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5

Abstract6

Elliptic curve cryptography or ECC is a public-key cryptosystem. This paper introduces ECC7

and describes its present applications. A mathematical background is given initially. Then its?8

major cryptographic uses are given. These include its? use in encryption, key sharing and9

digital signatures. The security of these ECC-based cryptosystems are discussed. It was found10

that ECC was well suited for low-power and resource constrained devices because of its? small11

key size.12

13

Index terms— elliptic curve cryptography; public-key; cryptosystem; security; rsa; el gamal; curve; key size.14

1 INTRODUCTION15

ver the years, with the increase in processing power of computers, there has been a reduction in the work factor16
required to solve Integer Factorization (IFP) [17], [21], [3] and Discrete Logarithm (DLP) problems [6], [9], [18].17
As a result, key sizes grew to more than 1000-bits so as to attain a reasonable level of security. However, in18
constrained environments carrying out thousand-bit operations is impractical. Therefore, a matter of growing19
importance in cryptography is the need for algorithms with low resource requirements [24], [14] that can be20
deployed on resource-constrained ubiquitous devices. This explains why other public-key methods would be21
welcomed, Elliptic Curve Cryptosystem (ECC) [12] being a probable candidate.22

Elliptic curves are the basis for a relatively new class of public-key schemes. It is predicted that Elliptic23
Curve Cryptosystems (ECC) Elliptic curves were proposed for use as the basis for discrete logarithmbased24
cryptosystems in 1985, independently by Victor Miller and Neal Koblitz. Elliptic curve are not ellipse, but25
cubic curves. Properties of ECC made it stronger against various attacks in wireless sensor networks [7], RFID26
[8], smart card [20] and many others. It will replace many existing schemes in the near future. However, the27
complicated mathematical background of ECC results in more sophisticated algorithms. Mathematical basis for28
security of elliptic curve cryptography is computational intractability of elliptic curve discrete logarithm problem29
(ECDLP) [11].30

Elliptic Curve Cryptography (ECC) can be applied to data encryption and decryption, digital signatures, and31
key exchange procedures. Every user has a public and private key. The public key is used for encryption or32
signature verification, while the private key is used for decryption or signature generation. ECC is used as an33
extension to current cryptosystems, for example, ECC Diffie-Hellman Key Exchange (EC-DH) [16], ECC Digital34
Signature Algorithm (ECDSA) [10] Elliptic Curve Integrated Encryption Scheme (ECIES) [23].35

A motivation is given in Section II. In Section III a mathematical background is given. The major uses of ECC36
in present day cryptosystems are presented in Section III. The underlying theory of elliptic curve cryptosystems37
is discussed in section IV. Three ECC cryptosystems are given in section V. These are EC-DH, ECDSA and38
ECIES. The security of these cryptosystems are outlined in Section V with the advantages of using ECC. Finally39
the conclusion is given in section II.40

2 Motivation41

In order to understand the principle of asymmetric cryptography, the basic symmetric encryption scheme has to42
be recalled. i. The same secret key is used for encryption and decryption. ii. The encryption and decryption43
function are very similar (in the case of DES [5] they are essentially identical).44
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6 A) MODULAR ARITHMETIC

There is a simple real-world analogy for symmetric cryptography. Assume there is a safe with a strong lock.45
Only Alice and Bob have a copy of the key for the lock. The action of encrypting of a message can be viewed as46
Alice putting the message in the safe. In order to read, i.e., decrypt, the message, Bob uses his key and opens47
the safe.48

However, there are several shortcomings associated with symmetric-key crypto-schemes. established between49
Alice and Bob using a secure channel. The communication link for the message is not secure, so sending the key50
over the channel directly can’t be done.51

? Number of Keys Even. Each user has to potentially deal with a very large number of keys. If each pair of52
users’ needs a separate pair of keys in a network with n users, there are (n? (n?1)) / 2 key pairs. Thus, each53
user has to store n ? 1 keys securely. The number of keys that must be generated and transported via secure54
channels will become exorbitant.55

? No Protection against cheating by Alice or Bob.56
Alice and Bob have the same capabilities, since they possess the same key. As a consequence, symmetric57

cryptography cannot be used for applications where we would like to prevent cheating by either Alice or Bob.58
In order to overcome these drawbacks, Diffie, Hellman and Merkle made the following proposal. It is not59

necessary that the key possessed by the person who encrypts the message (that’s Alice in our example) is secret.60
The crucial part is that Bob, the receiver, can only decrypt using a secret key. In order to realize such a system,61
Bob publishes a public encryption key which is known to everyone. Bob also has a matching secret key, which is62
used for decryption. Thus, Bob’s key k consists of two parts, a public part, k pub , and a private one, k pr .63

