features which affect the testability at
internal level. As already known the object oriented
programming is based on three core concepts-
Inheritance, Encapsulation and Polymorphism. Where,
Inheritance is a mechanism for code reuse and to allow
independent extensions of the original software via
public classes and interfaces. Whereas, Polymorphism
mainly provides the ability to have several forms, and
Encapsulation an after effect of information hiding is
actually play significant role in data abstraction by hiding
all important internal specification of an object and
showing only external interface. Now, a programming
without these characteristics is distinctly not object-
oriented that would merely be programming with some
abstract data types and structured coding [36]. But
these are not the only factors directing the course of
testing in object oriented software, along with them three
more identified features namely coupling, cohesion and
size complexity. All these features and their influence on
testability has already been highlighted in our previous
work[4], [5]. Hence these six identified object oriented
programming core features would be necessarily
required to assess testability for object oriented software
at design level. All these internal quality characteristics –
Encapsulation, Inheritance, Coupling, Cohesion,
Polymorphism and Size & Complexity are as defined
below in Table 1along with details of their specific
relation on testability. The relation between these
features and testability has been build based on
thorough study of many publications [2], [20], [35], [38],
[39]etc.

Testability Assessment Model for Object Oriented Software based on Internal and External Quality
Factors

© 2015 Global Journals Inc. (US)1

10

G
lo
ba

l
Jo

ur
na

l
of
 C
 o

m
p u

te
r
S c

ie
nc

e
an

d
T
ec

hn
ol
og

y

V
ol
um

e
X
V
 I
ss
ue

 V
 V

er
sio

n
I

Ye
ar

 (

)
C

20
15

Table 1 : Object Oriented Design Feature Affecting Testability

OO Feature
Affecting
Testability

Definition Testability Relation

Encapsulation It is defined as a kind of abstraction
that enforces a clean separation
between the external interface of an
object and its internal
implementation

Encapsulation provides explicit barriers among
different abstractions and thus leads to a clear
separation of concerns. Thus if not used
appropriately it makes system more complex and
difficult to trace and test. But yes separation of
concerns is good for testability.

Inheritance It is a measure of the ‘is-a’
relationship between classes.

Inheritance has a significant influence on
complexity, understandability, reusability and
testability. Inheritance is one of the major test
generation factors[29].

Coupling It is defined as the interdependency
of an object on other objects in a
design.

Strong coupling complicates a system since a
module is harder to understand, change, or correct
by itself if it is highly interrelated with other modules.
Thus low coupling is considered good for
understandability, complexity, reusability and
testability or maintainability

Cohesion It defines as the internal
consistency within the parts of
design.

Cohesion is one of the measures of goodness or
good quality in the software as a cohesive module
is more understandable and less complex. Low
cohesion is associated with traits in programming
such as difficult to maintain, test, reuse, and even
understand.

Size &
Complexity

It’s the measure of size of the
system in terms attributes or
methods included in the class and
capture the complexity of the class.

Size & Complexity has a significant impact on
understandability, and thus testability or
maintainability of the system.

Polymorphism Polymorphism allows the
implementation of a given
operation to be dependent on the
object that “contains” the operation
such that an operation can be
implemented in different ways in
different classes.

Polymorphism reduces complexity and improves
reusability. More use of polymorphism leads more
test case generation [29].

Now all the above mentioned key features can
be measured by many object oriented metrics options
available as discussed earlier in our previous article [6].
Most of these metrics are accepted by practitioners on
‘heavy usages and popularity’ and by academic experts
on empirical (post development) validation. But to keep
study simple from further evaluation perspective we
have suggested the few basic but popular metrics
amongst testability researchers. Out of all the popular
metrics suites discussed in our previous work [41] few
of these static metrics are as explained below in Table2
have been suggested for the evaluation of each of these
feature and their effects on any object oriented software
testability at design time.

