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The Security of Elliptic Curve Cryptosystems - A 
Survey 

Koffka Khan

Abstract-  Elliptic curve cryptography or ECC is a public-key 
cryptosystem. This paper introduces ECC and describes its 
present applications. A mathematical background is given 
initially. Then its’ major cryptographic uses are given. These 
include its’ use in encryption, key sharing and digital 
signatures. The security of these ECC-based cryptosystems 
are discussed. It was found that ECC was well suited for low-
power and resource constrained devices because of its’ small 
key size.   
Index Terms: elliptic curve cryptography; public-key; 
cryptosystem; security; rsa; el gamal; curve; key size. 

I. INTRODUCTION 

ver the years, with the increase in processing 
power of computers, there has been a reduction 
in the work factor required to solve Integer 

Factorization (IFP) [17], [21], [3] and Discrete Logarithm 
(DLP) problems [6], [9], [18]. As a result, key sizes grew 
to more than 1000-bits so as to attain a reasonable level 
of security. However, in constrained environments 
carrying out thousand-bit operations is impractical. 
Therefore, a matter of growing importance in 
cryptography is the need for algorithms with low 
resource requirements [24], [14] that can be deployed 
on resource-constrained ubiquitous devices. This 
explains why other public-key methods would be 
welcomed, Elliptic Curve Cryptosystem (ECC) [12] 
being a probable candidate.  

Elliptic curves are the basis for a relatively new 
class of public-key schemes. It is predicted that Elliptic 
Curve Cryptosystems (ECC) Elliptic curves were 
proposed for use as the basis for discrete logarithm-
based cryptosystems in 1985, independently by Victor 
Miller and Neal Koblitz. Elliptic curve are not ellipse, but 
cubic curves. Properties of ECC made it stronger 
against various attacks in wireless sensor networks [7], 
RFID [8], smart card [20] and many others. It will 
replace many existing schemes in the near future. 
However, the complicated mathematical background of 
ECC results in more sophisticated algorithms. 
Mathematical basis for security of elliptic curve 
cryptography is computational intractability of elliptic 
curve discrete logarithm problem (ECDLP) [11].   

Elliptic Curve Cryptography (ECC) can be 
applied 

  
to 

  
data 

  
encryption 

  
and 

  
decryption,  digital
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signatures, and key exchange procedures. Every user 
has a public and private key. The public key is used for 
encryption or signature verification, while the private key 
is used for decryption or signature generation. ECC is 
used as an extension to current cryptosystems, for 
example, ECC Diffie-Hellman Key Exchange (EC-DH) 
[16], ECC Digital Signature Algorithm (ECDSA) [10] 
Elliptic Curve Integrated Encryption Scheme (ECIES) 
[23].  

A motivation is given in Section II. In Section III a 
mathematical background is given. The major uses of 
ECC in present day cryptosystems are presented in 
Section III. The underlying theory of elliptic curve 
cryptosystems is discussed in section IV. Three ECC 
cryptosystems are given in section V. These are EC-DH, 
ECDSA and ECIES. The security of these cryptosystems 
are outlined in Section V with the advantages of using 
ECC. Finally the conclusion is given in section 

II. Motivation 

In order to understand the principle of 
asymmetric cryptography, the basic symmetric 
encryption scheme has to be recalled. 
 
 
 
 
 

Figure 1 : Symmetric key encryption 

Two properties are essential for symmetric key 
cryptosystems:

 

i.

 
The same secret key is used for encryption and 
decryption.

 

ii.

 
The encryption and decryption function are very 
similar

 

(in the case of DES [5]

 

they are 
essentially identical).

 

There is a simple real-world analogy for 
symmetric cryptography. Assume there is a safe with a 
strong lock. Only Alice and Bob have a copy of the key 
for the lock. The action of encrypting of a message can 
be viewed as Alice putting the message in the safe. In 
order to read, i.e., decrypt, the message, Bob uses his 
key and opens the safe.

 

However, there are several shortcomings 
associated with symmetric-key crypto-schemes. 

 
 

O 
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established between Alice and Bob using a secure 
channel. The communication link for the message 
is not secure, so sending the key over the channel 
directly can’t be done.

 

•
 

Number of Keys Even. Each user has to potentially 
deal with a very large number of keys. If each pair of 
users’ needs a separate pair of keys in a network 
with n users, there are (n· (n−1)) /

 
2 key pairs. Thus, 

each user has to store n − 1 keys securely. The 
number of keys that must be generated and 
transported via secure channels will become 
exorbitant.

 

•
 

No Protection against cheating by Alice or Bob.  
Alice and Bob have the same capabilities,

 
since they 

possess the same key. As a consequence, 
symmetric cryptography cannot be used for 
applications where we would like to prevent cheating 
by either Alice or Bob.

 

In order to overcome these drawbacks, Diffie, 
Hellman and Merkle made the following proposal. It is 
not necessary that the key possessed by the person 
who

 
encrypts

 
the message (that’s Alice in our example) 

is secret. The crucial part is that Bob, the receiver, can 
only

 
decrypt

 
using a secret key. In order to realize such 

a system, Bob publishes a public encryption key which 
is known to everyone. Bob also has a matching secret 
key, which is used for decryption. Thus, Bob’s key k

 

consists of two parts, a public part, kpub, and a private 
one, kpr .

 

This systems works quite similarly to the good 
old mailbox system. Everyone can put a letter in the box, 
i.e., encrypt, but only a person with a private (secret) 
key can retrieve letters, i.e., decrypt (see Figure 1).

 

 

Figure 2 :  Basic protocol for public-key encryption
 

By looking at that protocol the exchange of an 
encrypted key still remains a problem. This can be done 
by encrypting a symmetric key, e.g., an AES key, using 
the public-key algorithm. Once the symmetric key has 
been decrypted by Bob, both parties can use it to 
encrypt and decrypt messages using symmetric  

ciphers. But this still poses a grave problem for the 
public key sharing at the start of the protocol can be 
intercepted by Oscar. It is these security concerns that 
resulted in the need for the development of asymmetric 
cryptosystems. 

Public key schemes are all built from one 
common principle, the one-way function. 

Definition 1  

A function f (x) is a one-way function if: 

• y = f (x) is computationally easy, and 

• x = f−1(y) is computationally infeasible. 

