ISV G1OBAL JOURNAL OF COMPUTER SCIENCE AND TECHNOLOGY: A
Global Journals Inc.

HARDWARE & COMPUTATION
ﬁ‘a Volume 15 Issue 2 Version 1.0 Year 2015
o/ Type: Double Blind Peer Reviewed International Research Journal
Publisher: Global Journals Inc. (USA)
Online ISSN: 0975-4172 & Print ISSN: 0975-4350

Design of a Five Stage Pipeline CPU with Interruption System
By Abdulrageb Abdullah Saeed Abdo & Professor. Liu Yijun

Guangdong University of Technology, China

Abstract- A central processing unit (CPU), also referred to as a central processor unit, is the hardware
within a computer that carries out the instructions of a computer program by performing the basic
arithmetical, logical, and input/output operations of the system. The term has been in use in the
computer industry at least since the early 1960s.The form, design, and implementation of CPUs have
changed over the course of their history, but their fundamental operation remains much the same. A
computer can have more than one CPU; this is called multiprocessing. All modern CPUs are
microprocessors, meaning contained on a single chip. Some integrated circuits (ICs) can contain
multiple CPUs on a single chip; those ICs are called multi-core processors. An IC containing a CPU
can also contain peripheral devices, and other components of a computer system; this is called a
system on a chip (SoC).Two typical components of a CPU are the arithmetic logic unit (ALU), which
performs arithmetic and logical operations, and the control unit (CU), which extracts instructions from
memory and decodes and executes them, calling on the ALU when necessary. Not all computational
systems rely on a central processing unit. An array processor or vector processor has multiple
parallel computing elements, with no one unit considered the "center". In the distributed computing
model, problems are solved by a distributed interconnected set of processors.

Keywords: CPU; MIPS; pipeline; Interruption.
GJCST-A Classification : B.2.1 B.5.1

DESIGNOFAFIVESTAGEP IPELINECPUWITHINTERRUPTIONSYSTEM

Strictly as per the compliance and requlations of:

© 2015. Abdulrageb Abdullah Saeed Abdo & Professor. Liu Yijun. This is a research/review paper, distributed under the terms of the
Creative Commons Attribution-Noncommercial 3.0 Unported License http://creativecommons.org/licenses/by-nc/3.0/), permitting all
non-commercial use, distribution, and reproduction inany medium, provided the original work is properly cited.

Design of a Five Stage Pipeline CPU with
Interruption System

Abdulrageb Abdullah Saeed Abdo * & Professor. Liu Yijun °

Abstract- A central processing unit (CPU), also referred to as a
central processor unit, is the hardware within a computer that
carries out the instructions of a computer program by
performing the basic arithmetical, logical, and input/output
operations of the system. The term has been in use in the
computer industry at least since the early 1960s.The form,
design, and implementation of CPUs have changed over the
course of their history, but their fundamental operation remains
much the same. A computer can have more than one CPU;
this is called multiprocessing. Al modern CPUs are
microprocessors, meaning contained on a single chip. Some
integrated circuits (ICs) can contain multiple CPUs on a single
chip; those ICs are called multi-core processors. An IC
containing a CPU can also contain peripheral devices, and
other components of a computer system; this is called a
system on a chip (SoC).Two typical components of a CPU are
the arithmetic logic unit (ALU), which performs arithmetic and
logical operations, and the control unit (CU), which extracts
instructions from memory and decodes and executes them,
calling on the ALU when necessary. Not all computational
systems rely on a central processing unit. An array processor
or vector processor has multiple parallel computing elements,
with no one unit considered the "center". In the distributed
computing model, problems are solved by a distributed
interconnected set of processors.

In this paper, firstly | introduce the development of
CPU and the background of this paper. On the foundation of
that | explicitly introduce the architecture of RISC CPU and
MIPS CPU which based on RISC architecture, paving the way
for the design of my paper. And then | discuss the design of a
five stage pipeline CPU based on MIPS instruction. The CPU in
this paper mainly includes pipeline module, control module,
interruption module and RAM\ROM module. Using EDA
verification software Modelsim to verify the design on
functional level and gate level. Finally | download the design to
a development-board based on Altera Cyclone4 FPGA. The
result of the verification shows that all functions can be
achieved.
Keywords: CPU; MIPS; pipeline; Interruption.
=
H kb AR R — RFUT DAAT B A HTHEHE P HE
B ZANZERRESUREZHKAE “CPU” I HRBE
WA, AR ENBREEAN. TR, EDONM2
Ot 604E R FHAFF I8 (Weik1961), XL K HS S EFFE
R TFHEN B2 ZMA. RESRERMHEE, “h
RALEEE” MBS BOHHIERNEEESHIITEET
REERIR R, AREEANRERE-—BERARE. £H
R SRR LS W R KT B e B BT e il . E
R, X E SR e LA E HICPUR T R AR E BB &1L

Author o o: School of Computer Science Guangdong University of
Technology Guangzhou, Guangdong, P R. China, 510006.
e-mail: 970133919@qq.com

MFFEEE. it AT —AREANH R ERS
o XA PR SEE T i A SRR AR A K BRI LEE
R, FEEEREKOLIIHMNE. IO R 2R HCPUTT A
RN B R BTl (ERCKESR) . CPURIARAELL
AN ERAE 150X — R B A R A AR AR 15 o I B R
TR A RS A E A RTENL . B2 I A
KEFHR LB A ARSFR .

