
Testability Assessment Model for Object Oriented Software1

based on Internal and External Quality Factors2

Harsha Singhani1 and Dr. Pushpa R. Suri23

1 Kurukshetra University4

Received: 16 December 2014 Accepted: 5 January 2015 Published: 15 January 20155

6

Abstract7

Software testability is coming out to be most frequent talked about subject then the8

underrated and unpopular quality factor it used to be in past few years. The correct and9

timely assessment of testability can lead to improvisation of software testing process. Though10

many researchers and quality controllers have proved its importance, but still the research has11

not gained much momentum in emphasizing the need of making testability analysis necessary12

during all software development phases. In this paper we review and analyse the factors13

affecting testability estimation of object oriented software systems during design and analysis14

phase of development life cycle. These factors are then linked together in the form of new15

assessment model for object oriented software testability. The proposed model will be16

evaluated using analytical hierarchical process (AHP).17

18

Index terms— software testability, testability factors, object oriented software testability assessment model.19

1 Introduction20

estability is one of the qualitative factors of software engineering which has been accepted in ??cCall and Boehm21
software quality model, which build the foundation of ISO 9126 software quality model. Formally, Software22
testability has been defined and described in literature from different point of views IEEE [1] defines it as ”The23
degree to which a system or component facilitates the establishment of test criteria and performance of tests to24
determine whether those criteria have been met” and ISO [2] has defined software testability as functionality or25
”attributes of software that bear on the effort needed to validate the software product”.26

In this paper we have proposed a testability evaluation model for assessment during design and analysis phase27
based on external quality factors and their relation with internal object oriented programming features which28
affect testability as shown earlier in our work [7].This paper is organized as follows: Section2 gives brief overview29
of software testability related work. Section3 gives the details of internal object oriented features needed for30
testability assessment followed by section 4 which gives the details of external quality factors linked and affected31
due to these features. Section 5 describes the proposed assessment model. It is followed by conclusion and future32
scope in section 6.33

2 II. Software Testability Related Work34

Software Testability actually acts as a software support characteristic for making it easier to test. As stated by35
Binder [8] and Freedman [9] a Testable Software is one that can be tested easily, systematically and externally36
at the user interface level without any adhoc measure. Whereas Voas [10] describe it as complimentary support37
to software testing by easing down the method of finding faults within the system by focussing more on areas38
that most likely to deliver these faults. Hence, over the years Testability has been diagnosed as one of the core39
quality indicators, which leads to improvisation of test process. The insight provided by testability at designing,40
coding and testing phase is very useful as this additional information helps in product quality and reliability41
improvisation ??11][12]. All this has lead to a notion amongst practitioners that testability should be planned42

1

Global Journals LATEX JournalKaleidoscope™
Artificial Intelligence formulated this projection for compatibility purposes from the original article published at Global Journals.
However, this technology is currently in beta. Therefore, kindly ignore odd layouts, missed formulae, text, tables, or figures.

5 III. TESTABILITY FACTORS IDENTIFICATION

early in the design phase though not necessarily so. As seen by experts like Binder it involves factors like43
controllability and observability i.e. ability to control software input and state along with possibility to observe44
the output and state changes that occur in software. So, overall testable software has to be controllable and45
observable [8]. But Year 201546

3 ()47

4 C48

The testability research actually is done from the prospect of reducing testing effort and testing cost which is49
more than 40% of total development cost of any software [3]. Still, the research in the field of testability has50
not been done in much detail. It mainly affects the efficiency of overall software development team from project51
managers, software designers to software testers. As they all need testability assessment in decision making,52
software designing, coding and testing [4].So keeping that in mind, we will take this study further. As discussed53
in our previous work about testability and testability metrics [5], [6], it has been found that testability research54
has taken a speed up in past few years only and much of the work has been done using various object oriented55
software metrics. over the years more such quality factors like understandability, traceability, complexity and56
testsupport capability have contributed to testability of a system [4].57