As described in Table2 below for Encapsulation
evaluation number of methods metrics (NOM) is being
suggested by many researchers for the effect of
information hiding on testability[16], [42]. So we kept it
for encapsulation evaluation for our model too.
Inheritance is evaluated either using Number of Children
metrics (NOC) or Depth of Inheritance Tree (DIT) two of

the most popular and efficient inheritance metrics [22],
[36], [41], [42]. For Coupling we suggested coupling
between objects (CBO) and for cohesion Li & Henry
Cohesion between Methods metrics version (LCOM).
These two were the most sought after and unparalleled
metrics available for assessing coupling and cohesion
effect on testability as per literature study and popularity
amongst industry practitioners [10], [20], [22], [24],
[37], [43].Though Size & Complexity can be easily
measured by many metrics in this category such as
number of classes (NOC) ,number of attributes (NOA),
weighted method complexity (WMC) metrics but due to
its significant role, popularity and association in number
of test case indication pointed WMC is most appropriate
[8], [28], [44]. Polymorphism is one of the underlying
factors affecting testability but as quite stressed by early
researchers like Binder and others [8], [25] as it results
in testability reduction ,we suggest chose polymorphism
factor metrics (POF/PF) one of the quick and reliable
polymorphism evaluation method for testability
assessment.

Testability Assessment Model for Object Oriented Software based on Internal and External Quality
Factors

© 2015 Global Journals Inc. (US)

11

G
lo
ba

l
Jo

ur
na

l
of
 C
 o

m
p u

te
r
S c

ie
nc

e
an

d
T
ec

hn
ol
og

y

V
ol
um

e
X
V
 I
ss
ue

 V
 V

er
sio

n
I

Ye
ar

20
15

 (

)
C

Table 2 : Selected Metrics Details for Testability Evaluation

Testability
Factor

Metrics Name Description

Encapsulation No of Method (NOM) This metric is the count of all the methods
Inheritance No of Children (NOC)/ Depth of

Inheritance Tree (DIT)
Where NOC metric is the count of children of super-class
in the design and DIT metric is the distance of a class

from the root.
Coupling Coupling Between Object (CBO) This metric count of the different number of other classes

that a class is directly coupled to. (Two classes are
coupled when methods declared in one class use
methods or instance variables defined by the other

class)
Cohesion Cohesion Metric (LCOM) This metric computes the relatedness among methods

of a class based upon the parameter list of the methods.
Size &
Complexity

Weighted Method Complexity
(WMC)

It s the count of sum of all methods complexities in a
class

Polymorphism No of methods overridden (NMO) It is count of overridden method in a subclass

IV. Quality Factors & Proposed
Testability Assessment Model

Our proposed testability model is based on
Dromey’s software quality model [39] which has been a
benchmark in use for various quality features as well as
many testability models so far. So, as discussed above
we have already highlighted all the internal design
features from testability perspective as pointed by many
researchers. These features directly or indirectly affect
the quality factors which further make software may or
may not more testable. The studies indicate
encapsulation promotes efficiency and complexity.
Inheritance has a significant influence on the efficiency,
complexity, reusability and testability or maintainability.
While low coupling is considered good for
understandability, complexity, reusability and testability
or maintainability, whereas higher measures of coupling
are viewed to adversely influence these quality
attributes. Cohesion is viewed to have a significant
effect on a design’s understandability and reusability.
Size & Complexity has a significant impact on
understandability, and testability or maintainability.
Polymorphism reduces complexity and improves

reusability. Out of six identified features four features
have been proposed in MTMOOD testability model [16],
which does not cover the polymorphism and size &
complexity feature, which have also been found as
essential internal features by many researchers in
testability study [15], [22], [36], [37]. These six object
oriented features play a very significant role in testability
improvisation directly or indirectly through other quality
factors.

All the above mentioned studies lead to mainly
six identified external quality factors to assess testability
for object oriented software. These factors
are –Controllability, Observability, Complexity,
Understandability, Traceability and Built-in-Test. Most of
these factors were pointed in Binder’s

[8] research work

on testability. Many other researchers established these
factors relation too with testability as mentioned below in
table 3.We have identified these factors keeping in mind
significant role in testability as found out in our previous
research work and surveys e have identified These
factors get directly or indirectly affected by all of the
above mentioned internal features and further
complicate or reduce the task of testing hence reducing
or increasing overall testability of the software.

Table 3 : External Software Quality Factors Affecting Testability

External Factors
Affecting Testability Definition Significant Testability Relation in

Literature

Controllability

It is the ability to control software input and
state. During software testing, some conditions
like disk full, network link failure etc. are difficult
to test. Controllable software makes it possible
to initialize the software to desired states, prior

to the execution of various tests.

Controllability is an important index of
testability as it makes testing easier [9],
[47]–[49].