WXERBNMET P ROBEBREBITY, PRECEITHH
RER, HENER EEBENA TR RTESRISCCPURI S
R TFRISCS 4 MIMIPSCPURKIA S5 SRl N SUREE Mt
THF A . BN B T — R ETMIPSIB LSR5 H MK
LRCPURIBET. ACPUFEAFERAKLAELR, B, i
bIEAEHL, LR ROMFURAMASE: . 8 FIEDAISHIF SR {4 Model s imX
BT T IR EM IR E, BREREITT TRATET
Altera Cyclone4 FPGA MIFFRIR L. 31T T RIFRIFSE R
RF BRI RELIPTA ThEe.

FHE. CPU; MIPS; iK%k, Hifr

[. INTRODUCTION

a) Research status of CPU design and trend

PU is one of the main devices of a computer. Its

main function is to explain computer’s instruction

and deal with the data of software. The
programmable ability of computer generally means to
program CPU. Central process unit, inner memory and
input/output device are three core components of
modern computer. Before 1970s, CPU is composed of
several individual units. Later the CPU manufactured by
semiconductor was developed. The complex circuits of
a microprocessor can be made as a tiny unit with
powerful function.

Central processor broadly means a series of
logic machines that can perform complex computer
programs. The term has been in use in the computer
industry at least since the early 1960s. The form, design,
and implementation of CPUs have changed over the
course of their history, but their fundamental operation
remains much the same.

A computer can have more than one CPU; this
is called multiprocessing. All modemn CPUs are
microprocessors, meaning contained on a single chip.
Some integrated circuits (ICs) can contain multiple
CPUs on a single chip; those ICs are called multi-core
processors. An IC containing a CPU can also contain
peripheral devices, and other components of a
computer system; this is called a system on a chip
(SoC).

© 2015 Global Journals Inc. (US)

Global Journal of Computer Science and T echnology (A) Volume XV Issue II Version I H Year 2015

http://zh.wikipedia.org/wiki/%E5%BE%AE%E7%B1%B3�
http://en.wikipedia.org/wiki/Multiprocessing�
http://en.wikipedia.org/wiki/Microprocessor�
http://en.wikipedia.org/wiki/Integrated_circuit�
http://en.wikipedia.org/wiki/Multi-core_processor�
http://en.wikipedia.org/wiki/Multi-core_processor�
http://en.wikipedia.org/wiki/System_on_a_chip�

Global Journal of Computer Science and T(‘,Chno]ogy (A) Volume XV Issue II Version I H Year 2015

Two typical components of a CPU are the
arithmetic logic unit (ALU), which performs arithmetic
and logical operations, and the control unit (CU), which
extracts instructions from memory and decodes and
executes them, calling on the ALU when necessary.

Not all computational systems rely on a central
processing unit. An array processor or vector processor
has multiple parallel computing elements, with no one
unit considered the ‘'center". In the distributed
computing model, problems are solved by a distributed
interconnected set of processors.

Figure 1-1 : Intel Phenom Quad-Core

Moore's Law makes us can expect the general
situation in the future development of the CPU.
Undoubtedly, high performance, low power

Transistors
Per Die

1 n 10
& 1965 Actual Data

10°4 m MOS Arrays 4 MOS Logic 1975 Actual Data

1975 Projection
Memory

A Microprocessor
10|

104 Y
L 8080

10% 4004
w?-!
104
|
1094

1960

107
10°.|

1965 1970 1975 1980

1985

consumption, high speed and low cost are the future
direction of development.

1. Smaller wiring width and more transistors

Nowadays, Intel's and AMD’s CPUs have used
0.18 or even 0.13 micrometer technology. For current
silicon chips, reducing the wiring width is the key to
raising the speed of the CPU.

Experts predict that the design of monolithic
integrated chip system will reach such a number of
indicators - the minimum feature size reaches 0.1
micrometer, chip integration reaches 200 million
transistors. And some breakthroughs are also made
from the aspect of the production process. IBM has
developed a new chip packaging technology, by which
the chip manufacturers can use aluminum instead of the
traditional copper wire connections to connect
transistors on a chip. Since copper conductors can be
made thinner than the aluminum wire, so that the chip
can be integrated on a larger number of transistors,
which makes the packaging unit of the computing
power has been greatly improved. Copper processor
chip has become the future direction of development.
Researches of copper chip have been performed by
many chipmakers such as Intel and AMD.

2. 64-bit CPU chip manufacturers dominate the market

With the release of Intel Itanium, personal PC
processor market will also be transited into 64-bit. 64-
bitCPUcan handle64-bitdataand 64-bitaddresses and
can provide higher accuracy and larger memory
addressing range.

3. Higher bus speeds

Nowadays the bus has increasingly limited the
performance of CPU. For which various manufacturers
are seeking ways to improve bus speed. It's expected
that within three years Bus speed should be able to
exceed 1GHz.

96 4G

256 212M
128M
64M

tanium™
Pentium® 4
Pentium® |1l

~ Pentium®ll
Pentium®

1990 1995 2000 2005 2010

Figure 1-2 : Moore's Law and the development of IC integration

© 2015 Global Journals Inc. (US)

http://en.wikipedia.org/wiki/Arithmetic_logic_unit�
http://en.wikipedia.org/wiki/Control_unit�
http://en.wikipedia.org/wiki/Memory_%28computers%29�
http://en.wikipedia.org/wiki/Vector_processor�
http://en.wikipedia.org/wiki/Distributed_computing�
http://en.wikipedia.org/wiki/Distributed_computing�
http://en.wikipedia.org/wiki/Distributed_computing�

b) RISC and Pipeline processing

Reduced Instruction Set Computing is a design
pattern for computer central processor. This design idea
has reduced the number of instructions and addressing
modes, making implementation easier, higher
instructions parallelism, and a more efficient compiler.
Current common RISC microprocessors includes DEC
Alpha. ARC. ARM. AVR. MIPS. PA-RISC. Power
Architecture (PowerPC. PowerXCell) and SPARC.