Software testability measurement refers to the activities and methods that study, analyze, and measure software58
testability during a software product life cycle. Unlike software testing, the major objective of software testability59
measurement is to find out which software components are poor in quality, and where faults can hide from software60
testing. In the past, there were a number of research efforts addressing software testability measurement. Now61
these measurements can be applied at various phases during software development life cycle of a system. The62
studies mostly revolve around the measurement methods or factors affecting testability along with how to measure63
software testability at various phases like Design Phase [8], [12]- [18] and Coding Phase [19]- [22]. Lot of stress has64
been given upon usage of object oriented metrics for object oriented software testability evaluation during these65
researches. The metrics investigated related to object oriented software testability assessment mostly belong66
to static software metrics category. These metrics were mostly adapted from CK [23], MOOD [24], Brian [25],67
Henderson-Sellers [26] metric suite along with others [27]. Lot of empirical study has been done by researchers68
like Badri [28], Bruntink [29] and Singh [30] in showing the correlation of these metrics with unit testing effort.69
Few studies done by Baudry and Genero [31]- [34] have been focussed on UML diagram features from software70
testability improvisation prospect as found during review of these design diagrams. All this work has been71
explained in depth in our previous research work [4], [5].72

We would take this study further keeping focus mainly on object oriented system as object oriented technology73
has become most widely accepted concept by software industry nowadays. But testability still is a taboo concept74
not used much amongst industry mainly due to lack of standardization, which may not be imposed for mandatory75
usage but just been looked upon for test support [35]. We would actually like to propose a model for testability76
evaluation based on key programming features and quality factors which in turn make testing easier or difficult77
within this software. We have followed the steps as mentioned below to formalize the model:78

? Identification of internal design features for object oriented software testability assessment79
? Identification of static metrics out of many popular metrics for each of these.80
? Identification of external factors affecting software testability.81
? Establishing link between theses external quality factors and internal features which are evaluated through82

selected object oriented metrics. ? Establishing link between testability and these identified external factors83
which indirectly link it to identified internal features. ? The Model is followed with evaluation using AHP84
technique.85

5 III. Testability Factors Identification86

Before proposing the testability assessment model we have to first identify the key object oriented programming87
features which affect the testability at internal level. As already known the object oriented programming is based88
on three core concepts-Inheritance, Encapsulation and Polymorphism. Where, Inheritance is a mechanism for89
code reuse and to allow independent extensions of the original software via public classes and interfaces. Whereas,90
Polymorphism mainly provides the ability to have several forms, and Encapsulation an after effect of information91
hiding is actually play significant role in data abstraction by hiding all important internal specification of an92
object and showing only external interface. Now, a programming without these characteristics is distinctly not93
objectoriented that would merely be programming with some abstract data types and structured coding [36]. But94
these are not the only factors directing the course of testing in object oriented software, along with them three95
more identified features namely coupling, cohesion and size complexity. All these features and their influence on96
testability has already been highlighted in our previous work [4], [5]. Hence these six identified object oriented97
programming core features would be necessarily required to assess testability for object oriented software at design98
level. All these internal quality characteristics -Encapsulation, Inheritance, Coupling, Cohesion, Polymorphism99
and Size & Complexity are as defined below in Table 1along with details of their specific relation on testability.100
The relation between these features and testability has been build based on thorough study of many publications101
[2], [20], [35], [38], [39] Cohesion is one of the measures of goodness or good quality in the software as a cohesive102

2

module is more understandable and less complex. Low cohesion is associated with traits in programming such103
as difficult to maintain, test, reuse, and even understand.104

6 Size & Complexity105

It’s the measure of size of the system in terms attributes or methods included in the class and capture the106
complexity of the class.107

Size & Complexity has a significant impact on understandability, and thus testability or maintainability of the108
system.109

7 Polymorphism110

Polymorphism allows the implementation of a given operation to be dependent on the object that ”contains” the111
operation such that an operation can be implemented in different ways in different classes.112