 A function is easy to compute if it can be 
evaluated in polynomial time, i.e., its running time is a 
polynomial expression. In order to be useful in practical 
crypto schemes, the computation y = f (x) should be 
sufficiently fast that it

 
does not lead to unacceptably 

slow execution times in an application. The inverse 
computation x = f−1(y) should be so computationally 
intensive that it is not feasible to evaluate it in any 
reasonable time period, say,

 
thousands of years, when 

using the best known algorithm.
 Recently the key sizes of public key 

cryptosystems, for example, RSA prohibits their use in 
low-power, resource constrained computing devices. 
Due to this requirement ECC shows an advantage as 
much smaller key sizes (see Table 1) are needed for the 
same amount of security.

 
Table 1

 
Key sizes of ECC and RSA []

 
ECC(in bits)

 
RSA(in bits)

 106
 

512
 112

 
768

 132
 

1024
 160

 
2048

 210
 

3072
 283

 
7680

 409
 

15360
 571

 
21000

 
III.

 
MATHEMITICAL BACKGROUND

 
In Section A modular arithmetic is described. 

Then, in section B integer rings is defined. Further, in 
section C finite fields is illustrated. In section D cyclic 
rings is explained. Section E portrays the concept of 
subgroups. In Section F the Discrete Logarithm in Prime 
Fields is depicted. Finally, in section G the Generalized 
Discrete Logarithm Problem is given.

 
a)

 
Modular Arithmetic

 Symmetric and asymetric ciphers are usually 
based on arithmetic with a finite number of elements. 
The sets of real and natural numbers are

 
infinite. 

Consider a finite set of integers. The octal set of integer 
numerals are: {0, 1, 2, 3, 4, 5, 6, 7}. It is possible to do 
arithmetic in this set so long as: 0 ≤ result ≤ 7. For 
instance: 2 x 2 = 4 or 3 + 4 = 7 is fine, but 7 + 5 gives 
12. This result is not a subset of the octal set. To 
validate this operation an additional operator is used. 

 This is the modulus operation and is defined as follows:
 Definition 2  

Let p, r, q ∈
 
Z (where Z is a set of all integers) 

and q > 0. We write p ≡
 
r mod q, if q divides p − r. q is 

called the modulus and r is called the remainder.
 Thus 7 + 5 = 12, which when divided by 8 

(12/8) gives a remainder of 4. So 7 + 5 = 4 mod 8. In 
practice the integers involved have a length of 130–4096 
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bits so that efficient modular computations are a crucial 
aspect in modern cryptography.

• Key Distribution Problem. The key must be 



 

 

 
b)

 

Integer Rings

 

Consider the set of integers from zero to m-1 
with two operators: addition and multiplication. A ring on 
this set is defined as follows: 

 
Definition 3

 

A ring is the set of integers Zm

 

= {0, 1, 2,..., m − 
1} with the

 

“+” and

 

“×” operations ∀

 

e, f, g, h ∈ Zm

 

: e

 

+ 
f ≡

 

g mod m

 

∧

 

e × f ≡

 

h mod m

 
The

 

following

 

properties of rings

 

are

 

important:

 

•

 

Closed: addition and multiplication of two numbers 
has a result in the ring.

 

•

 

Ring operations are associative: a + (b + c)= (a + 
b)+ c, and a · (b · c)= (a · b) · c for all a, b, c ∈ Zm. 

•

 

A neutral element 0 with respect to addition, i.e., for 
every element a ∈ Zm

 

it holds that a + 0 ≡

 

a mod m.

 

•

 

The additive inverse always exists for any element a 
in the ring, there is always the negative element −a 
such that a + (−a) ≡

 

0 mod m.

 

•

 

The neutral element 1 with respect to multiplication, 
i.e., for every element a ∈ Zm

 

it holds that a × 1 ≡

 

a 
mod m.

 

•

 

The multiplicative inverse exists only for some, but 
not for all, elements. Let

 

a ∈

 

Z, the inverse a−1  is defined such that a · a−1

 

≡

 

1 mod m. If an inverse exists for a, we can divide by 
this element since b/a ≡

 

b · a−1

 

mod m. Finding the 
inverse is difficult, usually employing the Euclidean 
algorithm []. An easier method is as follows. An element 
a ∈

 

Z has a multiplicative inverse a−1

 

if

 

and only if GCD 
(a, m) = 1, where GCD is the greatest common divisor. If 
this holds, then a and m are relatively prime or coprime.

 

•

 

The distributive law is followed: a × (b + c) = (a × 
b) + (a × c) for all a, b, c ∈ Zm. Thus, the ring Zm

 

is

 

the set of integers {0, 1, 2, ... , m − 1} in which we 
can add, subtract, multiply, and sometimes divide.

 
c)

 

Finite Fields 

 

The concept of a simpler algebraic structure, a 
group is illustrated.

 
Definition 4  

A group is a set of elements G together with an 
operation ◦

 

which combines two elements of G. A group 
is set with one operation and the corresponding inverse 
operation. If the operation is called addition, the inverse 
operation is subtraction; if the operation is multiplication, 
the inverse operation is division (or multiplication with the 
inverse element). 

 

A group has the following properties:

 

•

 

The group operation ◦

 

is closed. That is, for all a, b, ∈

 

G, it holds that a ◦

 

b = c ∈

 

G.

 

•

 

The group operation is associative. That is, a ◦

 

(b ◦

 

c)= (a ◦

 

b) ◦

 

c for all a, b, c ∈

 

G.

 

•

 

There is an element 1 ∈

 

G, called the neutral element 
(or identity element), such that a ◦

 

1 = 1 ◦

 

a = a for 
all a ∈

 

G.

 

•

 

For each a ∈

 

G there exists an element a−1

 

∈

 

G, 
called the inverse of a, such that a ◦ a−1

 

= a−1

 

◦

 

a = 
1.

 

•

 

A group G is abelian (or commutative) if, 
furthermore, a ◦

 

b = b ◦

 

a for all a, b ∈

 

G.

 

Cryptography uses both multiplicative groups, 
i.e., the multiplication, and additive groups. Consider the 
set of integers Zm

 

= {0, 1, ... , m − 1} and the operation 
addition modulo m. Every element a has an inverse −a 
such that a + (−a) = 0 mod m. However, this set does 
not form a group with the multiplication operation 
because most elements do not have an inverse where a 
a−1

 

= 1 mod m.