From the earliest, RISC's name comes from the
Berkeley RISC project held by David Patterson in the
University of California, Berkeley. But before him, people
has been proposed a similar design philosophy. IBM
801 project, held by John Cork, started in 1975 and
finished in 1980, probably is the first system designed
under the concept of reduced instruction set. This
design concept originated from the discovery that
although many of the features of traditional processor
are designed to make the code easier to write, but these
complex features require several cycles to achieve and
often are not used by the program. In addition, the
difference between the speed of the processor and the
main memory has become increasingly bigger.
Prompted by these factors, a series of new technologies
were introduced, making the processor's instruction
executed in pipeline while reducing the number of
Processor memory access.

In the early period, Characteristics of such an
instruction set is the small number of instructions, each
instruction word in standard length, short execution
time, and implementation details of the central
processor for the machine-level program is visible and
so. In fact in the later development, RISC and CISC have
learned each other during the process of competitions.
Now the RISC instruction set also has reached hundreds
and operating cycle are no longer fixed. Nonetheless,
fundamental principles of RISC design - optimization for
pipelined processor — have not changed yet. And
following this principle, a concurrent variant of RISC is
developed — named VLIW — combining the short and
length unity instructions into very long instruction. Each
time you run a very long instruction, equal to
concurrently run multiple short instructions.

On the other hand, the most common complex
instruction set x86 CPU, although the instruction set is
CISC, but it will make every effort to accelerate the
hardware circuit to control commonly used simple
instructions. Complex instruction which is not used often
will be given to micro-code sequencer to “decode slowly
and run slowly”. Hence it's called "RISCy x86".

RISC processor should be designed to not only
make effective execution pipeline processing, but also
enable optimizing compiler optimized instruction
generated code. Below, we will describe RISC processor
design principles and techniques.

1. Efficient pipelining

The relation in pipeline means because there is
some association in adjacent or similar instruction, later
instruction cannot be executed within originally
designated clock cycle. In general, the pipeline relation
is divided into the following three types.

1. Data hazards Data hazards occur when instructions
that exhibit data dependence modify data in
different stages of a pipeline. Ignoring potential data
hazards can result in race conditions (sometimes
known as race hazards).

2. Structural hazards A structural hazard occurs when
a part of the processor's hardware is needed by two
or more instructions at the same time. A canonical
example is a single memory unit that is accessed
both in the fetch stage where an instruction is
retrieved from memory, and the memory stage
where data is written and/or read from memory.[3]
They can often be resolved by separating the
component into orthogonal units (such as separate
caches) or bubbling the pipeline.

3. Control hazards (branch hazards) Branching
hazards (also known as control hazards) occur with
branches. On many instruction pipeline micro-
architectures, the processor will not know the
outcome of the branch when it needs to insert a
new instruction into the pipeline (normally the fetch
stage).

There are several methods used to deal with
hazards, including pipeline stalls/pipeline bubbling,
register forwarding, and in the case of out-of-order
execution, the scoreboarding method and the Tomasulo
algorithm.

2. Short cycle time

To increase the clock frequency by optimizing
the process. To optimize circuit design structure, reduce
instruction fetching time and read/write latency, thus
reducing instruction period, which can greatly improve
the efficiency of the machine.

3. Load/Store Structure

Load/Store Structure is used to transfer data
between register file and memory. Load is used to fetch
data from memory, while store is used to store data into
memory. These two instructions are used frequently and
is the most significant one in the instruction set.
Because the other instructions can only handle register
file. When data is in the memory, you have to load the
data into register file, and store the data back into it after
execution. In the register file, you don’t have to access
the memory when data have to be used again. This
Load/Store structure is the key for single period clock
execution.
4. Simple fixed format instruction system

RISC designers focus on those frequently used
commands, and try to make them simple and efficient
features. For not commonly used functions we often

© 2015 Global Journals Inc. (US)

(A) Volume XV Issue II Version I H Year 2015

Global Journal of Computer Science and T echnology

http://zh.wikipedia.org/w/index.php?title=IBM_801&action=edit&redlink=1�
http://zh.wikipedia.org/w/index.php?title=IBM_801&action=edit&redlink=1�
http://zh.wikipedia.org/w/index.php?title=IBM_801&action=edit&redlink=1�

(A) Volume XV Issue Il Version I H Year 2015

Global Journal of Computer Science and T echnology

accomplished through a combination of instruction.
Therefore, when implementing the special features on
RISC machines, the efficiency may be lower, but you
can use pipelining and superscalar techniques to
improve and make up. While the CISC instruction set
computer is rich, with special instructions to perform
specific functions. Therefore, the efficiency of handling
special tasks is higher.

5. No micro-code technology

Since RISC use Simple, rational and simplified
instruction addressing modes, so it does not need
micro-code technology, which means without micro-
code ROM, but execute instruction directly in the
hardware. This means eliminating the original machine
microcode instructions into the intermediate step, and it
reduce the number of machine cycles needed to
execute an instruction. Also it saves space so that the
chip can be saved using the microprocessor chip space
expansion function.

6. Huge register file

A register file (register file) is an array consisting
of a plurality of registers in the CPU, which usually
realized by a fast static random access memory
(SRAM).This RAM has a dedicated reading port and
writing port, multiple concurrent accessing different
registers. CPU's instruction set architecture is always
defined a number of registers used for temporary
storage of data between memory and CPU computing
components. In a more simplified CPU, these
architectures registers (architectural registers)-
correspondence with the physical register within the
CPU. In a more complex CPU, we use register renaming
techniques, during the execution architecture which
makes physical storage entry in the register which
corresponds to the register file(physical entry stores)is
dynamically changed. Register file is part of the
instruction set architecture. The program can be
accessed, which is transparent to the CPU cache
(cache) different.