Observability

Software observability indicates how easy to
observe a program in terms of its operational
behaviours, input parameters, and outputs. In
the process of testing, there is a need to
observe the internal details of software
execution, to ascertain correctness of

Observable software makes it feasible
for the tester to observe the internal
behaviour of the software, to the
required degree of details, Hence
observability increases testability in the

system [9], [47], [49].

Testability Assessment Model for Object Oriented Software based on Internal and External Quality
Factors

© 2015 Global Journals Inc. (US)1

12

G
lo
ba

l
Jo

ur
na

l
of
 C
 o

m
p u

te
r
S c

ie
nc

e
an

d
T
ec

hn
ol
og

y

V
ol
um

e
X
V
 I
ss
ue

 V
 V

er
sio

n
I

Ye
ar

 (

)
C

20
15

processing and to diagnose errors discovered
during this process possibility to observe the
output and state changes that occur in

software.
Complexity It is basically described as the difficulty to

maintain, change, understand and test
software.

High Complexity of the system is
actually an indicator of decreased
system testability [43], [42], [50], [51].

Understandability It is the degree to which the component under
test is documented or self-explaining.

An understandable system is easily
testable and [14], [52]–[54].

Traceability It is the degree to which the component under
test is traceable in other words the
requirements and design of a given software

component match.

A non-traceable software system
cannot be effectively tested, since
relations between required, intended
and current behaviours of the system
cannot easily be identified[8], [44].

Built In Test(BIT) Built in testing involves adding extra
functionality within system components that
allow extra control or observation of the state of

these components.

BIT actually provides extra test
capability within the code for separation
of test and application functionality
which makes software more testable by
better controllability and improved

observability [8], [19], [55], [56].

Now after listing all the internal object oriented
programming features which directly affect testability
and all external quality factors which are also indicators
of testable software, we have to identify the link between

the two. As found on the basis of above literature survey
the influence of all internal features over external quality
features is briefly explained below in Table 4 below:

Table 4 : Influence of Internal Object Oriented Programming Features over External Software Quality Factors
Affecting Testability

 Encapsulation
(E)

Inheritance
(I)

Coupling
(Cp)

Cohesion
(Ch)

Size (S) Polymorphism
(P)

Controllability (Ct) ↓
High E-Low Ct

-

↓
High Cp -

Low Ct

↑
High Ch-
High Ct

-
↓

High P-Low Ct

Observability (O) ↓
High E -
Low O

↑
High I -High

O
- - -

↓
High P-Low O

Complexity (Cx)
 -

↓
 Low I - High

Cx

↑
 High Cp-

More Cx

↓ High
Ch -

Reduce Cx

↑
 Big S-

More Cx

↓
 High P -

Reduce Cx
 Understandability

(U)
 -

↓
 Low I - High

U

↓
 Low Cp-

High U

↑
 High Ch-

High U

↓
 Big size -

Low U

-

Traceability (T)

↓

 High E –
Low T

-
↓

 High Cp-
Less T

-
↓

 Low Size -
More T

-

Built In test (BIT)

↑

 High E – More
BIT

-
↑

 High Cp-
More BIT

↓

 High Ch-
Less BIT

- -

The table actually elaborates the contribution of
each of these internal programming features towards
the six major quality factors which are directly linked to
testability. Hence we may say that Testability requires
Low Coupling, Adequate Complexity, Good
Understandability, High Traceability, Good observability,
Adequate control and more Built in test. In spite of
having lot of measurement techniques for testability
evaluation using some or the factor or few of the above
mentioned metrics, testability has not yet been found to
be evaluated from these factor perspectives. The study

still does not show an elaborative impact of all of them
together for testability improvisation or test effort
reduction which is what motivated us for proposing this
new model.

So, the proposed testability assessment model
with respect to internal design features using static
metrics is based on six above mentioned object
oriented features from testability perspective as pointed
in Binders research too [8]. The proposed model is as
follows:

Testability Assessment Model for Object Oriented Software based on Internal and External Quality
Factors

© 2015 Global Journals Inc. (US)

13

G
lo
ba

l
Jo

ur
na

l
of
 C
 o

m
p u

te
r
S c

ie
nc

e
an

d
T
ec

hn
ol
og

y

V
ol
um

e
X
V
 I
ss
ue

 V
 V

er
sio

n
I

Ye
ar

20
15

 (

)
C

(Where ↓ indicates inverse relation and ↑ indicates parallel relation)

Testability Assessment Model for Object Oriented Software based on Internal and External Quality
Factors