 

Theorem 1 

The set 𝑍𝑍𝑛𝑛∗

 

which consists of all integers a = 0, 
1, ... , n − 1 for which GCD (a, n)= 1 forms an abelian 
group under multiplication modulo n. The identity 
element is e = 1. In Table 1 n = 9, so 𝑍𝑍𝑛𝑛∗

  

consists of the 
elements {1, 2, 4, 5, 7, 8}.

 

Table

 

1 :

  

Multiplication

 

table

 

for

 

𝑍𝑍9
∗

 

 
 
 
 
 
 
 
 

The following properties are satisfied:

 

•

 

Closure: integers which are elements of 𝑍𝑍9
∗

 

are used. 

 

•

 

Group identity and inverses: each row and column is 
a permutation of the elements of 𝑍𝑍9

∗. 

 

•

 

Commutativity: symmetry along the main diagonal. 

 

•

 

Associativity: Multiplication in 𝑍𝑍9
∗.  

In

 

order

 

to have all

 

four

 

basic

 

arithmetic

 

operations

 

(i.e., addition, subtraction,

 

multiplication, 
division) in one structure, a set which contains an 
additive

 

and a multiplicative group is needed. This is 
called a field. A finite

 

field, sometimes

 

also

 

called

 

Galois 
field, is a set with a finite number of

 

elements. 
Definition 5  
A field F is a set of elements with the following properties:

 

•

 

All elements of F form an additive group with the 
group operation “+” and the neutral element 0.

 

•

 

All elements of F except 0 form a multiplicative group 
with the group operation “×” and the neutral element 
1.

 

•

 

When the two group operations are mixed, the 
distributive law holds, i.e.,

 

for all a, b, c ∈

 

F: a(b + 
c)= (ab)+ (ac).

 

The set R of real numbers is a field with the 
neutral element 0 for the additive group and the neutral 
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element 1 for the multiplicative group. Thus every real 
number a has an additive inverse, namely −a, and every 
nonzero element a has a multiplicative inverse 1/a. Also 
note that the number of elements in the field is called the 



 

 

 
  

order or cardinality

 

of the field. The following

 

theorem 
explains the characteristic of a finite field:

 

Theorem 2  
A field with order r only exists if r is a prime 

power, i.e., r = cn, for some positive integer n and prime 
integer c. c is called the characteristic of the finite field.

 

This

 

theorem

 

implies

 

that

 

there are,

 

for

 

instance, finite

 

fields

 

with 243

 

elements (since 243

 

= 35) 

or with 1024

 

elements (since 1024

 

= 210, and 2 is a

 

prime). However, there

 

is no finite

 

field with

 

24

 

elements

 

since 24

 

= 23 · 3. Hence 24 is thus not a prime power. 
The most

 

native examples

 

of

 

finite

 

fields

 

are

 

fields

 

of

 

prime order, i.e.,

 

fields

 

with n = 1. Elements of 
the field GF(c) can be represented by integers 0, 1, . . . , c −

 

1. The two operations

 

of

 

the

 

field are

 

modular

 

integer

 

addition and integer

 

multiplication modulo c.

 

Theorem 3  
Let c be a prime. The integer ring 𝑍𝑍c

∗

 

is denoted 
as GF(c) and is referred to as a prime field, or as a 
Galois field with a prime number of elements. All 
nonzero elements of GF(c) have an inverse. Arithmetic in 
GF(c) is done modulo c.

 

This means that the integer ring 𝑍𝑍m
∗

 

with 
modular addition

 

and multiplication, and m happens to 
be a prime, 𝑍𝑍m

∗

 

is not only a ring but also a finite field. In 
order to do arithmetic in a prime field, the rules for 
integer rings hold: Addition and multiplication are done 
modulo c, the additive inverse of any element a is given 
by a + (−a) = 0 mod c, and the multiplicative inverse of 
any nonzero element a is defined as a · a−1

 

= 1. 

d)

 

Cyclic Groups 

 

Definition of

 

a finite group:

 

Definition 6  
A group (G, ◦) is finite if it has a finite number of 

elements. We denote the cardinality or order of the group 
G by |G|.

 

The following are some examples of finite groups: 
•

 

(𝑍𝑍n
∗, +): the cardinality of 𝑍𝑍n

∗

 

is |𝑍𝑍n
∗| = n since 𝑍𝑍n

∗

 

= 
{0, 1, 2,..., n − 1}.

 

•

 

(𝑍𝑍n
∗, ·): remember that 𝑍𝑍n

∗  is defined as the set of 
positive integers smaller than n which are relatively 
prime to n. Thus, the cardinality of 𝑍𝑍n

∗

 

equals Euler’s 
phi function [] evaluated for n, i.e., |𝑍𝑍n

∗| = Φ(n). For 
instance, the group 𝑍𝑍9

∗

 

has a cardinality of Φ(9)= 32 
− 31 = 6. Thus the group consists of the six 
elements {1, 2, 4, 5, 7, 8}. 

 

Cyclic

 

groups

 

are

 

the

 

basis

 

for discrete

 

logarithm-based

 

cryptosystems.

 

The order of an 
element is defined as follows:

 
 

Definition 7  
The order ord(b) of an element b of a group (G, 

◦) is the smallest positive integer n such that: bn

 

= b ◦

 

b 
◦

 

. ..◦

 

b = 1, occurs n times and 1 is the identity element 
of G.

 

By using Definition 6, determine the order of b 
= 4 in the group

 

𝑍𝑍7
∗. To do this,

 

compute the powers of 
b until we obtain the identity element 1.

 

  
 

  
  

 
  

     

Shown from

 

the

 

last

 

line:

 

ord(4) = 3. Keep

 

multiplying

 

the

 

result

 

by b: 

     
     
      

     
     
      

     
      
     

The powers of b run through the sequence {1, 
4, 2} indefinitely. This implies that b = 4 is a primitive 
element and |𝑍𝑍7

∗| is cyclic. It follows that ord(b)= 4 = 
|𝑍𝑍7

∗|. The group 𝑍𝑍7
∗

 

has the element 4 as a generator.

 

This cyclic behavior gives rise to following definition:

 

Definition 8  
A group G which contains an element c with 

maximum order ord(c) = |G| is said to be cyclic. 
Elements with maximum order are called primitive 
elements or generators.