7. Harvard bus architecture

Harvard architecture is a memory structure to
store program instructions and data separately. First, the
CPU read program instruction in the program instruction
memory. And then it gets the data address after
decoding. Then it reads data in the according data
memory, finally handle next execution (usually
instruction). Instruction store and data store is
separated, while Storing data and instructions can be
simultaneously. Data and instruction can have different
data width. For example, Microchip’s PIC16’s program
instruction is 14 bit width, while data is 8 bit width.
Harvard bus architecture CPU usually has relatively high
execution efficient. Program instructions and data
organization and storage instructions apart,
implementation can be pre fetch the next instruction.

© 2015 Global Journals Inc. (US)

8. Delayed branch

Insert one or several effective instruction in the
branch instruction. When the program is executed, after
these into the instruction execution is completed, then
executes the instruction, therefore, transfer instruction
seems to be delayed, this technique known as delayed
transfer of technology.

9. Hardwired controller

Once control unit was build, unless redesigned
and remapping, it's impossible to add new functions.
Hard-wired controller is one of the most complex logic
components in the CPU. When executes different
machine instructions, it decodes the instruction through
activates a series of different control signals, making the
control unit has few explicit structure and in a mess.
Since that, hard-wired controller is replaced by micro-
program controller. However, under the same
semiconductor process, hard-wired controller is faster
than micro-program controller.

10. Assembly technology optimization
11. Highlevel programming language oriented

c) Structure and content

This paper describes the design of a five-stage
pipeline CPU with interruption system. Including CPU’s
research background, instruction set, pipeline data path
and the design of interruption and exception system.
And we use EDA tools for the simulation of the design.
Finally we proof that the design meets the performance
requirement.

The chapters are arranged as follows

Chapter one is the brief introduction of the
research background. It mainly introduces the
background and related research status and CPU's
integrated circuit industry.

Chapter two is the brief introduction of the
development platform and MIPS architecture. It mainly
introduces the software and hardware development
platform for the project and FPGA'’s design flow. It also
introduces MIPS architecture.

Chapter three describes the design of pipeline
data path. It introduces the pipeline design method, the
composition of the pipeline and design and verification
of associated component.

Chapter four describes the design of
interruption and exception circuits. It introduces the
principal of exception circuits and verification of related
components.

Chapter five is CPU functional verification.

[I. DEVELOPMENT PLATFORM AND MIPS
ARCHITECTURE
This chapter mainly introduces the development

platform of this paper — the EDA development and
verification system based on Altera Cyclone4 FPGA and

Quartus + Modelsim. Then we will introduce the
background of our design — MIPS instruction set and
architecture.

a) Technology for CPU hardware and

implermentation

i. Hardware description language

In electronics, a hardware description language
or HDL is a specialized computer language used to
program the structure, design and operation of
electronic circuits, and most commonly, digital logic
circuits.

A hardware description language enables a
precise, formal description of an electronic circuit that
allows for the automated analysis, simulation, and
simulated testing of an electronic circuit. It also allows
for the compilation of an HDL program into a lower level
specification of physical electronic components, such as
the set of masks used to create an integrated circuit.

A hardware description language looks much
like a programming language such as C; it is a textual
description consisting of expressions, statements and
control structures. One important difference between
most programming languages and HDLs is that HDLs
explicitly include the notion of time.

HDLs form an integral part of Electronic design
automation systems, especially for complex circuits,
such as microprocessors.

design

ii. Structure of HDL

HDLs are standard text-based expressions of
the spatial and temporal structure and behavior of
electronic systems. Like concurrent programming
languages, HDL syntax and semantics include explicit
notations for expressing concurrency. However, in
contrast to most software programming languages,
HDLs also include an explicit notion of time, which is a
primary attribute of hardware. Languages whose only
characteristic is to express circuit connectivity between a
hierarchy of blocks are properly classified as netlist
languages used in electric computer-aided design
(CAD). HDL can be used to express designs in
structural, behavioral or register-transfer-level
architectures for the same circuit functionality; in the
latter two cases the synthesizer decides the architecture
and logic gate layout.

HDLs are used to write executable
specifications for hardware. A program designed to
implement the underlying semantics of the language
statements and simulate the progress of time provides
the hardware designer with the ability to model a piece
of hardware before it is created physically. It is this
excitability that gives HDLs the illusion of being
programming languages, when they are more precisely
classified as specification languages or modeling
languages. Simulators capable of supporting discrete-
event (digital) and continuous-time (analog) modeling
exist, and HDLs targeted for each are available.

| orpsoc_bench |

lor1200_monitor]|

[orpsoc_fpga_top |

leth_top| | |uart_top|
| audio_top | | ps2_top | | ssvga top |
CPU Memory Peripheral
Subsystem Subsystem Subsystem

Figure 2-1 . an example of Verilog HDL hierarchy

ii. Comparison with control-flow languages

It is certainly possible to represent hardware
semantics using traditional programming languages,
which operate on control flow semantics as opposed to
data flow, such as C++, although to function as such,
programs must be augmented with extensive and
unwieldy class libraries. Primarily, however, software
programming languages do not include any capability
for explicitly expressing time, and this is why they cannot
function as hardware description languages. Before the

recent introduction of SystemVerilog, C++ integration
with a logic simulator was one of the few ways to use
OOP in hardware verification. SystemVerilog is the first
major HDL to offer object orientation and garbage
collection.

