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6

Abstract7

In order to apply any machine learning algorithm or classifier, it is fundamentally important8

to first and foremost collect relevant features. This is most important in the field of dynamic9

analysis approach to anomaly malware detection systems. In this approach, the behaviour10

patterns of applications while in execution are analysed. The behaviour features that Android11

as a system allows access permissions to depend on the type of device; either rooted or not.12

Android is based on the Linux kernel at the bottom layer, all layers on top of the kernel run13

without privileged mode. Thus, if a behaviour feature vector is created from features of14

Android (Application Programming Interface) API in unrooted mode, then only system15

information made available by Android can be used. In this paper, a Device Monitoring16

system for an unrooted device is developed and used to collect Android application data. The17

application data is used to build feature vectors that describes the Android application18

behaviour for Anomaly malware detection. This application is able to collect essential19

information from Android application such as installed applications and services running20

within the device before or after the Monitoring application was started, the date/time stamp,21

calls initiated from the device, calls received by the device, sent short message services22

(SMSs), SMSs received, and the status of the device as at when the event took place. This23

information is loggedin a comma separated value (.csv) file format and stored on the SDcard24

of the device. The .csv file is converted toattribute relation file format (.arff); the format25

acceptable by WEKA machine learning tool. This.arff file of feature vectors is then used as26

input to the Classifier in the Android malware detection system.27

28

Index terms— android, anomaly detection, application behaviours, feature vectors, malware detection,29
mobile device, rooted, unrooted.30

1 Introduction31

ndroid is one of the most used Smartphone’s operating System in the World (Srikanth, 2012). Android is open32
source with huge user community and documentations as a result of these, it allows any programmer to develop33
and publish Applications to both the Official or Unofficial market. There are over seven hundred thousand34
Applications published via the Official Android market, the Google Play Store (Zack, 2012). Malware attack is a35
challenging issue among the Android user community. This is due to its open source and a very huge adoption and36
market penetration, making it a target for most malware developers. Android is predicted to be the most used37
mobile Smartphone platform by 2014 (You, Daeyeol, Hyung-Woo, Jae &Jeong,2014) which has become a reality.38
This ubiquitous gains of Android brings along with it security risks in terms of malware attacks targeted at this39
platform. It therefore becomes necessary to make the platform safe for users by providing defence mechanism40
especially against malware.41
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3 RELATED WORKS

There are basically three approaches according to ??Burquera, Zurutuza&Nadjm-Tehrani,2011);(Aswathy,42
2013); (Lovi&Divya, 2014) to mobile malware detection approaches; static, dynamic and manifest file analyses.43
While Static analysis focused on the use of patterns of strings called signatures to detect malware presence,44
dynamic analysis approach to malware detection uses the behaviour pattern of Applications while in execution.45
The third approach involves the analysis of Android Manifest file. This paper presents a model for mining46
Applications behaviours for detecting malware on the Android platform using dynamic analysis.47

The malware detector attempts to help protect the system by detecting malicious behaviour (Aswathy, 2013).48
The malware detector performs its protection through the manifested malware detection Approaches.Detection49
methods for attacks on mobile devices (Burquera, Zurutuza&Nadjm-Tehrani2011);(Wei, Mao, Jeng, Lee, Wang&50
Wu, 2012); (Wu, Mao, Wei, Lee & Wu, 2012);(Ham, Choi, Lee, Lim & Kim, 2012) have been proposed to reduce51
the damage from the distribution of malicious applications. However, a mechanism that provides more accurate52
ways of determining normal applications and malicious applications on Android mobile devices must be developed53
and a procedure for obtaining the features well defined. This paper developed a model for extracting Android54
application behaviours through events of normal applications and malicious applications, using a customized55
approach.56