 

An element c of a group G with

 

maximum

 

order

 

is

 

called a generator since

 

every

 

element b of G 
can be written as a power cn = b of

 

this element for 
some n,

 

i.e., c generates the

 

entire group.

 

The theorem below states that the multiplicative 
group

 

of every prime

 

field

 

is cyclic. Thus these groups 
are the

 

most

 

useful

 

for building discrete

 

logarithm

 

(DL) 
cryptosystems.

 
Theorem 4  
For every prime p, (𝑍𝑍p

∗, ·) is an abelian finite cyclic group. 

 
Theorem 5 first shows Fermat’s Little Theorem 

for all cyclic groups.

 

Secondly it shows that only element 
orders which divide the group cardinality exist in a cyclic 
group.

 
Theorem 5

 
Let G be a finite group. Then for every a ∈

 

G it 
holds that:

 
•

 

a|G| = 1

 
•

 

ord(a)

 

divides |G|
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e) Subgroups
Subgroups are subsets of cyclic groups which

are groups themselves. 

b1 = b1· b0 = 4 · 1 = 4 ≡ 4 mod 7
b2 = b1· b1 = 4 · 4 = 16 ≡ 2 mod 7
b3 = b2 · b1 = 2 · 4 = 8 ≡ 1 mod 7

b4 = b3 · b1 = 1 · 4 = 4 ≡ 4 mod 7
b5 = b4 · b1 = 4 · 4 = 16 ≡ 2 mod 7
b6 = b3 · b3 = 1 · 1 = 1 ≡ 1 mod 7

b7 = b3 · b4 = 1 · 4 = 4 ≡ 4 mod 7 
b8 = b3 · b5 = 1 · 2 = 2 ≡ 2 mod 7
b9 = b3 · b6 = 1 · 1 = 1 ≡ 1 mod 7   

b10 = b3 · b7 = 1 · 4 = 4 ≡ 4 mod 7        
b11 = b3 · b8 = 1 · 2 = 2 ≡ 2 mod 7
b12 = b3 · b9 = 1 · 1 = 1 ≡ 1 mod 7



 

 

  
 

  
  

 
Let (G, ◦) be a cyclic group.  Then every element 

b ∈

 

G with ord(s) = t is the primitive element of a cyclic 
subgroup with t elements.

 

Consider a subgroup of G =𝑍𝑍11
∗ . Now ord(3) = 

5, and the powers of 3 generate the subset J = {1, 3, 4, 
5, 9}. To verify whether this set is actually a group its 
multiplication table has to be explored:

 
Table 1 :  Multiplication table for the subgroup J = {1, 3, 

4, 5, 9}

 

 

J is a subgroup of 𝑍𝑍11
∗

: 
•

 

J is closed under multiplication modulo 11 since the 
table only consists of integers which are elements of 
J. 

 

•

 

The group operation is obviously associative and 
commutative since it follows regular multiplication 
rules. 

 

•

 

The neutral element is 1. 

 

•

 

For every element b ∈

 

J there exists an inverse b−1 
∈

 

J which is also an element of J. Every row and 
every column of the table contain the identity 
element. 

 

•

 

J is a subgroup of prime order 5. 

 

•

 

The elements 3, 4, 5 and 9 are generators of J. 

 

•

 

Each element b ∈

 

G of a group G generates some 
subgroup J. 

 

Subgroups of prime order are of enormous 
interest in cryptography. The following theorem follows.

 

Theorem 7  
Let J be a subgroup of G. Then |J| divides |G|. 

Thus the cyclic group 𝑍𝑍11
∗ has cardinality |𝑍𝑍11

∗

 

|

 

= 10 = 1 
· 2 · 5. 

 

Thus, it follows that the subgroups of   𝑍𝑍11
∗

 

have 
cardinalities 1, 2, 5 and 10 since these are all possible 
divisors of 10. All subgroups J of 𝑍𝑍11

∗

 

and their 
generators g are given below.

 

Subgroup

 

Elements

 

Primitive Elements

 

H1

 

{1}

 

g = 1

 

H2

 

{1, 10}

 

g = 10

 

H3

 

{1, 3, 4, 5, 9}

 

g = 3, 4, 5, 9

 
The following theorem gives us immediately a 

construction method for a subgroup from a given finite 
cyclic group. The only thing we need is a primitive 
element and the group cardinality c. One can now simple 
compute gc/n and obtains a generator of the subgroup 
with n elements.

 
Theorem 8

 
Let G be a finite cyclic group of order c and let 

g be a generator of G. Then for every integer n that 
divides c there exists exactly one cyclic subgroup J of G 
of order n. This subgroup is generated by gc/n. J consists 
exactly of the elements b ∈

 

G which satisfy the condition 
bn

 

= 1. There are no other subgroups.

 
Consider the cyclic group

 

𝑍𝑍11
∗ . Now g = 8 is a 

primitive element in the group. To get a generator g for 
the subgroup of order 2 compute: q = gc/n = 810/2 = 85

 

= 
32768

 

≡

 

10 mod 11. The element 10 generates the 
subgroup with two elements: 

 
  

                      

   
                 

   
 f)

 

The Discrete Logarithm in Prime Fields

 
The discrete logarithm problem (DLP), can 

directly be explained using cyclic groups. Two important 
areas are the DLP over Prime fields and the generalized 
DLP problem. Consider the DLP over

 

𝑍𝑍p
∗, where p is a 

prime.

 Definition 9  
Given is the finite cyclic group 

 

𝑍𝑍11
∗

 

of order p − 
1 and a primitive element g ∈

 

𝑍𝑍11
∗

 

and another element q 
∈

  

𝑍𝑍11
∗ . The DLP is the problem of determining the integer 

1 ≤ x ≤ p − 1 such that: gx

 

≡

 

q mod p.

 Such an integer x must exist since g is a 
primitive element and each group element can be 
expressed as a power of any primitive element. This 
integer x is called the discrete logarithm of q to the base 
g, and we can formally write: x = logg

 

q mod p. 
Computing discrete logarithms modulo a prime is a very 
hard problem if the parameters are sufficiently large. 
Since exponentiation gx

 

≡
 

q mod p is computationally 
easy, this forms a one-way function.

 Consider the group 
 
𝑍𝑍47
∗

 
which has order 46. 