This systems works quite similarly to the good old mailbox system. Everyone can put a letter in the box, i.e.,64
encrypt, but only a person with a private (secret) key can retrieve letters, i.e., decrypt (see Figure 1).65

3 Figure 2 : Basic protocol for public-key encryption66

By looking at that protocol the exchange of an encrypted key still remains a problem. This can be done by67
encrypting a symmetric key, e.g., an AES key, using the public-key algorithm. Once the symmetric key has been68
decrypted by Bob, both parties can use it to encrypt and decrypt messages using symmetric ciphers. But this69
still poses a grave problem for the public key sharing at the start of the protocol can be intercepted by Oscar. It70
is these security concerns that resulted in the need for the development of asymmetric cryptosystems.71

Public key schemes are all built from one common principle, the one-way function.72

4 Definition 1 A function f (x) is a one-way function if:73

? y = f (x) is computationally easy, and? x = f ?1 (y) is computationally infeasible.74
A function is easy to compute if it can be evaluated in polynomial time, i.e., its running time is a polynomial75

expression. In order to be useful in practical crypto schemes, the computation y = f (x) should be sufficiently76
fast that it does not lead to unacceptably slow execution times in an application. The inverse computation x = f77
?1 (y) should be so computationally intensive that it is not feasible to evaluate it in any reasonable time period,78
say, thousands of years, when using the best known algorithm.79

Recently the key sizes of public key cryptosystems, for example, RSA prohibits their use in low-power, resource80
constrained computing devices. Due to this requirement ECC shows an advantage as much smaller key sizes (see81
Table 1) are needed for the same amount of security.82

5 III. MATHEMITICAL BACKGROUND83

In Section A modular arithmetic is described. Then, in section B integer rings is defined. Further, in section C84
finite fields is illustrated. In section D cyclic rings is explained. Section E portrays the concept of subgroups.85
In Section F the Discrete Logarithm in Prime Fields is depicted. Finally, in section G the Generalized Discrete86
Logarithm Problem is given.87

6 a) Modular Arithmetic88

Symmetric and asymetric ciphers are usually based on arithmetic with a finite number of elements. The sets of89
real and natural numbers are infinite. Consider a finite set of integers. The octal set of integer numerals are: {0,90
1, 2, 3, 4, 5, 6, 7}. It is possible to do arithmetic in this set so long as: 0 ? result ? 7. For instance: 2 x 2 = 491
or 3 + 4 = 7 is fine, but 7 + 5 gives 12. This result is not a subset of the octal set. To validate this operation92
an additional operator is used. This is the modulus operation and is defined as follows: Definition 293

Let p, r, q ? Z (where Z is a set of all integers) and q > 0. We write p ? r mod q, if q divides p ? r. q is94
called the modulus and r is called the remainder. ? A neutral element 0 with respect to addition, i.e., for every95
element a ? Z m it holds that a + 0 ? a mod m. ? The additive inverse always exists for any element a in96
the ring, there is always the negative element ?a such that a + (?a) ? 0 mod m. ? The neutral element 1 with97
respect to multiplication, i.e., for every element a ? Z m it holds that a × 1 ? a mod m. ? The multiplicative98
inverse exists only for some, but not for all, elements. Let a ? Z, the inverse a ?1 is defined such that a ? a ?199
? 1 mod m. If an inverse exists for a, we can divide by this element since b/a ? b ? a ?1 mod m. Finding the100
inverse is difficult, usually employing the Euclidean algorithm []. An easier method is as follows. An element a ?101
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Z has a multiplicative inverse a ?1 if and only if GCD (a, m) = 1, where GCD is the greatest common divisor.102
If this holds, then a and m are relatively prime or coprime.103

? The distributive law is followed: a × (b + c) = (a × b) + (a × c) for all a, b, c ? Z m . Thus, the ring Z m104
is the set of integers {0, 1, 2, ... , m ? 1} in which we can add, subtract, multiply, and sometimes divide.105