The research employs Anomaly-based detection in a host-based manner to monitor activity that occurs on the57
target host system. This system is capable of monitoring features of the Android system such as calls received,58
calls initiated, system calls invoked by running applications, Short Messaging classifier, it is fundamentally59
important to first and foremost collect relevant features. This is most important in the field of dynamic analysis60
approach to anomaly malware detection systems.61

In this approach, the behaviour patterns of applications while in execution are analysed. The behaviour features62
that Android as a system allows access permissions to depend on the type of device; either rooted or not. Android63
is based on the Linux kernel at the bottom layer, all layers on top of the kernel run without privileged mode.64
Thus, if a behaviour feature vector is created from features of Android (Application Programming Interface)65
API in unrooted mode, then only system information made available by Android can be used. In this paper, a66
Device Monitoring system for an unrooted device is developed and used to collect Android application data. The67
application data is used to build feature vectors that describes the Android application behaviour for Anomaly68
malware detection. This application is able to collect essential information from Android application such as69
installed applications and services running within the device before or after the Monitoring application was70
started, the date/time stamp, calls initiated from the device, calls received by the device, sent short message71
services (SMSs), SMSs received, and the status of the device as at when the event took place. This information72
is logged in a comma separated value (.csv) file format and stored on the SDcard of the device. The .csv file is73
converted to attribute relation file format (.arff); the format acceptable by WEKA machine learning tool. This.74
arff file of feature vectors is then used as input to the Classifier in the Android malware detection system. Services75
(SMSs) received, SMSs sent and screen status of the target device. Anomaly-based detection systems use a prior76
training phase to establish a normality model for the system activity. In this method of detection, the detection77
system is first trained on the normal behaviour of the application or target system to be monitored. Using78
this normality model of behaviour, it becomes possible to detect anomalous activities by looking for abnormal79
behaviour or activities that deviate from the defined normal behaviour occurring in the system. Though this80
technique look more complex, it has the advantage of being able to detect new and unknown malware attacks.81
Anomaly-based detection requires the use of feature vectors to train the classifier before subsequent classification82
can be carried out. These feature vectors are obtained from features or data collected from the system.83

The objective of this work is to extract Android applications data from an unrooted android device and84
using them to effectively describe the system behaviour. The structure of this paper is given as follows: section85
one provides a brief introduction; section two gives related literatures; section three discuss the Experimental86
procedures and setup; section four provides the discussion of result; section five provide the hardware and software87
used for the experimentation and finally, section six gives the summary and conclusion of the work.88

2 II.89

3 Related Works90

Android malware detection systems available currently employs static approach to malware detection by scanning91
files for byte sequences of known malware Applications. Anomaly-based detection is still in a developmental92
stage and researches are ongoing. As a result, the current approaches are not able to detect unknown attacks.93
Unknown malware attacks also referred to as ’zero day attacks’ are attacks carried out by unknown malware94
whose signatures have not been analysed and obtained. Several approaches with different metrics for defining95
Android application behaviours have been developed and are discussed.96

You Jounget al. (2014);You Joung&Hyung-Woo, (2014)presented an approach for determining malicious97
attack on Android using System Call Event Pattern Analysis. In their work, system calls invoked by executing98
Applications of different categories and their frequency of occurrences is used as the metrics for defining99
Applications behaviour. Their analysis was carried out on Linux system rather than on mobile device.100

Abelaet al.( ??013) developed AMDA an automated malware detection system for the Android platform.101
The core modules of the system included the Feature Extraction Module and the Behaviour Analysis Module.102
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The Feature Extraction Module generates activity log from running applications retrieved from the application103
repository of the system. The activity log contains the system calls from application activity which are the104
features that the module retrieves.105