© 2015 Global Journals Inc. (US)1

14

G
lo
ba

l
Jo

ur
na

l
of
 C
 o

m
p u

te
r
S c

ie
nc

e
an

d
T
ec

hn
ol
og

y

V
ol
um

e
X
V
 I
ss
ue

 V
 V

er
sio

n
I

Ye
ar

 (

)
C

20
15

Figure 1 : Object Oriented Software Testability Assessment Model

V. Conclusion & Future Scope

In this paper an evaluation model for testability
assessment during design and analysis phase based on
external factors and their relation with internal object
oriented programming features has been proposed.
These factors directly or indirectly affect testability and
can be used for software testability measurement. On
the basis of detailed study we may say that Testability
requires Low Coupling, Adequate Complexity, Good
Understandability, High Traceability, Good observability,
Adequate control and more Built in test.

References Références Referencias

1. J. Radatz, A. Geraci, and F. Katki, “IEEE Standard
Glossary of Software Engineering Terminology (IEEE
Std 610.12-1990),” 1990.

2. ISO, “ISO/IEC 9126: Software Engineering Product
Quality,” 2002.

3. A. P. Mathur, Foundations of Software Testing,
Second. Pearson, 2013.

4. J. Fu, B. Liu, and M. Lu, “Present and future of
software testability analysis,” ICCASM 2010 - 2010
Int. Conf. Comput. Appl. Syst. Model. Proc., vol. 15,
no. Iccasm, 2010.

5. P. R. Suri and H. Singhani, “Object Oriented
Software Testability Survey at Designing and
Implementation Phase,” Int. J. Sci. Res., vol. 4, no.
4, pp. 3047–3053, 2015.

6. P. R. Suri and H. Singhani, “Object Oriented
Software Testability (OOSTe) Metrics Analysis,” Int.
J. Comput. Appl. Technol. Res., vol. 4, no. 5, pp.
359–367, 2015.

7. M. Patidar, R. Gupta, and G. Chandel, “Coupling
and Cohesion Measures in Object Oriented
Programming,” Int. J. Adv. Res. Comput. Sci. Softw.
Eng., vol. 3, no. 3, pp. 517–521, 2013.

8. R. V Binder, “Design For Testabity in Object-
Oriented Systems,” Commun. ACM, vol. 37, pp. 87–
100, 1994.

9. R. S. Freedman, “Testability of software
components -Rewritten,” IEEE Trans. Softw. Eng.,
vol. 17, no. 6, pp. 553–564, 1991.

10. J. M. Voas and K. W. Miller, “Software Testability :
The New Verification,” IEEE Softw., vol. 12, no. 3, pp.
17–28, 1995.

11. J. M. Voas and K. W. Miller, “Improving the software
development process using testability research,”
Softw. Reliab. Eng. 1992. …, 1992.

12. D. Esposito, “Design Your Classes For Testbility.”
2008.

13. S. Jungmayr, “Testability during Design,” pp. 1–2,
2002.

14. B. Pettichord, “Design for Testability,”
Pettichord.com, pp. 1–28, 2002.

15. E. Mulo, “Design for testability in software systems,”
2007.

16. R. A. Khan and K. Mustafa, “Metric based testability
model for object oriented design (MTMOOD),” ACM
SIGSOFT Softw. Eng. Notes, vol. 34, no. 2, p. 1,
2009.

17. M. Nazir, R. A. Khan, and K. Mustafa, “Testability
Estimation Framework,” Int. J. Comput. Appl., vol. 2,
no. 5, pp. 9–14, 2010.

18. J. E. Payne, R. T. Alexander, and C. D. Hutchinson,
“Design-for-Testability for Object-Oriented
Software,” vol. 7, pp. 34–43, 1997.

The above proposed model requires to be
evaluated using some technique which helps in
validating these criteria’s, sub-criteria’s and their
significant quantifiable role in testability assessment. We
may use one of the formal Multi criteria decision making
(MCDM) technique proposed by Satty [57] known as
Analytic Hierarchy Process (AHP). The selected
technique would be applied on the proposed model in
our future research work. This would help the stake
holders decision making more faster along with easing
reducing testing effort.

19. Y. Wang, G. King, I. Court, M. Ross, and G. Staples,
“On testable object-oriented programming,” ACM
SIGSOFT Softw. Eng. Notes, vol. 22, no. 4, pp. 84–
90, 1997.