The subgroups in 
 
𝑍𝑍11
∗ have thus a cardinality of 23, 2 

and 1. Now g = 2 is an element in the subgroup with 23 
elements, and since 23 is a prime, g = 2 is a primitive 
element in the subgroup. A possible discrete logarithm 
problem is given for q = 36 (which is also in the 
subgroup): Find the positive integer x, 1 ≤ x ≤ 23, such 
that 2x

 
≡

 
36 mod 47. By using a brute-force attack, a 

solution is x = 17.
 g)

 
The Generalized Discrete Logarithm Problem

 The generalized discrete logarithm problem 
(GDLP) is used in cryptography and is not restricted to 
the multiplicative group

 
𝑍𝑍p
∗, p prime, but can be defined 

over any cyclic groups.
 Definition 10 

 Given is a finite cyclic group G with the group 
operation ◦

 
and cardinality k. We consider a primitive 
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q1 = 10, 
q2 = 100 ≡ 1 mod 11, 
q3 ≡ 10 mod 11 …

Theorem 6  



 

 

element g ∈ G and another element q ∈ G. The discrete 
logarithm problem is finding the integer n, where 1 ≤ n 
≤ k, such that: q = g ◦ g ◦ . ..◦ g = gn, n times. 

Such an integer n must exist since g is a 
primitive element as in the case of the DLP in 𝑍𝑍p

∗. Thus 
each element of the group G can be generated by 
repeated application of the group operation on g. 
Consider the additive group of integers modulo a 
prime. For instance, choose the prime p = 11, G = 
( 𝑍𝑍11

∗ , +) is a finite cyclic group with the primitive 
element g = 2. Here is how g generates the group: 

We try now to solve the DLP for the element q 
= 3, i.e., we have to compute the integer 1 ≤ n ≤ 11 
such that: n · 2 = 2 + 2 + ...+ 2 (n times) ≡ 3 mod 11. 
Even though the group operation is addition, we can 
express the relationship between g, q and the discrete 
logarithm n in terms of multiplication: n· 2 ≡ 3 mod 11. 
In order to solve for n, invert the primitive element g: n 
≡ 2−1 3 mod 11. Using, e.g., the extended Euclidean 
algorithm, compute 2−1 ≡ 6 mod 11 to get the discrete 
logarithm: n ≡ 2−1 3 ≡ 7 mod 11. 

The DLP can be solved easily here as there 
are mathematical operations which are not in the 
additive group. They are multiplication and inversion. 
However, often it was found that the underlying DL 
problem is not difficult enough. 

IV. Elliptic Curve Theory 

a) Basic Properties 
ECC is based on the generalized discrete 

logarithm problem. A cyclic group where the DL 
problem is computationally hard is required. This means 
that it must have good one-way properties. Polynomials 
functions with sums of exponents of x and y can be 
chosen. For example, the polynomial equation a · x2 + b 
· y2 = c over the real numbers turns out to be an ellipse. 

An elliptic curve is a special type of polynomial 
equation. In ECC the curve is not over the real numbers 
but over a finite field. The most popular choice is prime 
fields GF(p), where all arithmetic is performed modulo a 
prime p. The curve is nonsingular so that it has no self-
intersections or vertices, and is achieved if the 
discriminant of the curve −16*(4a3 + 27b2) is nonzero. 

Definition 11  
The elliptic curve over 𝑍𝑍p

∗, p > 3, is the set of all 
pairs (x, y) ∈  𝑍𝑍p

∗ which fulfill y2 ≡ x3 + a · x + b mod p 
together with an imaginary point of infinity O, where a, b 
∈  𝑍𝑍p

∗ and the condition 4 · a3 + 27 · b2 ≠ 0 mod p. 

b) Group Operations on Elliptic Curves 
“Addition” means that given two points and their 

coordinates, say A = (x1, y1) and B = (x2, y2), we have to 
compute the coordinates of a third point C such that: A 
+ B = C or (x1, y1)  + (x2, y2) = (x3, y3). Two cases 
are considered:  
• the addition of two distinct points (point addition)  

• the addition of one point to itself (point doubling) 
Point Addition P + Q : This is the case where we 
compute R = P + Q and P ≠ Q. The construction works 
as follows: A line through P and Q intersects a third 
point between the elliptic curve and the line. Mirror this 
third intersection point along the x-axis. This mirrored 
point is, by definition, the point R. Figure 1 shows the 
point addition on an elliptic curve over the real numbers. 

 

Figure 1 :  Point addition on an elliptic curve over the real 
numbers 

Point Doubling P + Q : This is the case where we 
compute P + Q but P = Q. Hence, R = P + P = 2P. 
First draw the tangent line through P and obtain a 
second point of intersection between this line and the 
elliptic curve. Then mirror the second point of 
intersection along the x-axis. This mirrored point is the 
result R of the doubling as shown in Figure 2. 

 

Figure 2 :  Point doubling on an elliptic curve over the 
real numbers 

With these operations the points on the elliptic 
curve fulfill the group conditions: closure, associativity, 
existence of an identity element and existence of an 
inverse. Consider the add, subtract, multiply and divide 
operations over prime fields GF(p) rather than over the 
real numbers. The following analytical expressions 
become relevant. The elliptic curve point addition and 
doubling formulae are shown: 

if P ≠ Q (point addition), 𝑠𝑠 =  𝑦𝑦2− 𝑦𝑦1
𝑥𝑥2− 𝑥𝑥1

 𝑚𝑚𝑚𝑚𝑚𝑚 𝑝𝑝 

if P = Q (point doubling), 𝑠𝑠 =  3𝑥𝑥1
2+𝑎𝑎

2𝑦𝑦1
 𝑚𝑚𝑚𝑚𝑚𝑚 𝑝𝑝 

then 
x3

 = s2 − x1
 − x2

 mod  p 

i 1 2 3 4 5 6 7 8 9 10 11 
i g 2 4 6 8 10 1 3 5 7 9 0 
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y3 = s*(x1 − x3) − y1 mod p 

The parameter s is the slope of the line through 
P and Q in the case of point addition, or the slope of the 
tangent through P in the case of point doubling. An 
identity (or neutral) element O such that: P + O = P is 
compulsory. An abstract point at infinity is used as the 
neutral element O. This point at infinity is located 
towards “plus” infinity along the y-axis or towards 
“minus” infinity along the y-axis. Hence, the inverse −P 
of any group element P is: P + (−P) = O. 

o Finding the inverse of a point P = (xp, yp) is the 
negative of its y coordinate. In the case of 
elliptic curves over a prime field GF(p) as −y p

 ≡ 

p − y p
 mod p, hence −P = (x p, p − y p). An 

example for the group operation is now given. 
Consider a curve over the small field 𝑍𝑍29

∗ , E : y2 

≡ x3 + 2x + 2 mod 17. To double the point A = 
(3, 1):  

• 2P = P + P = (3, 1) + (3, 1) = (x3, y3).
 