Polymorphism reduces complexity and improves reusability. More use of polymorphism leads more test case113
generation [29]. Now all the above mentioned key features can be measured by many object oriented metrics114
options available as discussed earlier in our previous article [6]. Most of these metrics are accepted by practitioners115
on ’heavy usages and popularity’ and by academic experts on empirical (post development) validation. But to116
keep study simple from further evaluation perspective we have suggested the few basic but popular metrics117
amongst testability researchers. Out of all the popular metrics suites discussed in our previous work [41] few118
of these static metrics are as explained below in Table2 have been suggested for the evaluation of each of these119
feature and their effects on any object oriented software testability at design time.120

As described in Table2 below for Encapsulation evaluation number of methods metrics (NOM) is being121
suggested by many researchers for the effect of information hiding on testability [16], [42]. So we kept it for122
encapsulation evaluation for our model too. Inheritance is evaluated either using Number of Children metrics123
(NOC) or Depth of Inheritance Tree (DIT) two of the most popular and efficient inheritance metrics [22], [36], [41],124
[42]. For Coupling we suggested coupling between objects (CBO) and for cohesion Li & Henry Cohesion between125
Methods metrics version (LCOM). These two were the most sought after and unparalleled metrics available for126
assessing coupling and cohesion effect on testability as per literature study and popularity amongst industry127
practitioners [10], [20], [22], [24], [37], [43].Though Size & Complexity can be easily measured by many metrics128
in this category such as number of classes (NOC) ,number of attributes (NOA), weighted method complexity129
(WMC) metrics but due to its significant role, popularity and association in number of test case indication pointed130
WMC is most appropriate [8], [28], [44]. Polymorphism is one of the underlying factors affecting testability but as131
quite stressed by early researchers like Binder and others [8], [25] as it results in testability reduction ,we suggest132
chose polymorphism factor metrics (POF/PF) one of the quick and reliable polymorphism evaluation method for133
testability assessment. Our proposed testability model is based on Dromey’s software quality model [39] which134
has been a benchmark in use for various quality features as well as many testability models so far. So, as discussed135
above we have already highlighted all the internal design features from testability perspective as pointed by many136
researchers. These features directly or indirectly affect the quality factors which further make software may or137
may not more testable. The studies indicate encapsulation promotes efficiency and complexity. Inheritance138
has a significant influence on the efficiency, complexity, reusability and testability or maintainability. While139
low coupling is considered good for understandability, complexity, reusability and testability or maintainability,140
whereas higher measures of coupling are viewed to adversely influence these quality attributes. Cohesion is viewed141
to have a significant effect on a design’s understandability and reusability.142

8 Global Journal of C omp uter S cience and T echnology143

Size & Complexity has a significant impact on understandability, and testability or maintainability. Polymorphism144
reduces complexity and improves reusability. Out of six identified features four features have been proposed in145
MTMOOD testability model [16], which does not cover the polymorphism and size & complexity feature, which146
have also been found as essential internal features by many researchers in testability study [15], [22], [36], [37].147
These six object oriented features play a very significant role in testability improvisation directly or indirectly148
through other quality factors.149

All the above mentioned studies lead to mainly six identified external quality factors to assess testability150
for object oriented software. These factors are -Controllability, Observability, Complexity, Understandability,151
Traceability and Built-in-Test. Most of these factors were pointed in Binder’s [8] research work on testability.152
Many other researchers established these factors relation too with testability as mentioned below in table 3.We153
have identified these factors keeping in mind significant role in testability as found out in our previous research154
work and surveys e have identified These factors get directly or indirectly affected by all of the above mentioned155
internal features and further complicate or reduce the task of testing hence reducing or increasing overall156
testability of the software. Controllability is an important index of testability as it makes testing easier [9],157
[47]- [49].158

3

12 CONCLUSION & FUTURE SCOPE

9 Observability159

Software observability indicates how easy to observe a program in terms of its operational behaviours, input160
parameters, and outputs. In the process of testing, there is a need to observe the internal details of software161
execution, to ascertain correctness of Observable software makes it feasible for the tester to observe the internal162
behaviour of the software, to the required degree of details, Hence observability increases testability in the system163
[9], [47], [49].164