7 c) Finite Fields106

The concept of a simpler algebraic structure, a group is illustrated.107

8 Definition 4108

A group is a set of elements G together with an operation ? which combines two elements of G. A group is109
set with one operation and the corresponding inverse operation. If the operation is called addition, the inverse110
operation is subtraction; if the operation is multiplication, the inverse operation is division (or multiplication111
with the inverse element). A group has the following properties:? The group operation ? is closed. That is, for112
all a, b, ? G, it holds that a ? b = c ? G. ? The group operation is associative. That is, a ? (b ? c)= (a ? b) ?113
c for all a, b, c ? G.114

? There is an element 1 ? G, called the neutral element (or identity element), such that a? 1 = 1 ? a = a for115
all a ? G. ? For each a ? G there exists an element a ?1 ? G, called the inverse of a, such that a ? a ?1 = a ?1 ?116
a = 1.117

? A group G is abelian (or commutative) if, furthermore, a ? b = b ? a for all a, b ? G. Cryptography uses118
both multiplicative groups, i.e., the multiplication, and additive groups. Consider the set of integers Z m = {0,119
1, ... , m ? 1} and the operation addition modulo m. Every element a has an inverse ?a such that a + ( ?a) =120
0 mod m. However, this set does not form a group with the multiplication operation because most elements do121
not have an inverse where a a ?1 = 1 mod m. Theorem 1122

The set ?? ?? * which consists of all integers a = 0, 1, ... , n ? 1 for which GCD (a, n)= 1 forms an abelian123
group under multiplication modulo n. The identity element is e = 1. In Table 1 n = 9, so ?? ?? * consists of the124
elements {1, 2, 4, 5, 7, 8}. The following properties are satisfied:125

? Closure: integers which are elements of ?? 9 * are used. ? Group identity and inverses: each row and126
column is a permutation of the elements of ?? 9 * . ? Commutativity: symmetry along the main diagonal.127

? Associativity: Multiplication in ?? 9 * . In order to have all four basic arithmetic operations (i.e., addition,128
subtraction, multiplication, division) in one structure, a set which contains an additive and a multiplicative group129
is needed. This is called a field. A finite field, sometimes also called Galois field, is a set with a finite number of130
elements. element 1 for the multiplicative group. Thus every real number a has an additive inverse, namely ?a,131
and every nonzero element a has a multiplicative inverse 1/a. Also note that the number of elements in the field132
is called the order or cardinality of the field. The following theorem explains the characteristic of a finite field:133
Theorem 2134

A field with order r only exists if r is a prime power, i.e., r = c n , for some positive integer n and prime integer135
c. c is called the characteristic of the finite field.136

This theorem implies that there are, for instance, finite fields with 243 elements (since 243 = 3 5 )137
or with 1024 elements (since 1024 = 2 10 , and 2 is a prime). However, there is no finite field with 24 elements138

since 24 = 2 3 ? 3. Hence 24 is thus not a prime power.139
The most native examples of finite fields are fields of prime order, i.e., fields with n = 1. Elements of the field140

GF(c) can be represented by integers 0, 1,..., c ? 1. The two operations of the field are modular integer addition141
and integer multiplication modulo c.142

9 Theorem 3143

Let c be a prime. The integer ring ?? c * is denoted as GF(c) and is referred to as a prime field, or as a Galois144
field with a prime number of elements. All nonzero elements of GF(c) have an inverse. Arithmetic in GF(c) is145
done modulo c.146

This means that the integer ring ?? m * with modular addition and multiplication, and m happens to be a147
prime, ?? m * is not only a ring but also a finite field. In order to do arithmetic in a prime field, the rules for148
integer rings hold: Addition and multiplication are done modulo c, the additive inverse of any element a is given149
by a + (?a) = 0 mod c, and the multiplicative inverse of any nonzero element a is defined as a ? a ?1 = 1.150

10 d) Cyclic Groups Definition of a finite group: Definition 6151

A group (G, ?) is finite if it has a finite number of elements. We denote the cardinality or order of the group G152
by |G|. The following are some examples of finite groups:? (?? n * , +): the cardinality of ?? n * is |?? n * | =153
n since ?? n * = {0, 1, 2,..., n ? 1}. ? (?? n * ,154

?): remember that ?? n * is defined as the set of positive integers smaller than n which are relatively prime155
to n. Thus, the cardinality of ?? n * equals Euler’s phi function [] evaluated for n, i.e., |?? n * | = ?(n). For156
instance, the group ?? 9157

* has a cardinality of ?(9)= 32 ? 31 = 6. Thus the group consists of the six elements {1, 2, 4, 5, 7, 8}.158
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18 DEFINITION 9