• Now s = (2 · 1)−1 * (3 · 32 + 2) = 2−1 · 29  ≡ 9 · 12 
= 63 ≡ 6 mod 1. 

• Also x3 = s2 − x1 − x2 = 62 − 3 − 3 = 30 ≡ 13 
mod 17. 

• And y3 = s(x1 − x3) − y1 = 6 * (3 − 13) − 1 = -61 
≡ 7 mod 17. 

• Thus, 2P = (3, 1) + (3, 1) = (13, 7). 

Inserting the coordinates into the curve 
equation: y2 ≡ x3 + 2 · x + 2 mod 17 = 72 ≡ 133 + 2 · 13 
+ 2 mod 17. So 15 = 2225 ≡ 15 mod 17 which proves 
that the point is actually on the curve. 

c)
 

Building a Discrete Logarithm
 
Problem with Elliptic 

Curves
 

Setting up the discrete logarithm problem is now 
discussed. 
Definition

 
12  

Given an elliptic curve E, consider a primitive 
element P and another element R. The DL problem is 
finding the integer d, where 1 ≤ d ≤ #E, such that:

 
P + 

P + ··· + P = d * P = U. P is repeated d times. In 
cryptosystems, d is the private key which is an integer, 
while the public key U is a point on the curve with 
coordinates U = (xu

 
, yu

 
). 

 

The operation in Definition 12 is called point 
multiplication.

 
Thus, formally U = d * P. Note d*P is a 

notation for this repeated group operation. If a 
multiplicative notation is chosen, the ECDLP would have 
had the form Pd

 
= U, which would have been more 

consistent with the conventional DL problem in
 
𝑍𝑍29
∗ . 

Given a starting point P for the ECDLP elliptic 
curves over the real numbers, the computation becomes 
2P, 3P, .. ., d*P = U . This is effectively hopping back 
and forth on the elliptic curve. The starting point P (a 
public parameter) and the final point U (the public key) 
is put in the public domain. To break the cryptosystem, 
an attacker has to figure out how often we “jumped” on 

the elliptic curve. Thus, the number of hops is the secret 
d, the private key. 

V. ELLIPTIC CURVE CRYPTOSYSTEMS 

a) Elliptic Curve Diffie–Hellman 

As with the conventional Diffie–Hellman key 
exchange (DHKE) [] a key exchange using elliptic 
curves can be realized. This elliptic curve Diffie–Hellman 
key exchange (ECDH) requires agreed upon domain 
parameters on an elliptic curve and a primitive element 
on this curve: 

• Choose a prime p and the elliptic curve: E : y2 ≡ x3 + 
a · x + b mod  p 

• Choose a primitive element P = (xP, yP). The prime 
p, the curve given by its coefficients a, b, and the 
primitive element P are the domain parameters. 

The actual key exchange is the same as for the 
conventional Diffie–Hellman protocol. Alice and Bob 
choose the private keys a and b, respectively, which are 
two large integers. With the private keys both generate 
their respective public keys A and B, which are points on 
the curve. The public keys are computed by point 
multiplication. The two parties exchange these public 
parameters with each other. The joint secret TAB

 is then 
computed by both Alice and Bob by performing a 
second point multiplication involving the public key they 
received and their own secret parameter. The joint 
secret TAB

 can be used to derive a session key, e.g., as 
input for the AES algorithm []. Note that the two 
coordinates (xAB, yAB) are not independent of each other: 
Given xAB, the other coordinate can be computed by 
simply inserting the x value in the elliptic curve equation. 

Thus, only one of the two coordinates should be 
used for the derivation of a session key. EC-DH Key 
Exchange is now shown. 
 

 
 

   
 

 
 

   

 

 
 

 
 

 
 

 

Joint secret between Alice and Bob: TAB

 

= (xAB

 

, yAB

 

).

 

Proof.

 

Alice computes aB = a (b P) while Bob 
computes bA = b (a P). Since point addition is 
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  Alice Bob
choose kprA                                       choose kprB
= a ∈ {2, 3,..., #E − 1}                    = b ∈ {2, 3,..., #E − 1}

compute kpubA                                    compute kpubB
= a*P = A = (xA , yA )                      = b*P = B = (xB , yB )

A = (xA, yA)

B = (xB, yB)                                                                  

compute aB = TAB                                   compute bA = TAB

associative, both parties compute the same result, 
namely the point TAB = ab P.   
Let’s look at an example with small numbers.



 

 

  
  

We consider the ECDH

 

with the following 
domain parameters. The elliptic curve is y2

 

≡ x3

 

+ 2x + 2 
mod 17, which forms a cyclic group of order #E = 19. 
The base point is P = (5, 1). The protocol proceeds as 
follows:

 
 

 
   

 
 

 

 

 
 

 
 

 
 

                                                   

 
 

 

 

                                                      

 

Joint secret between Alice and Bob: TAB

 

= (13, 10).

 

b)

 

The Elliptic Curve Digital Signature Algorithm 
(ECDSA)

 

The ECDSA standard is defined for elliptic 
curves over prime fields Zp

 

and Galois fields GF(2m). The 
former is often preferred in practice, and is used in what 
follows. The keys for the ECDSA are computed as 
follows:

 

i.

 

Key Generation for ECDSA

 

Use an elliptic curve E with modulus p, 
coefficients a and b and a point A which generates a 
cyclic group of prime order q. Then choose a random 
integer d with 0 < d < q. Finally compute B = d A. The 
keys are now:

 

kpub

 

= (p, a, b, q, A, B)

 

and

 

kpr =

 

(d).

 

Note that we have set up a discrete logarithm 
problem where the integer d is the private key and the 
result of the scalar multiplication, point B, is the public 
key. Similar to DSA, the cyclic group has an order q 
which should have a size of at least 160 bit or more for 
higher security levels.

 
 

ii.