12 Global Journal of C omp uter S cience and T echnology Volume XV Issue V Version I Year ()C165
processing and to diagnose errors discovered during this process possibility to observe the output and state166

changes that occur in software.167

10 Complexity168

It is basically described as the difficulty to maintain, change, understand and test software.169
High Complexity of the system is actually an indicator of decreased system testability [43], [42], [50], [51].170

Understandability It is the degree to which the component under test is documented or self-explaining.171
An understandable system is easily testable and [14], [52]- [54]. Traceability It is the degree to which the172

component under test is traceable in other words the requirements and design of a given software component173
match.174

A non-traceable software system cannot be effectively tested, since relations between required, intended and175
current behaviours of the system cannot easily be identified [8], [44]. Built In Test(BIT)176

Built in testing involves adding extra functionality within system components that allow extra control or177
observation of the state of these components.178

BIT actually provides extra test capability within the code for separation of test and application functionality179
which makes software more testable by better controllability and improved observability [8], [19], [55], [56].180

Now after listing all the internal object oriented programming features which directly affect testability and all181
external quality factors which are also indicators of testable software, we have to identify the link between the182
two. As found on the basis of above literature survey the influence of all internal features over external quality183
features is briefly explained below in Table 4 below: â??” Low I -High U â??” Low Cp- High U ? High Ch- High184
U â??” Big size - Low U - Traceability (T) â??” High E - Low T - â??” High Cp- Less T - â??” Low Size - More185
T - Built In test (BIT) ? High E -More BIT - ? High Cp- More BIT â??” High Ch- Less BIT - -186

The table actually elaborates the contribution of each of these internal programming features towards the187
six major quality factors which are directly linked to testability. Hence we may say that Testability requires188
Low Coupling, Adequate Complexity, Good Understandability, High Traceability, Good observability, Adequate189
control and more Built in test. In spite of having lot of measurement techniques for testability evaluation using190
some or the factor or few of the above mentioned metrics, testability has not yet been found to be evaluated191
from these factor perspectives. The study still does not show an elaborative impact of all of them together for192
testability improvisation or test effort reduction which is what motivated us for proposing this new model.193

So, the proposed testability assessment model with respect to internal design features using static metrics is194
based on six above mentioned object oriented features from testability perspective as pointed in Binders research195
too [8]. The proposed model is as follows:196

11 Global197

12 Conclusion & Future Scope198

In this paper an evaluation model for testability assessment during design and analysis phase based on external199
factors and their relation with internal object oriented programming features has been proposed. These factors200
directly or indirectly affect testability and can be used for software testability measurement. On the basis of201
detailed study we may say that Testability requires Low Coupling, Adequate Complexity, Good Understandability,202
High Traceability, Good observability, Adequate control and more Built in test. 1 2203

1© 2015 Global Journals Inc. (US) 1
2© 2015 Global Journals Inc. (US)

4

1

Figure 1: CFigure 1 :

Figure 2:

5

12 CONCLUSION & FUTURE SCOPE

1

10

[Note: C]

Figure 3: Table 1 :

2

Year 2015
Volume XV Issue V Version I
()

[Note: C]

Figure 4: Table 2 :

3

External Factors Definition Significant
Testa-
bility
Relation
in

Affecting Testability Literature
Controllability It is the ability to control software input and

state. During software testing, some conditions
like disk full, network link failure etc. are difficult
to test. Controllable software makes it possible
to initialize the software to desired states, prior
to the execution of various tests.

Figure 5: Table 3 :

6

4

Affecting Testability
EncapsulationInheritance Coupling Cohesion Size

(S)
Polymorphism

(E) (I) (Cp) (Ch) (P)
Controllability
(Ct)

â??” â??” ? â??”

High
E-Low Ct

- High Cp - High Ch- - High P-Low
Ct

Low Ct High Ct
Observability
(O)

â??” ? â??”

High E -
Low O

High I -High
O

- - - High P-Low O

Complexity
(Cx)

â??” ? â??” High? â??”