Cyclic groups are the basis for discrete logarithm-based cryptosystems. The order of an element is defined as159
follows:160

11 This cyclic behavior gives rise to following definition: Defi-161

nition 8162

A group G which contains an element c with maximum order ord(c) = |G| is said to be cyclic. Elements with163
maximum order are called primitive elements or generators.164

An element c of a group G with maximum order is called a generator since every element b of G can be written165
as a power c n = b of this element for some n, i.e., c generates the entire group.166

The theorem below states that the multiplicative group of every prime field is cyclic. Thus these groups are167
the most useful for building discrete logarithm (DL) cryptosystems.168

12 Theorem 4169

For every prime p, (?? p * , ?) is an abelian finite cyclic group.170
Theorem 5 first shows Fermat’s Little Theorem for all cyclic groups. Secondly it shows that only element171

orders which divide the group cardinality exist in a cyclic group.172

13 Theorem 5173

Let G be a finite group. Then for every a ? G it holds that:? a|G| = 1 ? ord(a) divides |G| b 1 = b 1 ? b 0 = 4174
? 1 = 4 ? 4 mod 7 b 2 = b 1 ? b 1 = 4 ? 4 = 16 ? 2 mod 7 b 3 = b 2 ? b 1 = 2 ? 4 = 8 ? 1 mod 7 b 4 = b 3 ?175
b 1 = 1 ? 4 = 4 ? 4 mod 7 b 5 = b 4 ? b 1 = 4 ? 4 = 16 ? 2 mod 7 b 6 = b 3 ? b 3 = 1 ? 1 = 1 ? 1 mod 7 b 7176
= b 3 ? b 4 = 1 ? 4 = 4 ? 4 mod 7 b 8 = b 3 ? b 5 = 1 ? 2 = 2 ? 2 mod 7 b 9 = b 3 ? b 6 = 1 ? 1 = 1 ? 1177
mod 7 b 10 = b 3 ? b 7 = 1 ? 4 = 4 ? 4 mod 7 b 11 = b 3 ? b 8 = 1 ? 2 = 2 ? 2 mod 7 b 12 = b 3 ? b 9 = 1 ?178
1 = 1 ? 1 mod 7179

Let (G, ?) be a cyclic group. Then every element b ? G with ord(s) = t is the primitive element of a cyclic180
subgroup with t elements.181

14 Consider a subgroup of G =?? 11182

* . Now ord(3) = 5, and the powers of 3 generate the subset J = {1, 3, 4, 5, 9}. To verify whether this set is183
actually a group its multiplication table has to be explored: ? For every element b ? J there exists an inverse184
b?1 ? J which is also an element of J. Every row and every column of the table contain the identity element. ?185
J is a subgroup of prime order 5. and their generators g are given below.186

15 Subgroup187

Elements Primitive ElementsH 1 {1} g = 1 H 2 {1, 10} g = 10 H 3 {1, 3, 4, 5, 9} g = 3, 4, 5, 9188
The following theorem gives us immediately a construction method for a subgroup from a given finite cyclic189

group. The only thing we need is a primitive element and the group cardinality c. One can now simple compute190
g c/n and obtains a generator of the subgroup with n elements.191

16 Theorem 8192

Let G be a finite cyclic group of order c and let g be a generator of G. Then for every integer n that divides193
c there exists exactly one cyclic subgroup J of G of order n. This subgroup is generated by g c/n . J consists194
exactly of the elements b ? G which satisfy the condition b n = 1. There are no other subgroups.195

Consider the cyclic group ?? 11 * . Now g = 8 is a primitive element in the group. To get a generator g for196
the subgroup of order 2 compute: q = g c/n = 8 10/2 = 8 5 = 32768 ? 10 mod 11. The element 10 generates197
the subgroup with two elements:198

17 f) The Discrete Logarithm in Prime Fields199

The discrete logarithm problem (DLP), can directly be explained using cyclic groups. Two important areas are200
the DLP over Prime fields and the generalized DLP problem. Consider the DLP over ?? p * , where p is a prime.201

18 Definition 9202

Given is the finite cyclic group ?? 11 * of order p ? 1 and a primitive element g ? ?? 11203
* and another element q ? ?? 11 * . The DLP is the problem of determining the integer 1 ? x ? p ? 1 such204

that: g x ? q mod p.205
Such an integer x must exist since g is a primitive element and each group element can be expressed as a206

power of any primitive element. This integer x is called the discrete logarithm of q to the base g, and we can207
formally write: x = log g q mod p. Computing discrete logarithms modulo a prime is a very hard problem if208
the parameters are sufficiently large. Since exponentiation g x ? q mod p is computationally easy, this forms a209
one-way function.210