Using the proper subset of hardware
description language, a program called a synthesizer (or
synthesis tool) can infer hardware logic operations from
the language statements and produce an equivalent
netlist of generic hardware primitives to implement the

© 2015 Global Journals Inc. (US)

(A) Volume XV Issue II Version I H Year 2015

Global Journal of Computer Science and T echnology

(A) Volume XV Issue Il Version I n Year 2015

Global Journal of Computer Science and T echnology

specified behavior. Synthesizers generally ignore the
expression of any timing constructs in the text. Digital
logic synthesizers, for example, generally use clock
edges as the way to time the circuit, ignoring any timing
constructs. The ability to have a synthesizable subset of
the language does not itself make a hardware
description language.

iv. Design using HDL

As a result of the efficiency gains realized using
HDL, a majority of modern digital circuit design revolves
around it. Most designs begin as a set of requirements
or a high-level architectural diagram. Control and
decision structures are often prototyped in flowchart
applications, or entered in a state-diagram editor. The
process of writing the HDL description is highly
dependent on the nature of the circuit and the designer's
preference for coding style. The HDL is merely the
'capture language,' often beginning with a high-level
algorithmic description such as a C++ mathematical
model. Designers often use scripting languages (such
as Perl) to automatically generate repetitive circuit
structures in the HDL language. Special text editors offer
features for automatic indentation, syntax-dependent
coloration, and macro-based expansion of entity/
architecture/signal declaration.

The HDL code then undergoes a code review,
or auditing. In preparation for synthesis, the HDL
description is subject to an array of automated
checkers. The checkers report deviations from
standardized code guidelines, identify potential
ambiguous code constructs before they can cause
misinterpretation, and check for common logical coding
errors, such as dangling ports or shorted outputs. This
process aids in resolving errors before the code is
synthesized.

In industry parlance, HDL design generally ends
at the synthesis stage. Once the synthesis tool has
mapped the HDL description into a gate netlist, this
netlist is passed off to the back-end stage. Depending
on the physical technology (FPGA, ASIC gate array,
ASIC standard cell), HDLs may or may not play a
significant role in the back-end flow. In general, as the
design flow progresses toward a physically realizable
form, the design database becomes progressively more
laden with technology-specific information, which cannot
be stored in a generic HDL description. Finally, an
integrated circuit is manufactured or programmed for
use.

v. Simulating and debugging HDL code

Essential to HDL design is the ability to simulate
HDL programs. Simulation allows an HDL description of
a design (called a model) to pass design verification, an
important milestone that validates the design's intended
function (specification) against the code implementation
in the HDL description. It also permits architectural
exploration. The engineer can experiment with design

© 2015 Global Journals Inc. (US)

choices by writing multiple variations of a base design,
then comparing their behavior in simulation. Thus,
simulation is critical for successful HDL design.

To simulate an HDL model, an engineer writes a
top-level simulation environment (called a testbench). At
minimum, a testbench contains an instantiation of the
model (called the device under test or DUT), pin/signal
declarations for the model's I/O, and a clock waveform.
The testbench code is event driven: the engineer writes
HDL statements to implement the (testbench-generated)
reset-signal, to model interface transactions (such as a
host-bus read/write), and to monitor the DUT's output.
An HDL simulator — the program that executes the
testbench — maintains the simulator clock, which is the
master reference for all events in the testbench
simulation. Events occur only at the instants dictated by
the testbench HDL (such as a reset-toggle coded into
the testbench), or in reaction (by the model) to stimulus
and triggering events. Modern HDL simulators have full-
featured graphical user interfaces, complete with a suite
of debug tools. These allow the user to stop and restart
the simulation at any time, insert simulator breakpoints
(independent of the HDL code), and monitor or modify
any element in the HDL model hierarchy. Modemn
simulators can also link the HDL environment to user-
compiled libraries, through a defined PLI/VHPI interface.
Linking is system-dependent (Win32/Linux/SPARC), as
the HDL simulator and user libraries are compiled and
linked outside the HDL environment.

Design verification is often the most time-
consuming portion of the design process, due to the
disconnect between a device's functional specification,
the designer's interpretation of the specification, and the
imprecision of the HDL language. The majority of the
initial test/debug cycle is conducted in the HDL
simulator environment, as the early stage of the design
is subject to frequent and major circuit changes. An
HDL description can also be prototyped and tested in
hardware — programmable logic devices are often used
for this purpose. Hardware prototyping is comparatively
more expensive than HDL simulation, but offers a real-
world view of the design. Prototyping is the best way to
check interfacing against other hardware devices and
hardware prototypes. Even those running on slow
FPGAs offer much shorter simulation times than pure
HDL simulation.

b) EDA system

i. Quartusll

Quartus Il is a software tool produced by Altera
for analysis and synthesis of HDL designs, which
enables the developer to compile their designs, perform
timing analysis, examine RTL diagrams, simulate a
design's reaction to different stimuli, and configure the
target device with the programmer. The latest version is
13sp1 which is a service pack of version 13.

ii. Modelsim
Mentor Graphics was the first to combine single
kernel simulator (SKS) technology with a unified debug
environment for Verilog, VHDL, and SystemC. The
combination of industry-leading, native = SKS

performance with the best integrated debug and
analysis environment make ModelSim® the simulator of
choice for both ASIC and FPGA designs. The best
standards and platform support in the industry make it
easy to adopt in the majority of process and tool flows.