- Low I -High High Cp- Ch - Big
S-

High P -

Cx More Cx Reduce Cx More
Cx

Reduce Cx

Understandability
(U) -

Figure 6: Table 4 :

7

12 CONCLUSION & FUTURE SCOPE

8

[Radatz et al. ()] , J Radatz , A Geraci , F Katki . IEEE Standard Glossary of Software Engineering Terminology204
1990. 610 p. . (IEEE Std)205

[Softw and Eng ()] , Softw , Eng . 1994. 20 p. .206

[Henderson and Sellers ()] , B Henderson , Sellers . 1996. New Jersey: Prentice Hall. (Object-Oriented Metric)207

[Booch et al. ()] , G Booch , R A Maksimchuk , M W Engle , B J Young , J Conallen , K A Houston . Object-208
Oriented Analysis and Design with Applications 2007. Addison Wesley. 1 (11) .209

[Int and Conf ()] , Int , Conf . Comput. Appl. Syst. Model. Proc 2010. 15. (Iccasm)210

[Mouchawrab et al. (2005)] ‘A measurement framework for object-oriented software testability’. S Mouchawrab211
, L C Briand , Y Labiche . Inf. Softw. Technol April. 2005. 47 p. .212

[Nazir et al. ()] ‘A Metrics Based Model for Understandability Quantification’. M Nazir , R A Khan , K Mustafa213
. J. Comput 2010. 2 (4) p. .214

[Chidamber and Kemerer] ‘A Metrics Suite for Object Oriented Design’. S R Chidamber , C F Kemerer . IEEE215
Trans216

[Dromey ()] ‘A Model for Software Product Quality’. R G Dromey . IEEE Transactions on Software Engineering217
1995. 21 p. .218

[Genero et al. ()] ‘A survey of metrics for UML class diagrams’. M Genero , M Piattini , C Calero . J. Object219
Technol 2005. 4 (9) p. .220

[Badri et al. ()] ‘An empirical analysis of a testability model for object-oriented programs’. M Badri , A Kout ,221
F Toure . ACM SIGSOFT Softw. Eng. Notes 2011. 36 (4) p. 1.222

[Badri et al. ()] ‘An empirical analysis of lack of cohesion metrics for predicting testability of classes’. L Badri ,223
M Badri , F Toure . Int. J. Softw. Eng. its Appl 2011. 5 (2) p. .224

[Voas et al. ()] ‘An Empirical Comparison of a Dynamic Software Testability Metric to Static Cyclomatic225
Complexity’. J M Voas , J M Voas , K W Miller , K W Miller , J E Payne , J E Payne . Proc. 2nd226
Int'l. Conf. Softw. Qual. Manag, (2nd Int'l. Conf. Softw. Qual. Manag) 1994. p. .227

[Bruntink and Vandeursen ()] ‘An empirical study into class testability’. M Bruntink , A Vandeursen . J. Syst.228
Softw 2006. 79 p. .229

[Genero et al.] An Empirical Study to Validate Metrics for Class Diagrams, M Genero , M Piattini , C Calero .230

[Nazir and Mustafa ()] ‘An Empirical Validation of Testability Estimation Model’. M Nazir , K Mustafa . Int. J.231
Adv. Res. Comput. Sci. Softw. Eng 2013. 3 (9) p. .232

[Khalid et al. ()] ‘Analysis of object oriented complexity and testability using object oriented design metrics’. S233
Khalid , S Zehra , F Arif . Proceedings of the 2010 National Software Engineering Conference on -NSEC ’10,234
(the 2010 National Software Engineering Conference on -NSEC ’10) 2010. p. .235

[Goel et al. ()] ‘COTT -A Testability Framework for Object-Oriented Software Testing’. A Goel , S C Gupta , S236
K Wasan . Int. Jounal Comput. Sci 2008. 3 (1) p. .237

[Patidar et al. ()] ‘Coupling and Cohesion Measures in Object Oriented Programming’. M Patidar , R Gupta ,238
G Chandel . Int. J. Adv. Res. Comput. Sci. Softw. Eng 2013. 3 (3) p. .239