4



Consider the group ?? 47 * which has order 46. The subgroups in ?? 11211
* have thus a cardinality of 23, 2 and 1. Now g = 2 is an element in the subgroup with 23 elements, and since212

23 is a prime, g = 2 is a primitive element in the subgroup. A possible discrete logarithm problem is given for q213
= 36 (which is also in the subgroup): Find the positive integer x, 1 ? x ? 23, such that 2 x ? 36 mod 47. By214
using a brute-force attack, a solution is x = 17.215

19 g) The Generalized Discrete Logarithm Problem216

The generalized discrete logarithm problem (GDLP) is used in cryptography and is not restricted to the217
multiplicative group ?? p * , p prime, but can be defined over any cyclic groups.218

20 Definition 10219

Given is a finite cyclic group G with the group operation ? and cardinality k. We consider a primitive220

21 Global Journal of C omp uter S cience and T echnology221

Volume XV Issue V Version I ( ) E Year 2015 q 1 = 10, q 2 = 100 ? 1 mod 11, q 3 ? 10 mod 11 ? Theorem 6222
element g ? G and another element q ? G. The discrete logarithm problem is finding the integer n, where 1 ? n223
? k, such that: q = g ? g ? . ..? g = g n , n times.224

Such an integer n must exist since g is a primitive element as in the case of the DLP in ?? p * . Thus each225
element of the group G can be generated by repeated application of the group operation on g. Consider the226
additive group of integers modulo a prime. For instance, choose the prime p = 11, G = ( ?? 11 * , +) is a finite227
cyclic group with the primitive element g = 2. Here is how g generates the group:228

We try now to solve the DLP for the element q = 3, i.e., we have to compute the integer 1 ? n ? 11 such that:229
n ? 2 = 2 + 2 + ...+ 2 (n times) ? 3 mod 11. Even though the group operation is addition, we can express the230
relationship between g, q and the discrete logarithm n in terms of multiplication: n? 2 ? 3 mod 11. In order to231
solve for n, invert the primitive element g: n ? 2 ?1 3 mod 11. Using, e.g., the extended Euclidean algorithm,232
compute 2 ?1 ? 6 mod 11 to get the discrete logarithm: n ? 2 ?1 3 ? 7 mod 11.233

The DLP can be solved easily here as there are mathematical operations which are not in the additive group.234
They are multiplication and inversion. However, often it was found that the underlying DL problem is not235
difficult enough.236

IV.237

22 Elliptic Curve Theory a) Basic Properties238

ECC is based on the generalized discrete logarithm problem. A cyclic group where the DL problem is239
computationally hard is required. This means that it must have good one-way properties. Polynomials functions240
with sums of exponents of x and y can be chosen. For example, the polynomial equation a ? x 2 + b ? y 2 = c241
over the real numbers turns out to be an ellipse.242

An elliptic curve is a special type of polynomial equation. In ECC the curve is not over the real numbers but243
over a finite field. The most popular choice is prime fields GF(p), where all arithmetic is performed modulo a244
prime p. The curve is nonsingular so that it has no selfintersections or vertices, and is achieved if the discriminant245
of the curve ?16*(4a 3 + 27b 2 ) is nonzero.246

23 Definition 11247

The elliptic curve over ?? p * , p > 3, is the set of all pairs (x, y) ? ?? p * which fulfill y 2 ? x 3 + a ? x + b248
mod p together with an imaginary point of infinity O, where a, b ? ?? p * and the condition 4 ? a 3 + 27 ? b 2249
? 0 mod p.250

24 b) Group Operations on Elliptic Curves251

”Addition” means that given two points and their coordinates, say A = (x 1 , y 1 ) and B = (x 2 , y 2 ), we have252
to compute the coordinates of a third point C such that: A + B = C or (x 1 , y 1 ) + (x 2 , y 2 ) = (x 3 , y 3 ).253
Two cases are considered: ? the addition of two distinct points (point addition)254