ANALYZE

MIXED HDL SIMULATION

CREATE

SIMULATE

[CODE
| COVERAGE |

MAMNAGE

Figure 2-2 : Modelsim simulation structure

c) FPGA design and verification

Field-programmable gate array (FPGA) is a
device that has numerous gate (switch) arrays and can
be programmed on-board through dedicated Joint Test
Action Group (JTAG) or on-board devices or using
remote system through Peripheral Component
Interconnect Express (PCle), Ethernet, etc. FPGAs are
based on static random-access memory (SRAM). The
contents of the memory of an FPGA erase once the
power is turned off. Usually, FPGAs can be programmed
several thousands of times without the device getting
faulty.

Fig. 2-3 shows the architecture of an FPGA. It
includes logic blocks, input/output (I/O) cells, phase-
locked loops/delay-locked loops (PLLs/DLLs), block
RAM and interconnecting matrix. Nowadays, FPGAs are
also coming up with several hard intellectual property
(IP) blocks of PCle, Ethernet, Rocket /O, PHYs for DDR3
interfaces and processor cores (for example, PowerPC
in Xilinx Virtex-5 FPGA and ARM cores in both Xilinx and
Altera series FPGAS).

To level up with the new technology, both Xilinx
and Altera have come up with new series of FPGAs
(Virtex 7 from Xilinx and Stratix-V from Altera), which are
manufactured with TSMC’s 28nm silicon technology.
These FPGAs focus on a high speed with low power
consumption using various parameters and bringing

down the FPGA core voltage to as low as 0.9V. Along
with the new FPGAs, Xilinx and Altera are also focused
on improving their synthesis tools to meet the routing
constraints and to analyze the timing and power
consumption of the FPGA.

© 2015 Global Journals Inc. (US)

Year 2015

~

(A) Volume XV Issue II Version I

Global Journal of Computer Science and T cchn()l()g\'

Global Journal of Computer Science and chhnology (A) Volume XV Issue II Version I ﬂ Year 2015

DESIGN OF A FIVE STAGE PIPELINE CPU WITH INTERRUPTION SYSTEM

T

INTERCONMECT MATRIX

L

sahbbhh e

el oo e o e o o
o o o o g
af s o o o o s
=i i e s e e
i effs effs o oo o e
ot i o o o o off

=

1D CELLS

Do

LOGIC

! BLOCKS

nTPTPPPTITP T,

R

BLLhdG

Figure 2-3 : FPGA architecture

As the aim here is to learn the basic technique
of FPGA design to work with both the tools and devices,
let’'s get back to the design flow through the steps.

Step 1: Requirement analysis and SRS preparation

Before starting work on the design, all
requirements should be documented as system
requirement specification (SRS) by designers and
approved by various levels in the organization, and most
importantly, the client. During this phase, FPGA
designers, along with the hardware team, should identify
suitable FPGAs for the project. This is very important
because designers need to know parameters such as
the I/O voltage levels, operating frequency and external
peripheral interfaces.

It is also important to determine which IP cores
are available with the tools or FPGA family used for the
project. Some IP cores are free, while others are
licensed and paid for. This cost should be reviewed
several times by the team before releasing it to the client
and listed separately for approval from the client or
management.

The SRS should contain the following (the list
pertains to the FPGA only):

1. Aim of the project

2. Functionalities to be handled by the design,
followed by a short description

3. A concept-level block diagram depicting the major
internal peripherals/IPs of the FPGA

4. FPGA vendor, family, speed grade, package, core
voltage, supported 1/O levels, commercial/industrial

type

© 2015 Global Journals Inc. (US)

5. List of blocks that will be used as IPs. Mention
clearly what's available for free with the vendor-
provided IPs, hard IPs available within the FPGA and
paid licensed IPs to be used

6. Type of processor interfaces used (soft processor or

external processor interfaces)

Type of memory interfaces used

8. A section about the timing diagram of the major
peripheral interfaces such as the processor
interface and flash interface.

9. Type of FPGA configurations to be used

10. Reset and clock interface planned

11. A Dbrief summary of the estimated resources
required for implementation of the logic and I/O pins
to be used

12. HDL (VHDL, Verilog, ‘C’ or mixed) used for RTL
coding, tools and version to be used for synthesis,
implementation and simulation

To calculate the approximate resources
required, go through the IP datasheets for the resources
used for each IP, and also calculate the resources used
by custom RTL. There is no rule of thumb for calculating
resources at this level. These can be calculated
approximately based on experience, reviews or analysis.
The most important thing is to get the resource
requirement reviewed by the hardware team, software
team and a third party several times before submitting it
to the client.

Step 2: Detailed design document preparation

Once the SRS is approved by the client, the
next phase is to make the detailed design document.

~

This document should consist of:

1.
2.
3.

~

Brief introduction to the project

FPGA part details with proper specification
Detailed block diagram depicting the
modules of the FPGA design

Top-level module block diagram showing input and
output ports with their active levels and voltage
levels which are connected to the external
peripherals, connectors and debug points
Hierarchical tree of the modules

Each module should have:

i. Detailed explanation of the functionality
ii. Register information
iii. List of input and output ports with source and
destination module name, and active level of
the signal
iv. A block diagram/digital circuit diagram of finite-
state machines indicating how the RTL will be
implemented
v. Clock frequency to be used, if a synchronous
module is used
vi. Reset logic implementation
vii. File name which will be implemented
viii. Approximate FPGA resource utilization
ix. Testbench for testing each
independently

Input system clock frequency and reset level
Explanation of how the internal clock frequencies
are derived—using phase-locked loop (PLL) or
delay-locked loop (DLL) with the input clock. Also,
explain how the global clock buffers are used.
Mention clock signals with their frequency and
voltage levels that are driven out of the FPGA for
external peripherals.

internal

module

9. A simulation environment setup for the design
(called ‘device under test) with a top-level
testbench. A block diagram indicating how the clock
source, reset and pattern generators, and bus
functional modes are connected to the top-level
module under testing will be helpful here. Mention
how log files are used to register the activity of the
required signal
Make a page with the heading ‘FPGA Synthesis and
Resource Utilization.” Keep it blank with a note that
once the final implementation is done, this page will
be updated
11. Under the heading ‘Timing Analysis,” mention the
major timing parameters of the control signals to be
maintained, with a timing budget and waveform
drawn manually or using timing analyzer tool.
Mention the major timing constraints that will be
used in the UCF or QSF files of the design
As mentioned in Step 1, the FPGA team
members, hardware and software team members and
architects should review the document at several stages
before releasing it to the client.