[Saaty ()] ‘Decision making with the analytic hierarchy process’. T L Saaty . Int. J. Serv. Sci 2008. 1 (1) p. 83.240

[Mulo ()] Design for testability in software systems, E Mulo . 2007.241

[Binder ()] ‘Design For Testabity in Object-Oriented Systems’. R Binder . Commun. ACM 1994. 37 p. .242

[Fernando ()] ‘Design Metrics for OO software system’. A Fernando . ECOOP’95, Quant. Methods Work, 1995.243

[Esposito ()] Design Your Classes For Testbility, D Esposito . 2008.244

[Badri (2012)] ‘Empirical Analysis of Object-Oriented Design Metrics for Predicting Unit Testing Effort of245
Classes’. M Badri . J. Softw. Eng. Appl July. 2012. 05 p. .246

[Sheppard and Kaufman ()] ‘Formal specification of testability metrics in IEEE P1522’. J W Sheppard , M247
Kaufman . IEEE Autotestcon Proceedings. IEEE Syst. Readiness Technol. Conf. (Cat. No.01CH37237), 2001.248
2001. p. .249

[Bach ()] Heuristics of Software Testability, J Bach . 2003. p. 2003.250

[Voas and Miller ()] ‘Improving the software development process using testability research’. J M Voas , K W251
Miller . Softw. Reliab. Eng 1992. ?, 1992.252

[Baudry et al. ()] ‘Improving the testability of UML class diagrams’. B Baudry , Y Le Traon , G Sunye . First253
Int. Work. onTestability Assessment 2004. IWoTA 2004. 2004. (Proceedings.)254

[Kansomkeat et al. ()] ‘INCREASING CLASS-COMPONENT TESTABILITY’. S Kansomkeat , J Offutt , W255
Rivepiboon . Proceedings of 23rd IASTED International Multi-Conference, (23rd IASTED International256
Multi-Conference) 2005. p. .257

9

12 CONCLUSION & FUTURE SCOPE

[Jeon ()] Increasing the Testability of Object-Oriented Frameworks with Built-in Tests, T Jeon . 2002. p. .258
(Building)259

[Briand et al. ()] ‘Investigating quality factors in objectoriented designs: an industrial case study’. L C Briand ,260
J Wust , S V Ikonomovski , H Lounis . Proc. 1999 Int. Conf. Softw. Eng. (IEEE Cat. No.99CB37002), (1999261
Int. Conf. Softw. Eng. (IEEE Cat. No.99CB37002)) 1999.262

[ISO/IEC 9126: Software Engineering Product Quality ()] ISO/IEC 9126: Software Engineering Product Qual-263
ity, 2002.264

[Mathur ()] A P Mathur . Foundations of Software Testing, Second. Pearson, 2013.265

[Baudry and Le Traon ()] ‘Measuring design testability of a UML class diagram’. B Baudry , Y Le Traon . Inf.266
Softw. Technol 2005. 47 (13) p. .267

[Mayer and Hall ()] ‘Measuring OO systems: a critical analysis of the MOOD metrics’. T Mayer , T Hall . Proc.268
Technol. Object-Oriented Lang. Syst. TOOLS 1999. 29.269

[Khan and Mustafa ()] ‘Metric based testability model for object oriented design (MTMOOD)’. R A Khan , K270
Mustafa . ACM SIGSOFT Softw. Eng. Notes 2009. 34 (2) p. 1.271

[Nguyen et al. ()] T B Nguyen , M Delaunay , C Robach . Testability Analysis of Data-Flow Software, 2005. 116272
p. .273

[Khan and Khan ()] ‘Object Oriented Design Complexity Quantification Model’. S A Khan , R A Khan . Procedia274
Technol 2012. 4 p. .275

[Suri and Singhani ()] ‘Object Oriented Software Testability (OOSTe) Metrics Analysis’. P R Suri , H Singhani276
. Int. J. Comput. Appl. Technol. Res 2015. 4 (5) p. .277