20. B. Baudry, Y. Le Traon, G. Sunye, and J. M.
Jézéquel, “Towards a ’ Safe ’ Use of Design
Patterns to Improve OO Software Testability,” Softw.
Reliab. Eng. 2001. ISSRE 2001. Proceedings. 12th
Int. Symp., pp. 324–329, 2001.

21. M. Harman, A. Baresel, D. Binkley, and R. Hierons,
“Testability Transformation: Program Transformation
to Improve Testability,” in Formal Method and
Testing, LNCS, 2011, pp. 320–344.

22. M. Badri, A. Kout, and F. Toure, “An empirical
analysis of a testability model for object-oriented
programs,” ACM SIGSOFT Softw. Eng. Notes, vol.
36, no. 4, p. 1, 2011.

23. S. R. Chidamber and C. F. Kemerer, “A Metrics
Suite for Object Oriented Design,” IEEE Trans.
Softw. Eng., vol. 20, no. 6, pp. 476–493, 1994.

24. T. Mayer and T. Hall, “Measuring OO systems: a
critical analysis of the MOOD metrics,” Proc.
Technol. Object-Oriented Lang. Syst. TOOLS 29
(Cat. No.PR00275), 1999.

25. S. Mouchawrab, L. C. Briand, and Y. Labiche, “A
measurement framework for object-oriented
software testability,” Inf. Softw. Technol., vol. 47, no.
April, pp. 979–997, 2005.

26. B. Henderson and Sellers, Object-Oriented Metric.
New Jersey: Prentice Hall, 1996.

27. A. Fernando, “Design Metrics for OO software
system,” ECOOP’95, Quant. Methods Work., 1995.

28. M. Badri, “Empirical Analysis of Object-Oriented
Design Metrics for Predicting Unit Testing Effort of
Classes,” J. Softw. Eng. Appl., vol. 05, no. July, pp.
513–526, 2012.

29. M. Bruntink and A. Vandeursen, “An empirical study
into class testability,” J. Syst. Softw., vol. 79, pp.
1219–1232, 2006.

30. Y. Singh and A. Saha, “Predicting Testability of
Eclipse: Case Study,” J. Softw. Eng., vol. 4, no. 2,
pp. 122–136, 2010.

31. B. Baudry, Y. Le Traon, and G. Sunye, “Improving
the testability of UML class diagrams,” First Int.
Work. onTestability Assessment, 2004. IWoTA 2004.
Proceedings., 2004.

32. M. Genero, M. Piattini, and C. Calero, “A survey of
metrics for UML class diagrams,” J. Object
Technol., vol. 4, no. 9, pp. 59–92, 2005.

33. B. Baudry and Y. Le Traon, “Measuring design
testability of a UML class diagram,” Inf. Softw.
Technol., vol. 47, no. 13, pp. 859–879, 2005.

34. B. Baudry, Y. Le Traon, and G. Sunye, “Testability
analysis of a UML class diagram,” Proc. Eighth IEEE
Symp. Softw. Metrics, 2002.

35. J. W. Sheppard and M. Kaufman, “Formal
specification of testability metrics in IEEE P1522,”

2001 IEEE Autotestcon Proceedings. IEEE Syst.
Readiness Technol. Conf. (Cat. No.01CH37237), no.
410, pp. 71–82, 2001.

36. G. Booch, R. a. Maksimchuk, M. W. Engle, B. J.
Young, J. Conallen, and K. a. Houston, Object-
Oriented Analysis and Design with Applications, vol.
1, no. 11. Addison Wesley, 2007.

37. L. C. Briand, J. Wust, S. V. Ikonomovski, and H.
Lounis, “Investigating quality factors in object-
oriented designs: an industrial case study,” Proc.
1999 Int. Conf. Softw. Eng. (IEEE Cat.
No.99CB37002), 1999.

38. L. Rosenberg and L. Hyatt, “Software quality metrics
for object-oriented environments,” 1997.

39. R. G. Dromey, “A Model for Software Product
Quality,” IEEE Transactions on Software Engineering,
vol. 21. pp. 146–162, 1995.

40. M. Nazir and R. A. Khan, “Software Design
Testability Factors: A New Perspective,” in
Proceddings of Naional Third Conference
INDIACOM 2009, 2009, pp. 1–6.

41. H. Singhani and P. R. Suri, “Object Oriented
SoftwareTestability (OOSTe) Metrics Assessment
Framework,” Int. J. Adv. Res. Comput. Sci. Softw.
Eng., vol. 5, no. 4, pp. 1096–1106, 2015.