Step 3: Design entry and functional simulation

Each module owner should develop a
testbench for his module, capture simulated waveforms
or assertion-based log report, and get it reviewed by the
team lead. Before going for synthesis, every module
should be verified thoroughly for functionality using
simulation. Regular code review will help to reduce
errors and simulation time. Once the simulation of
individual modules is done, the next step is to integrate
the module and do full-system-level functional
simulation with assertion-based log report.

10.

DESIGN REQUIREMENT
GATHERING AND SRS

.

DETAILED DESIGN DOC
PREPARATIONUPDATION

E

4 PAss

PREPARATION/UPDATION

DESIGN ENTRY THROUGH
SCHEMATIC/RTL CODING
‘ FAIL
| FUNCTIOMNAL SIMULATION ’—
| SYNTHESISE THE DE.BLGN}—+

DOCUMENT,
CODE REVIEW
PHASE

-

ADDWMODIFY THE
DESIGN CONSTRAINTS

P —

| TRANSLATION
MAPPING, PLACE
AND ROUTE
[

TIMING AMNALYSIS
AND SIMULATION

FAIL

PASS

7h| POWER ANALYSIS W
v

PROGRAMMING
FILE GENERATION

Figure 2-4 : FPGA design flowchart

© 2015 Global Journals Inc. (US)

5

(A) Volume XV Issue II Version I n Year 201

Global Journal of Computer Science and T echnology

(A) Volume XV Issue Il Version I E Year 2015

Global Journal of Computer Science and T echnology

Step 4: Synthesis

If the functional simulation
requirement, the next phase is synthesis.

In this phase, the integrated project is
synthesized using a vendor-specific synthesis tool
based on the optimization settings. Whenever RTL is
modified, it is always good to complete Step 3 with unit-
level and full-system functional simulation. Always follow
vendor-specific coding guidelines and library modules
for better optimization of the design.

During this phase, synthesis tools verify the
design for syntax errors and do block-level floor
planning.

Step 5: Adding design constraints

Once synthesis is complete, constraints can be
added to the design. These constraints are usually
included in a separate flee where the designer lists out
the signal with its corresponding FPGA pin number, 1/O
voltage levels, current-driving strength for output
signals, input clock frequency, hard block or module
location, timing paths to be ignored, false paths, other
IP-specific constraints recommended by the vendor, etc.
This information is passed on to the placement phase.

Step 6: Placement and routing phase

Before routing, the synthesis tool maps the
buffers, memory and clock buffers to the specific vendor
libraries. That is, in this phase, logical blocks are
translated into physical file format. Then, in the place-
and-route process, the tool places and routes the
design considering the user constraints and
optimization techniques. Timing simulation can be done
at this stage to verify the functionality, so that the design
meets all the functional and timing requirements.

Step 7: Programming file generation

After obtaining a satisfactory timing and
functional behavior of the design, it is time to generate
the bit file that is downloaded to the FPGA to test the
functionality on the board with actual peripherals.

For each stage, the tool will provide the
corresponding report files, using which the designer can
analyses time delays, power, resource usage, unrouted
signals and I/O pins list.

In short

To summarize the above points, the FPGA
design flow is shown as a simple flow-charting Figure 2-
3. There may be minor variations in the design flow
during the requirement stage and the design and
document preparation phase, from one organization or
project to another, but the overall FPGA design flow
remains the same.

d) MIPS architecture

MIPS (originally an acronym for Microprocessor
without Interlocked Pipeline Stages) is a reduced
instruction set computer (RISC) instruction set

satisfies the

© 2015 Global Journals Inc. (US)

architecture (ISA) developed by MIPS Technologies
(formerly MIPS Computer Systems, Inc.). The early MIPS
architectures were 32-bit, with 64-bit versions added
later. Multiple revisions of the MIPS instruction set exist,
including MIPS I, MIPS I, MIPS I, MIPS IV, MIPS V,
MIPS32, and MIPS64. The current revisions are MIPS32
(for 32-bit implementations) and MIPS64 (for 64-bit
implementations). MIPS32 and MIPS64 define a control
register set as well as the instruction set.

i. MIPS classical five-stage pipeline

MIPS architecture is designed based on
pipeline architecture. Every MIPS instruction is divided
into five stages once it is fetched from cache and every
stage takes stable time. Usually each stage takes one
clock cycle, while RD/WB operation takes half clock
cycle. The execution process of MIPS processor is
divided into five stages as follow.

1. Instruction Fetch (IF) Stage

a. Instruction Fetch
Instruction’s address in PC is applied to
instruction memory that causes the addressed
instruction to become available at the output lines of
instruction memory.

b. Updating PC
The address in PC is incremented by 4 but what
is written in PC is determined by the control signal
PCSrc. Depending upon the status of control signal
PCSrc, PC is either written by the branch target address
(BTA) or the sequential address (PC + 4).