[Suri and Singhani ()] ‘Object Oriented Software Testability Survey at Designing and Implementation Phase’. P278
R Suri , H Singhani . Int. J. Sci. Res 2015. 4 (4) p. .279

[Singhani and Suri ()] ‘Object Oriented SoftwareTestability (OOSTe) Metrics Assessment Framework’. H Sing-280
hani , P R Suri . Int. J. Adv. Res. Comput. Sci. Softw. Eng 2015. 5 (4) p. .281

[Wang et al. ()] ‘On testable object-oriented programming’. Y Wang , G King , I Court , M Ross , G Staples .282
ACM SIGSOFT Softw. Eng. Notes 1997. 22 (4) p. .283

[Singh and Saha ()] ‘Predicting Testability of Eclipse: Case Study’. Y Singh , A Saha . J. Softw. Eng 2010. 4 (2)284
p. .285

[Fu et al.] Present and future of software testability analysis, J Fu , B Liu , M Lu . ICCASM 2010 -2010.286

[Vincent and King ()] Principles of Built-In-Test for Run-Time-Testability in Component-Based Software Sys-287
tems, J Vincent , G King . 2002. p. .288

[Nazir and Khan ()] ‘Software Design Testability Factors: A New Perspective’. M Nazir , R A Khan . Proceddings289
of Naional Third Conference INDIACOM, (eddings of Naional Third Conference INDIACOM) 2009. 2009. p.290
.291

[Rosenberg and Hyatt ()] Software quality metrics for object-oriented environments, L Rosenberg , L Hyatt .292
1997.293

[Voas and Miller ()] ‘Software Testability : The New Verification’. J M Voas , K W Miller . IEEE Softw 1995.294
12 (3) p. .295

[Bach ()] Test Plan Evaluation Model, J Bach . 1999. p. .296

[Baudry et al. ()] ‘Testability analysis of a UML class diagram’. B Baudry , Y Le Traon , G Sunye . Proc. Eighth297
IEEE Symp. Softw. Metrics, (Eighth IEEE Symp. Softw. Metrics) 2002.298

[Jungmayr and Pettichord ()] Testability during Design, S Jungmayr , ; B Pettichord . 2002. 2002. p. . (Design299
for Testability. Pettichord.com)300

[Nazir et al. ()] ‘Testability Estimation Framework’. M Nazir , R A Khan , K Mustafa . Int. J. Comput. Appl301
2010. 2 (5) p. .302

[Bruntink ()] Testability of Object-Oriented Systems : a Metrics-based Approach, M Bruntink . 2003. Universiy303
Van Amsterdam304

[Freedman ()] ‘Testability of software components -Rewritten’. R S Freedman . IEEE Trans. Softw. Eng 1991.305
17 (6) p. .306

[Harman et al. ()] ‘Testability Transformation: Program Transformation to Improve Testability’. M Harman , A307
Baresel , D Binkley , R Hierons . Formal Method and Testing, 2011. p. .308

[Payne et al. ()] The above proposed model requires to be evaluated using some technique which helps in validating309
these criteria’s, sub-criteria’s and their significant quantifiable role in testability assessment. We may use one310
of the formal Multi criteria decision making (MCDM) technique proposed by Satty, J E Payne , R T Alexander311
, C D Hutchinson . 1997. 7 p. . (Design-for-Testability for Object-Oriented Software. 57] known as Analytic312
Hierarchy Process (AHP)313

[Baudry et al. ()] ‘Towards a ’ Safe ’ Use of Design Patterns to Improve OO Software Testability’. B Baudry , Y314
Le Traon , G Sunye , JM . ISSRE 2001. Proceedings. 12th Int. Symp, 2001. 2001. p. .315

10

	1 Introduction
	2 II. Software Testability Related Work
	3 ()
	4 C
	5 III. Testability Factors Identification
	6 Size & Complexity
	7 Polymorphism
	8 Global Journal of C omp uter S cience and T echnology
	9 Observability
	10 Complexity
	11 Global
	12 Conclusion & Future Scope