? the addition of one point to itself (point doubling) Point Addition P + Q : This is the case where we compute255
R = P + Q and P ? Q. The construction works as follows: A line through P and Q intersects a third point256
between the elliptic curve and the line. Mirror this third intersection point along the x-axis. This mirrored point257
is, by definition, the point R. Figure 1 shows the point addition on an elliptic curve over the real numbers. With258
these operations the points on the elliptic curve fulfill the group conditions: closure, associativity, existence of259
an identity element and existence of an inverse. Consider the add, subtract, multiply and divide operations over260
prime fields GF(p) rather than over the real numbers. The following analytical expressions become relevant. The261
elliptic curve point addition and doubling formulae are shown: The parameter s is the slope of the line through262
P and Q in the case of point addition, or the slope of the tangent through P in the case of point doubling. An263
identity (or neutral) element O such that: P + O = P is compulsory. An abstract point at infinity is used as the264
neutral element O. This point at infinity is located towards ”plus” infinity along the y-axis or towards ”minus”265
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28 B) THE ELLIPTIC CURVE DIGITAL SIGNATURE ALGORITHM
(ECDSA)

infinity along the y-axis. Hence, the inverse ?P of any group element P is: P + (?P) = O.if P ? Q (point addition),266
?? = ?? 2 ? ?? 1 ?? 2 ? ?? 1 ?????? ?? if P = Q (point doubling), ?? = 3?? 1 2 +?? 2?? 1 ?????? ?? then x 3267
= s 2 ? x 1 ? x 2 mod p268

o Finding the inverse of a point P = (x p , y p ) is the negative of its y coordinate. In the case of elliptic269
curves over a prime field GF(p) as ?y p ? p ? y p mod p, hence ?P = (x p , p ? y p ). An example for the group270
operation is now given. Consider a curve over the small field ?? 29 * , E : y 2 ? x 3 + 2x + 2 mod 17. To double271
the point A = (3, 1): Inserting the coordinates into the curve equation: y 2 ? x 3 + 2 ? x + 2 mod 17 = 7 2 ?272
13 3 + 2 ? 13 + 2 mod 17. So 15 = 2225 ? 15 mod 17 which proves that the point is actually on the curve.? 2P273
= P + P = (3, 1) + (3, 1) = (x 3 , y 3 ). ? Now s = (2 ? 1)?1 * (3 ? 32 + 2) = 2?1 ? 29 ? 9 ? 12 = 63 ? 6274
mod 1. ? Also x3 = s2 ? x1 ? x2 =275

25 c) Building a Discrete Logarithm Problem with Elliptic276

Curves Setting up the discrete logarithm problem is now discussed.277

26 Definition 12278

Given an elliptic curve E, consider a primitive element P and another element R. The DL problem is finding the279
integer d, where 1 ? d ? #E, such that: P + P + ??? + P = d * P = U. P is repeated d times. In cryptosystems,280
d is the private key which is an integer, while the public key U is a point on the curve with coordinates U = (x281
u , y u ).282

The operation in Definition 12 is called point multiplication. Thus, formally U = d * P. Note d*P is a notation283
for this repeated group operation. If a multiplicative notation is chosen, the ECDLP would have had the form P284
d = U, which would have been more consistent with the conventional DL problem in ?? 29 * . Given a starting285
point P for the ECDLP elliptic curves over the real numbers, the computation becomes 2P, 3P, .. ., d*P = U .286
This is effectively hopping back and forth on the elliptic curve. The starting point P (a public parameter) and287
the final point U (the public key) is put in the public domain. To break the cryptosystem, an attacker has to288
figure out how often we ”jumped” on the elliptic curve. Thus, the number of hops is the secret d, the private key.289

V.290

27 ELLIPTIC CURVE CRYPTOSYSTEMS a) Elliptic Curve291

Diffie-Hellman292

As with the conventional Diffie-Hellman key exchange (DHKE) [] a key exchange using elliptic curves can be293
realized. This elliptic curve Diffie-Hellman key exchange (ECDH) requires agreed upon domain parameters on294
an elliptic curve and a primitive element on this curve: ? Choose a prime p and the elliptic curve: E : y 2 ?295
x 3 + a ? x + b mod p ? Choose a primitive element P = (x P , y P ). The prime p, the curve given by its296
coefficients a, b, and the primitive element P are the domain parameters.297

The actual key exchange is the same as for the conventional Diffie-Hellman protocol. Alice and Bob choose298
the private keys a and b, respectively, which are two large integers. With the private keys both generate299
their respective public keys A and B, which are points on the curve. The public keys are computed by point300
multiplication. The two parties exchange these public parameters with each other. The joint secret T AB is301
then computed by both Alice and Bob by performing a second point multiplication involving the public key they302
received and their own secret parameter. The joint secret T AB can be used to derive a session key, e.g., as input303
for the AES algorithm []. Note that the two coordinates (x AB , y AB ) are not independent of each other: Given304
x AB , the other coordinate can be computed by simply inserting the x value in the elliptic curve equation.305