 

Signature and Verification

 

The ECDSA signature consists of a pair of 
integers (r, s). Each value has the same bit length as q, 
which makes for fairly compact signatures. Using the 
public and private key, the signature for a message x is 
computed as follows.

 

iii.

 

ECDSA Signature Generation

 

•

 

Choose an integer as random ephemeral key kE

 

with

 

0 < kE

 

< q.

 

•

 

Compute R = kE

 

A.

 

•

 

Let r = xR. 
Compute s ≡

 

(h(x) + d · r) kE
−1  mod q

 

In step 3 the x-coordinate of the point R is 
assigned to the variable r. The message x has to be 
hashed using the function h in order to compute s. The 
hash function output length must be at least as long as 
q. The hash function compresses x and computes a 
fingerprint which can be viewed as a representative of x. 
The signature verification process is as follows.

 

iv.

 

ECDSA Signature Verification

 

•

 

Compute auxiliary value w ≡ s−1

 

mod q.

 

•

 

Compute auxiliary value u1

 

≡

 

w · h(x) mod q.

 

•

 

Compute auxiliary value u2

 

≡

 

w · r mod q.

 

•

 

Compute P = u1

 

A + u2

 

B.

 

The verification verkpub

 

(x, (r, s)) follows from: xP

 

≡

 

r mod q ⇒

 

valid signature and xP

  

r mod q ⇒

 

invalid 
signature.

 

In the last step, the notation xP

 

indicates the x-
coordinate of the point P. The verifier accepts a 
signature (r, s) only if the xP

 

has the same value as the 
signature parameter r modulo q. Otherwise, the 
signature should be considered invalid.

 

Proof. We show that a signature (r, s) satisfies 
the verification condition r ≡ xP

 

mod q. 

 

We’ll start with the signature parameter s.

 

s ≡

 

(h(x)+ d r) kE
−1  mod q

 

= kE  ≡ s−1

 

h(x)+ d s−1

 

r mod q

 

Use the auxiliary values u1

 

and u2: 
= kE

 

≡ u1 + d

 

u2

 

mod q 

 

Multiply both sides of the equation with A as

 

the point

 

A generates a cyclic group of order q:    
= kE

 

A = (u1

 

+ d u2) A    
Group operation is associative:

 

= kE

 

A = u1

 

A + d u2

 

A   
Group operation is associative:

 

= kE

 

A = u1

 

A + u2

 

B   
Thus the expression u1

 

A + u2

 

B is equal to kE

 

A 
if the correct signature and key (and message) have 
been used. But this is exactly the condition that we 
check in the verification process by comparing the x-
coordinates 

 

of 

 

P = u1

 

A

 

+ u2

 

B and R = kE

 

A.

 

Bob wants to send a message to Alice that is to 
be signed with the ECDSA algorithm. The signature and 
verification process is as follows. The elliptic curve

 

E: y2

 

≡ x3

 

+ 2x + 2 mod 17. All points of the curve form a 
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Alice Bob

choose kprA = a = 3                              choose kprB = b = 10

compute kpubA                                               compute kpubB
= a* P                                                                        = b* P
= 3P                                                                           = 10P
= (10, 6) = A                                                 = (7, 11 ) = B

A = (10, 6)

B = (7, 11)                             

compute a*B                                                 compute b*A
=TAB                                                             = TAB
= 3(7, 11)                                                           = 10(10, 6)
= (13, 10)                                                           = (13, 10)    
                                                         

cyclic group of order 19, i.e., a prime, there are no 
subgroups and hence in this case q = #E = 19.

Alice Bob
choose E with p = 17, 

a =2, b = 2, and A = (5, 1). 
                                                with q = 19, choose d = 7.

                                  Compute B = d A = 7 (5, 1) = (0, 6)

(p, a, b, q, A, B)

(17, 2, 2, 19, (5, 1), (0, 6)
       sign: compute hash of message h(x) = 26

choose ephemeral key k*E = 10 



 

 

 
 

 
 

 

 
 
 

 
 
 
  

 
 

 
 

 
 

 
 

 
 

   
   
   

 
 

xP

 

≡

 

r mod 19 =⇒

 

valid signature

 
 

c)

 

Elliptic Curve

 

Integrated Encryption Scheme (ECIES) 

 

Elliptic curve cryptography can be used to 
encrypt plaintext messages, M, into ciphertexts. The 
elliptic group Ep(a, b) and the generator point G are 
made public. Each user select a private key, nA < n and 
compute the public key PA

 

as: PA

 

= nA*G. To encrypt the 
message point PM

 

for Bob (B), Alice (A) choses a 
random integer k and compute the ciphertext pair of 
points PC

 

using Bob’s public key PB:  
PC

 

= [(k*G),(PM

 

+ k*PB)]

 

After receiving the ciphertext pair of points, PC, 
Bob multiplies the first point, (k*G) with his private key, 
nB, and then adds the result to the second point in the 
ciphertext pair of points, (PM

 

+ k*PB):

 

(PM

 

+ k*PB)

 

− [nB(k*G)] = (PM

 

+ k*nBG)−[nB(k*G)] = 
PM

 

which is the plaintext point, corresponding to 
the plaintext message M. Only Bob, knowing the private 
key nB, can remove nB(k*G) from the second point of the 
ciphertext pair of point, i.e. (PM

 

+ k*PB), and hence 
retrieve the plaintext information PM.

 

Consider the following elliptic curve: y2

 

= x3

 

−x+ 188 mod 751 that is: a = −1, b = 188, and p = 
751. The elliptic curve group generated by the above 
elliptic curve is Ep(a,b) = E751(−1,188). Let the generator 
point G = (0,376). Then the multiples k*G of the 
generator point G are (for 1 ≤ k ≤ 751):

 

G = (0,376) 2G = (1,376) 3G = (750,375) 4G = 
(2,373) 5G = (188,657) 6G = (6,390) 7G = (667,571) 
8G = (121,39) 9G = (582,736) 10G = (57,332)  ... 761G 
= (565,312) 762G = (328,569) 763G = (677,185) 764G 
= (196,681) 765G = (417,320)766G = (3,370) 767G = 
(1,377) 768G = (0,375) 769G = O (point at infinity)

 

If Alice wants to send to Bob the message M 
which is encoded as the plaintext point PM

 

= (443,253) 
 E751(−1,188). She must use Bob public key to encrypt 

it. Suppose that Bob secret key is nB

 

= 85, then his 
public key will be: PB

 

= nB*G = 85(0,376) = (671,558). 
Alice selects a random number k = 113 and uses Bob’s 
public key PB

 

= (671,558) to encrypt the message point 
into the ciphertext pair of points: 

 

         

PC

 

= [(k*G),(PM

 

+ k*PB)]

 

= [113 ×(0,376),(443,253) + 113×(671,558)]

 

        = [(34,633),(443,253) + (47,416)]

 

        = [(34,633),(217,606)]

 

Upon receiving the ciphertext pair of points, PC

 

= [(34,633), (217,606)], Bob uses his private key, nB

 

= 
85, to compute the plaintext point, PM, as follows.