Mohammed et al. (2014) in the Automatic Feature Extraction part of their work proposed and implemented106
an approach to detect malicious applications statically through a set of well-defined APIs. Similarly, Tchakounté,107
&Dayang (2013) used a static approach to analyse System calls of malware on the Android platform. Lin et108
al, (2013)proposed SCSdroid, which uses the thread-grained system calls sequences, because these sequences can109
be regarded as the actual behaviour of the application. Their approach is a step further from just system calls110
of Applications to carter for malware repackaged applications. Luoxu & Qinghua, (2013) presented a static111
approach to their Runtime-based Behaviour Dynamic Analysis System for Android Malware Detection. They112
used Loadable Kernel Module hooking to hook the Android system and then collect data. The collected data113
consist of IMSI, SIM, IMEI, TEL, call log, SMS, MAIL and so on. The technology of analysis is semantic analysis114
and regular expression.115

Yousra, Wenliang&Heng,(2013) used APIs as the feature for describing Android behaviours used for detecting116
malware. To select the best features that distinguish between malware from benign applications, API level117
information within the bytecode were used since it conveys substantial semantics about the apps behaviour. More118
specifically, they focused on critical API calls, their package level information, as well as their parameters. Dini,119
Martinelli, Saracino&Sgandurra, (2012)employed two-layer applications behaviour features in order to properly120
described Android malware behaviours. These include System calls from the kernel layer and other features from121
the Applications layer. This approach tend to provide a better description of the system than a monolithic view122
of just a single layer as it considered both the Operating System layer behaviours and the Applications layer123
behaviours.124

It is observed from all the reviewed literatures that System calls pattern analysis played a critical role in125
providing Android Applications behaviour pattern. It is therefore clear that System calls as features could best126
be used either singly or in addition to other features to describe Application behaviours not just in Android but127
any mobile platform. In this section, the various activities carried out and the different modules implemented128
to ensure application feature behaviours are intercepted for use in malware detection process are discussed. But129
before then we show the big picture of the entire malware detection system in a schematic form as in Figure 1.0.130
Each of these Applications is executed in an instrumented Android emulator via Android Virtual Device (AVD).131
An Android 2.3.3 software development kit (SDK) emulator is used to run the Android applications because this132
is the only medium to automate the generation of application system activity logs without using an actual mobile133
device. There is no much actual difference to using human input to be able to activate the behavioural activity134
of an application.135

4 III.136

5 Experimental Procedures and Setup137

However, the log data contains activities which are irrelevant for detection of malicious activity. With this138
problem of noise in the log data, the system utilizes a self-developed parser which is customized as to which139
features are to be collected.140

6 b) The Data Collection Processes141

In order to collect the Android Applications data, the various monitors described are implemented as Android142
java programs in the Device Monitoring Application. This application is actually just a module in the complete143
detection system called HOSBAD. The application will serve as the feature mining model which will run on144
the Android device to collect the features while the user interacts with Applications on the device. The feature145
mining model will monitor Android application activities implemented using a broadcast receiver and record on146
going activity taking place on the device. In order to apply any machine learning algorithm or classifier, it is147
fundamentally important to first and foremost collect relevant features. The features that Android as a system148
allows access permissions to depend on the type of device. The type of device here implies whether the device149
has been rooted or not. Android is based on the Linux kernel at the bottom layer, all layers on top of the kernel150
layer run without privileged mode. That is, all applications and system libraries are inside a virtual application151
sandbox. As a result of this architecture, applications are prohibited from accessing other application data152
(unless explicitly granted permission by other applications called the rooting applications). Thus, if a feature153
vector is created from features of Android API in unrooted mode, then only system information made available154
by Android can be used. On the other hand, having a rooted device allows one to install system tools that could155
gather features from underlying host and network behaviour but doing this subject the device to serious security156
vulnerabilities as the entire device file system will be opened up to attacks.157

In this Work, an unrooted device is used in order to collect Android application data. To be able to do this, a158
feature mining model which is a selfdeveloped application module that will be part of the detection system is used.159
This application is able to collect essential information from Android application such as installed applications160
and services running within the device before or after the Monitoring application was started, the date/time161
stamp, calls initiated from the device (outCalls), calls received by the device (InCalls), sent SMSs (OutSMS),162
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10 DISCUSSION OF RESULT