42. M. Nazir and K. Mustafa, “An Empirical Validation of
Testability Estimation Model,” Int. J. Adv. Res.
Comput. Sci. Softw. Eng., vol. 3, no. 9, pp. 1298–
1301, 2013.

43. S. Khalid, S. Zehra, and F. Arif, “Analysis of object
oriented complexity and testability using object
oriented design metrics,” in Proceedings of the 2010
National Software Engineering Conference on -
NSEC ’10, 2010, pp. 1–8.

44. M. Bruntink, “Testability of Object-Oriented
Systems : a Metrics-based Approach,” Universiy
Van Amsterdam, 2003.

45. M. Genero, M. Piattini, and C. Calero, “An Empirical
Study to Validate Metrics for Class Diagrams.”

46. L. Badri, M. Badri, and F. Toure, “An empirical
analysis of lack of cohesion metrics for predicting
testability of classes,” Int. J. Softw. Eng. its Appl.,
vol. 5, no. 2, pp. 69–86, 2011.

47. T. B. Nguyen, M. Delaunay, and C. Robach,
“Testability Analysis of Data-Flow Software,”
Electron. Notes Theor. Comput. Sci., vol. 116, pp.
213–225, 2005.

48. A . Goel, S. C. Gupta, and S. K. Wasan, “COTT –
A Testability Framework for Object- Oriented
Software Testing,” Int. Jounal Comput. Sci., vol. 3,
no. 1, pp. 813–820, 2008.

49. S. Kansomkeat, J. Offutt, and W. Rivepiboon,
“INCREASING CLASS-COMPONENT TESTABILITY,”
in Proceedings of 23rd IASTED International Multi-
Conference, 2005, pp. 15–17.

50. J. M. Voas, J. M. Voas, K. W. Miller, K. W. Miller,
J. E. Payne, and J. E. Payne, “An Empirical

Testability Assessment Model for Object Oriented Software based on Internal and External Quality
Factors

© 2015 Global Journals Inc. (US)

15

G
lo
ba

l
Jo

ur
na

l
of
 C
 o

m
p u

te
r
S c

ie
nc

e
an

d
T
ec

hn
ol
og

y

V
ol
um

e
X
V
 I
ss
ue

 V
 V

er
sio

n
I

Ye
ar

20
15

 (

)
C

Comparison of a Dynamic Software Testability
Metric to Static Cyclomatic Complexity,” Proc. 2nd
Int'l. Conf. Softw. Qual. Manag., pp. 431–445,
1994.

51. S. A. Khan and R. A. Khan, “Object Oriented Design
Complexity Quantification Model,” Procedia
Technol., vol. 4, pp. 548–554, 2012.

52. M. Nazir, R. A. Khan, and K. Mustafa, “A Metrics
Based Model for Understandability Quantification,”
J. Comput., vol. 2, no. 4, pp. 90–94, 2010.

53. [53] J. Bach, “Test Plan Evaluation Model,” no. c,
pp. 1–5, 1999.

54. J. Bach, “Heuristics of Software Testability,” p. 2003,
2003.

55. T. Jeon, “Increasing the Testability of Object-
Oriented Frameworks with Built-in Tests,” Building,
pp. 169–182, 2002.

56. J. Vincent and G. King, “Principles of Built-In-Test
for Run-Time-Testability in Component-Based
Software Systems,” pp. 115–133, 2002.

57. T. L. Saaty, “Decision making with the analytic
hierarchy process,” Int. J. Serv. Sci., vol. 1, no. 1, p.
83, 2008.

Testability Assessment Model for Object Oriented Software based on Internal and External Quality
Factors

© 2015 Global Journals Inc. (US)1

16

G
lo
ba

l
Jo

ur
na

l
of
 C
 o

m
p u

te
r
S c

ie
nc

e
an

d
T
ec

hn
ol
og

y

V
ol
um

e
X
V
 I
ss
ue

 V
 V

er
sio

n
I

Ye
ar

 (

)
C

20
15

	Testability Assessment Model for Object Oriented Software basedon Internal and External Quality Factors
	Author
	Keywords
	I. Introduction
	II. Software Testability Related Work
	III. Testability Factors Identification
	IV. Quality Factors & ProposedTestability Assessment Model
	V. Conclusion & Future Scope