 

(PM

 

+ k*PB) −[nB(k*G)]  = (217,606) −[85(34,633)]

 

= (217,606) − [(47,416)]

 

= (217,606) + [(47,−416)] (since −P = (x1,−y1))

 

= (217,606) + [(47,335)] (since −416 ≡

 

335 (mod 751))

 

= (443,253)

 

and then maps the plaintext point PM

 

= (443,253) back 
into the original plaintext message M.

 

VI.

 

SECURITY OF ECC CRYPTOSYSTEMS

 

a)

 

Security of EC-DH

 

Elliptic curves are used as the ECDLP has very 
good one-way characteristics. E, p, P, A, and B is 
available for an attacker who wants to break the ECDH. 
The attacker desires to compute the joint secret 
between Alice and Bob TAB

 

= a * b * P. This is known as 
the elliptic curve Diffie–Hellman problem (ECDHP). 
Presently, there seems to be only one way to compute 
TAB, that is, to solve either a = logP

 

A, or b = logP

 

B.

 

Each of which are discrete logarithm problems.

 

For carefully chosen elliptic curve the best 
known attacks against the ECDLP are considerably 
weaker than the best algorithms for solving the DL 
problem modulo p, and the best factoring algorithms 
which are used for RSA attacks. In particular, the index-
calculus algorithms [22], which are powerful attacks 
against the DLP modulo p, are not applicable against 
elliptic curves. For carefully selected elliptic curves, the 

−

 

−
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            R = 10 (5, 1) = (7, 11)
                                                   r = x*R= 7

                                        s = (26 + 7 . 7) . 2 ≡ 17 mod 1

(x, (r, s))= (x, (7, 17))

verify:
w = 17−1 ≡ 9 mod 19
u1 = 9 · 26 ≡ 6 mod 19
u2 = 9 · 7 ≡ 6 mod 19
P = 6 · (5, 1)+ 6 · (0, 6)= (7, 11)

only remaining attacks are generic DL algorithms, that 
is, Shanks’ baby-step giant-step method [19] and 
Pollard’s rho method [1]. 

As the number of steps required for such an 
attack is approximately equal to the square root of the 
group cardinality, a group order of at least 2160 should 
be used. An attack with a group consisting of generic 
algorithms, will require about 280 steps. Thus, a security 
level of 80 bits provide moderate security. Thus, in 
practice elliptic curve bit lengths of up to 256 bits are 
commonly used. This will provide security levels of up to 
128 bits.  

b) Security of ECDSA
Elliptic curves have several advantages over 

RSA and over DL schemes like Elgamal or DSA. In 
particular, the absence of strong attacks against elliptic 
curve cryptosystems (ECC), bit lengths in the range of 
160–256 bit can be chosen which provide security 
equivalent to 1024–3072-bit RSA and DL schemes. The 
shorter bit length of ECC often results in shorter 
processing time and in shorter signatures. 



 

 

 
 

 

 

  

 

Given that the elliptic curve parameters are 
chosen correctly, the main analytical attack against 
ECDSA attempts to solve the elliptic curve discrete 
logarithm problem. If an attacker were capable of doing 
this, he could compute the private key d and/or the 
ephemeral key. However, the best known ECC attacks 
have a complexity proportional to

 

the square root of the 
size of the group in which the DL problem is defined, 
i.e., proportional to √q.

 

The security level of the hash function must also 
match that of the discrete logarithm problem. The 
cryptographic strength of a hash function is mainly 
determined by the length of its output. The security 
levels of 128, 192 and 256 were chosen so that they 
match the security offered by AES with its three 
respective key sizes. More subtle attacks against 
ECDSA are also possible. For instance, at the beginning 
of verification it must be checked whether r, s ∈

 

{1, 2,..., 
q}. Also, protocol-based weaknesses, e.g., reusing the 
ephemeral key, must be prevented.

 

c)

 

Security of ECIES

 

The cryptographic strength of elliptic curve 
encryption lies in the difficulty for a cryptanalyst to 
determine the secret random number k from k*P and P 
itself. The fastest method to solve this problem (known 
as the elliptic curve logarithm problem) is the Pollard ρ

 

factorization method [].

 

The computational complexity for breaking the 
elliptic curve cryptosystem, using the Pollard ρ

 

method, 
is 3.8×1010 MIPS-years (i.e. millions of instructions per 
second times the required number of years) for an 
elliptic curve key size of only 150 bits []. Finally 
increasing the elliptic curve key length to only 234 bits 
will impose a computational complexity of 1.6 × 1028 
MIPS-years (still with the Pollard ρ

 

method).

 

VII.

 

CONCLUSION

 

Public-key encryption can be used to eliminate 
problems involved with conventional encryption. 
However, it has not managed to be as widely accepted 
as conventional encryption because it introduces a lot of 
overheads. Therefore, it is very important to find ways to 
reduce the overheads yet not sacrificing on other 
aspects of security so that the desirability in public-key 
can be exploited. 

ECC have been described, which is a promising 
candidate for the next generation public-key 
cryptosystem. Although ECC’s security has not been 
completely evaluated, it is expected to come into 
widespread use in various fields in the future.

 

ECC has been shown to have many advantages 
due to its ability to provide the same level of security as 
other public key cryptosystems, yet using shorter keys. 
However, its disadvantage which may even hide its 
attractiveness is its lack of maturity, as mathematicians 
believed that enough research has not yet been done in 

ECDLP. Finally, the future of ECC looks brighter than 
that of other public key cryptosystems as today’s 
applications (smart cards, pagers, and cellular 
telephones etc) cannot afford the associated overheads.
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