SMSs received (InSMS), and the status of the device (Screen) as at when the event took place. This information163
is written into a log file and stored on the SDcard of the device. This log file is a comma separated value in164
.csv format. Parsing these data with another self-developed code module will produce the feature vectors which165
is in .arff file format; the format acceptable by WEKA. This selfdeveloped code module that serves as a feature166
mining model for application enable us to create a folder were all monitored/recorded application logs in csv file167
format will be stored. This csv file will be parsed by another parserto make feature vector file in arff. This arff168
file of feature vectors will be used as input to the Classifier in the Android malware detection system.169

7 Figure 1. 3 : Features Extraction Processes170

The data extraction application performs the following major task as it runs either in foreground or background.171
This is represented in Figure 1 Secondly, the log stream is input to the parser in the Device Monitoring application172
and is parsed by filtering and formatting the log data to a readable form in a comma separated value (csv) format.173

iii.174
Finally, the csv file will then be parsed by another parser to generate a .arff file that will be used by the175

classifier.176

8 i. Implementation Details177

Although the code for the Device Monitoring application which is the data extraction model cannot be given here,178
the skeletal description of the different modules representing the respective monitors is presented. The broadcast179
receiver class for the calls and receiving incoming SMS record the calls and SMS events into app preferences,180
there is no proper receiver for the outgoing SMS so special observer class is used in the service class. When this181
receiver is started in service, it doesn’t work on real device, so it is registered182

The collector module in conjunction with the monitors will help to collect as much information as possible from183
the Android Applications installed on the device. This information include the Date/Time stamp, the application184
and services running on the device, outgoing calls, incoming calls, out-going SMS, incoming SMS, and Device185
screen status. This information is collectively referred to as feature of application or behaviours . For each .apk186
file, the device user interaction is created or the emulator simulates user interaction by randomly interacting187
with the application interface. It should be note that due to the numerous Android Applications available in188
the Android market, it is not possible for one to monitor and record all Applications for the numerous available189
Android Applications, doing this will require the researcher to spend many years collecting all of the information190
about Applications available in the Android market. For this reason, few of the Applications were selected.191

in the manifest and the preferences is used. The structure of the public class; ReceiverCallSms that implements192
the calls and the SMS is given as; Within this class, the methods for the calls (outgoing and in-coming calls) and193
the in-coming SMS are implemented in a single method with a nextedif ..else statement.194

The Inner broadcast receiver for monitoring the screen condition is implemented with the class ScreenReceiver195
which implements the onReceive method using special observer ”intent”.196

The service monitoring is implemented by a class Service Monitoring with a method that records the services197
running on the device and the features to be extracted. The Binder function initiates the monitoring process198
when the start button is clicked and to stop the monitoring when the stop button is clicked. All monitored events199
and activities are written to a file in a comma separated value format. The method checks for the presence of200
an SD card and create a folder there where the file will be stored or setup a Gmail account where the file will201
be sent to without user interference. The file is named using the device date/time stamp.csv. The settings menu202
provides the avenue for creating folder where reports will be stored on the SD card and to also specify a Gmail203
account and mail subject if the report is to be sent to a remote recipient or possibly server for analysis.204

9 d) Feature Vectors205

Analysing activities of the system will give an accurate representation of the behaviour of the applications. The206
aim of intercepting these activities is to create an output file containing the events generated by the Android207
applications. This file provides useful information such as opened and accessed applications, running applications,208
running services, timestamps, received SMSs, sent SMSs, calls received, calls initiated and device status as at209
the time of occurrence of the activity. This information generated by the Device Monitoring application is used210
to represent the behaviour of applications.211