Thus, only one of the two coordinates should be used for the derivation of a session key. EC-DH Key Exchange306
is now shown. Let’s look at an example with small numbers.307

We consider the ECDH with the following domain parameters. The elliptic curve is y 2 ? x 3 + 2x + 2 mod308
17, which forms a cyclic group of order #E = 19. The base point is P = (5, 1). The protocol proceeds as follows:309

Joint secret between Alice and Bob: T AB = (13, 10).310

28 b) The Elliptic Curve Digital Signature Algorithm (ECDSA)311

The ECDSA standard is defined for elliptic curves over prime fields Z p and Galois fields GF(2 m ). The former312
is often preferred in practice, and is used in what follows. The keys for the ECDSA are computed as follows:313

i. Key Generation for ECDSA Use an elliptic curve E with modulus p, coefficients a and b and a point A which314
generates a cyclic group of prime order q. Then choose a random integer d with 0 < d < q. Finally compute B315
= d A. The keys are now: k pub = (p, a, b, q, A, B) and k pr = (d).316

Note that we have set up a discrete logarithm problem where the integer d is the private key and the result317
of the scalar multiplication, point B, is the public key. Similar to DSA, the cyclic group has an order q which318
should have a size of at least 160 bit or more for higher security levels.319
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29 ii. Signature and Verification320

The ECDSA signature consists of a pair of integers (r, s). Each value has the same bit length as q, which makes321
for fairly compact signatures. Using the public and private key, the signature for a message x is computed as322
follows.323

iii. ECDSA Signature Generation324
? Choose an integer as random ephemeral key k E with 0 < k E < q.? Compute R = k E A. ? Let r = x R .325

Compute s ? (h(x) + d ? r) k E ?1 mod q326
In step 3 the x-coordinate of the point R is assigned to the variable r. The message x has to be hashed using327

the function h in order to compute s. The hash function output length must be at least as long as q. The hash328
function compresses x and computes a fingerprint which can be viewed as a representative of x. The signature329
verification process is as follows. iv. ECDSA Signature Verification330

? Compute auxiliary value w ? s ?1 mod q.331
? Compute auxiliary value u 1 ? w ? h(x) mod q.332
? Compute auxiliary value u 2 ? w ? r mod q.333
? Compute P = u 1 A + u 2 B.334
The verification ver k pub (x, (r, s)) follows from: x P ? r mod q ? valid signature and x P r mod q ? invalid335

signature.336
In the last step, the notation x P indicates the xcoordinate of the point P. The verifier accepts a signature (r,337

s) only if the x P has the same value as the signature parameter r modulo q. Otherwise, the signature should be338
considered invalid.339

Proof. We show that a signature (r, s) satisfies the verification condition r ? x P mod q. We’ll start with the340
signature parameter s. s ? (h(x)+ d r) k E ?1 mod q = k E ? s ?1 h(x)+ d s ?1 r mod q Use the auxiliary values341
u 1 and u 2 : = k E ? u 1 + d u 2 mod q Multiply both sides of the equation with A as the point A generates a342
cyclic group of order q: = k E A = (u 1 + d u 2 ) A Group operation is associative: = k E A = u 1 A + d u 2343
A Group operation is associative:= k E A = u 1 A + u 2 B344

Thus the expression u 1 A + u 2 B is equal to k E A if the correct signature and key (and message) have been345
used. But this is exactly the condition that we check in the verification process by comparing the xcoordinates346
of P = u 1 A + u 2 B and R = k E A.347

Bob wants to send a message to Alice that is to be signed with the ECDSA algorithm. The signature and348
verification process is as follows. The elliptic curve E:349

30 SECURITY OF ECC CRYPTOSYSTEMS a) Security of EC350

-DH351

Elliptic curves are used as the ECDLP has very good one-way characteristics. E, p, P, A, and B is available for352
an attacker who wants to break the ECDH. The attacker desires to compute the joint secret between Alice and353
Bob T AB = a * b * P. This is known as the elliptic curve Diffie-Hellman problem (ECDHP). Presently, there354
seems to be only one way to compute T AB , that is, to solve either a = log P A, or b = log P B. Each of which355
are discrete logarithm problems.356

For carefully chosen elliptic curve the best known attacks against the ECDLP are considerably weaker than the357
best algorithms for solving the DL problem modulo p, and the best factoring algorithms which are used for RSA358
attacks. In particular, the indexcalculus algorithms [22], which are powerful attacks against the DLP modulo p,359
are not applicable against elliptic curves. For carefully selected elliptic curves, the only remaining attacks are360
generic DL algorithms, that is, Shanks’ baby-step giant-step method [19] and Pollard’s rho method [1].361

As the number of steps required for such an attack is approximately equal to the square root of the group362
cardinality, a group order of at least 2 160 should be used. An attack with a group consisting of generic algorithms,363
will require about 2 80 steps. Thus, a security level of 80 bits provide moderate security. Thus, in practice elliptic364
curve bit lengths of up to 256 bits are commonly used. This will provide security levels of up to 128 bits.365

31 b) Security of ECDSA366

Elliptic curves have several advantages over RSA and over DL schemes like Elgamal or DSA. In particular, the367
absence of strong attacks against elliptic curve cryptosystems (ECC), bit lengths in the range of 160-256 bit can368
be chosen which provide security equivalent to 1024-3072-bit RSA and DL schemes. The shorter bit length of369
ECC often results in shorter processing time and in shorter signatures.370

Given that the elliptic curve parameters are chosen correctly, the main analytical attack against ECDSA371
attempts to solve the elliptic curve discrete logarithm problem. If an attacker were capable of doing this, he372
could compute the private key d and/or the ephemeral key. However, the best known ECC attacks have a373
complexity proportional to the square root of the size of the group in which the DL problem is defined, i.e.,374
proportional to ?q.375

The security level of the hash function must also match that of the discrete logarithm problem. The376
cryptographic strength of a hash function is mainly determined by the length of its output. The security levels of377
128, 192 and 256 were chosen so that they match the security offered by AES with its three respective key sizes.378
More subtle attacks against ECDSA are also possible. For instance, at the beginning of verification it must be379
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checked whether r, s ? {1, 2,..., q}. Also, protocol-based weaknesses, e.g., reusing the ephemeral key, must be380
prevented.381

32 c) Security of ECIES382

The cryptographic strength of elliptic curve encryption lies in the difficulty for a cryptanalyst to determine the383
secret random number k from k*P and P itself. The fastest method to solve this problem (known as the elliptic384
curve logarithm problem) is the Pollard ? factorization method [].385

The computational complexity for breaking the elliptic curve cryptosystem, using the Pollard ? method, is386
3.8×1010 MIPS-years (i.e. millions of instructions per second times the required number of years) for an elliptic387
curve key size of only 150 bits []. Finally increasing the elliptic curve key length to only 234 bits will impose a388
computational complexity of 1.6 × 1028 MIPS-years (still with the Pollard ? method).389

33 VII.390

34 CONCLUSION391

Public-key encryption can be used to eliminate problems involved with conventional encryption. However, it392
has not managed to be as widely accepted as conventional encryption because it introduces a lot of overheads.393
Therefore, it is very important to find ways to reduce the overheads yet not sacrificing on other aspects of security394
so that the desirability in public-key can be exploited.395

ECC have been described, which is a promising candidate for the next generation public-key cryptosystem.396
Although ECC’s security has not been completely evaluated, it is expected to come into widespread use in various397
fields in the future.398

ECC has been shown to have many advantages due to its ability to provide the same level of security as399
other public key cryptosystems, yet using shorter keys. However, its disadvantage which may even hide its400
attractiveness is its lack of maturity, as mathematicians believed that enough research has not yet been done401
in ECDLP. Finally, the future of ECC looks brighter than that of other public key cryptosystems as today’s402
applications (smart cards, pagers, and cellular telephones etc) cannot afford the associated overheads. 1

1
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Figure 5: ?
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Figure 9:
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ECC(in bits) RSA(in bits)
106 512
112 768
132 1024
160 2048
210 3072
283 7680
409 15360
571 21000

Figure 10: Table 1
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1

Figure 11: Table 1 :

1

[Note: 4, 5, 9} J is a subgroup of ?? 11 * : ? J is closed under multiplication modulo 11 since the table only
consists of integers which are elements of J. ? The group operation is obviously associative and commutative
since it follows regular multiplication rules. ? The neutral element is 1.]

Figure 12: Table 1 :
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