IV.212

10 Discussion of Result213

A sample report obtained from a single run of the feature extraction model implemented as a Device Moni-214
toring application is given and discussed here. Time,AppName,OutCall,InCall,OutSMS,InSMS,Screen,Class be-215
fore,YouTube,0,0,0,0,1,? before,Launcher,0,0,0,0,1,? before,Torch,0,0,0,0,1,? before,Opera Mini beta,0,0,0,0,1,?216
before,Contacts,0,0,0,0,1,? before,Phone,0,0,0,0,1,? 07.10.2015 21:17:00,Monitoring Stopped Tally:„out calls:217
1,in calls: 1,out sms: 0,in sms: 1 The report shows the date and time the Monitoring Device application was218
started. Immediately after that line is the field or attributes of the collected information in a CSV manner. After219
the attributes are the attribute values entered in the order of the specified attributes. The first attribute is the220
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Date/Time, followed by AppName, OutCall, InCall, OutSMS, InSMS, Screen, and finally the Class in that order.221
For applications and services running before the Monitoring Device application was started, the Date/Time222
stamp is indicated as ”before” while the applications and services started after the Monitoring Device application223
was started, the date/time stamp is indicated.224

It is indeed very difficult to know which application performs a given activity since certain tasks are deprecated225
at application layer. Therefore, any activity that occurred without knowing which application perform the activity226
is given ’?’ as the value for the AppName attribute at that point. For the OutCall, InCall, OutSMS, InSMS227
and Screen attribute, the attributes have Boolean values; the value 0 is entered to represent the absence of the228
attribute and 1 is entered to represent the presence of that attribute. For the Screen attribute that represents229
the device status which is either idle or active, the value 1 means that the screen is in ’ON’ or active state while230
0 imply ’OFF’ or idle state. Finally, the last attribute Class is not actually extracted from the applications or231
services by the Device Monitoring application but appended to the log file to indicate the class after classification232
is done using the classifier. Since the classification has not yet beencarried out on the data, the classes of the233
instances are undetermined and so they all have the value of ’?’ that means unknown class (normal or malicious).234

When the Device Monitoring application is stopped, the event together with the Date/Time stamp of the235
event is registered and finally the report gives a summary of all the events in the form of count or tally.236

V.237

11 Hardware and Software238

The experiments were run on a laptop machine with the Intel Core-i3 -370M Processor, 3GBof available memory239
and 500GB Hard Disk Drive (HDD). This machine runs Windows 7 Operating System while Android Studio240
1.2.2 Integrated Development Environment (IDE) was used as the Software Development Kit (SDK).241

12 VI.242

13 Summary and Conclusion243

In this paper, we describe the development of a feature extraction model that is used to extract Android244
application behaviour for anomaly malware detection. The type of information that can be extracted depends245
on whether the device has been rooted or not. Our focus is on unrooted Android devices and the information246
that were extracted and used to describe Android application behaviours include date/time stamp of the running247
application and services given as Time, Application and service name (AppName), Outbound call (OutCall),248
Inbound call (InCall), Outbound SMS (OutSMS), Inbound SMS (InSMS) and the device status (Screen). The249
device status indicates whether there is an active interaction with the device by the user or not. When the screen250
is active (value of 1), it means there is active interaction with the device by the user and when the screen is251
idle or hibernated, it implies no active user interaction. Activities like sending SMS and initiating calls requires252
active user interaction. If these attributes have values of 1 when the screen state is idle (value of 0) implies a253
suspicious or malicious behaviour is taking place on the device by an application.254

Although other features could be added, these were used as a test base to realise the concept of anomaly255
detection system. As earlier stated, the type of information that can be intercepted depends on whether the256
device is rooted or not. Rooting a device is a bridge of security and therefore opens up the device to attacks.257
Since the aim is to improve security of mobile devices and applications with Android platform, an unrooted device258
is used. To be able to access more information that could be used to describe application behaviour for anomaly259
detection purposes, it is recommended that access to certain information like system calls, network traffic etc.260
which are presently deprecated in unrooted Android systems should be allowed access by Google in some ways.261

1262
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