2. Instruction Decode (ID) Stage

a. Instruction is decoded by the control unit that takes
6-bit opcode and generates control signals.

b. The control signals are buffered in the pipeline
registers until they are used in the concerned stage
by the corresponding instruction.

c. Registers are also read in this stage. Note that the
first source register’s identifier in every instruction is
at bit positions [25:21] and second source register’s
identifier (if any) is at bit positions [20:16].

d. The destination register's identifier is either at bit
positions [15:11] (for R-type) or at [20:16] (for Iw
and addi). The correct destination register’s
identifier is selected via multiplexer controlled by the
control signal RegDst. However, this multiplexer is
placed in the EX stage because the instruction
decoding is not finished until the second stage is
complete. But this identifier is buffered until the WB
stage because an instruction write sa register in the
WB stage.

3. Execution (EX) Stage

a. This stage is marked by the use of ALU that
performs the desired operation on registers(R-type),
calculates address (memory reference instructions),
or compares registers (branch).

b. An ALU control accepts 6-bitfunctfield and 2-bit
control signal ALU Op to generate the required
control signal for the ALU.

c. BTAs also calculated in the EX stage by a separate
adder

Memory (M) Stage

Data memory is read (lw) or written (sw) using the
address calculated by the ALU in EXstage.
b. ZERO output of ALU and BRANCH signal generated

by the control unit are ANDed to determine the fate
of branch (taken or not taken).

5. Write Back (WB) Stage

Result produced by ALU in EX stage (R-type) or
data read from data memory in M stage(lw) is
written in destination register. The data to be written
in destination register is selected via multiplexer
controlled by the control signal MemToReg.

IF :fm MEM \':B
Instruction 1 from . ALU from . : :
5 l-cache regﬁ:ls}er D-cache regilsim : :
g . : : = i :
2 Instruction 2 : :
$: : IF RD ALU MEM WB :
g : s : '
l st IF RD ALU MEM WB
Time -
Figure 2-5 : MIPS five-stage pipeline
ii. MIPS register
MIPS have 32 common register ($0-$31). The Table 2-1 below describes the aliases and function of these 32
registers.
Table 2-1 : MIPS register
;REGISTER NAME USAGE
$0 $zero |constant value 0
$1 $at Reserved for assembler
$2-$3 $v0-$v1 values for results and expression evaluation
$4-$7 $a0-$a3 |arguments
$8-$15 $t0-$t7 Temporary or random
$16-$23 $s0-$s7 saved
$24-$25 $t8-$t9 Temporary or random
$28 $gp |Global Pointer
$29 Ssp Stack Pointer
$30 $fp Frame Pointer
$31 $ra return address

iii. MIPS instruction set

Instructions are divided into three types: R, |
and J. Every instruction starts with a 6-bit opcode. In
addition to the opcode, R-type instructions specify three
registers, a shift amount field, and a function field; I-type
instructions specify two registers and a 16-bit immediate
value; J-type instructions follow the opcode with a 26-bit
jump target.

Since the MIPS instruction set instruction
involves many, not all will be used in our design, so only
the selection and design-related instructions are
described in this article.

Now the MIPS instruction used in this article are
listed below, there are two main type of instruction -
integer instruction and interrupt and exception handling
instructions.

© 2015 Global Journals Inc. (US)

Year 2015

[y
=

Volume XV Issue II Version I

A)

Global Journal of Computer Science and T echnology

(A) Volume XV Issue Il Version I E Year 2015

Global Journal of Computer Science and T echnology

Table 2-2 : MIPS instruction set

integer instruction meaning
add addrd, rs, rt #rd € rsoprt
sub subrd, rs, it #rd € rsoprt
and andrd, rs, it #rd € rsoprt
Or orrd, rs, rt #rd € rsoprt
Xor xorrd, rs, it #rd €rsoprt
Sl sl rd, rt, sa #rd € rt shift sa
Srl srlrd, rt, sa #rd € rt shift sa
Sra srard, rt, sa #rd € rt shift sa
Jr jrrs #PC € rs
addi addirt, rs, imm #rt € rs + imm
andi andirt, rs, imm #rt € rs op imm
Ori orirt, rs, imm #rt € rs op imm
Xori xorirt, rs, imm #rt € rs op imm
Lw Iw rt, offset(rs) #rt € memory[rs + offset]
Sw sw rt, offset(rs) #memory[rs + offset] < rt
beq beqrs, rt, label #if (rs==rt) PC < label
bne bners, rt, label #if (rs!=rt) PC < label
Lui j target #PC € target
J jal target #r31< PC+8 ; PC € target
Jal jrrs #PC € rs
Interruption and exception instruction meaning
syscall System call
eret Exception execution return
mfcO Fetch control word
mtcO Store control word

[1I. DESIGN OF THE PIPELINE CIRCUIT

a) The basic concepts of pipelining

CPU pipeline is a kind of technology that
decomposes instruction into multiple steps, making
each step of the operation overlapped, so as to realize a
few instructions in parallel processing and to speed up
the programming process. Each step has its dependent
circuit to handle. When a step is finished, it goes into the
next step, and the further step handles the next
instruction. When the pipeline technique is adopted,
there is no acceleration of single instruction execution,
operation steps for each instruction doesn’t reduce yet.
While different steps of instructions executed at the
same time, therefore looked from the overall it speeds
up the instruction process, shortens the program
execution time. In order to meet the higher clock
frequency that common pipeline design can't adapt to,
pipeline depth in the high end CPU gradually increases.
When the pipeline depth at the 5~6 level and above,
usually called super pipelining structure (Super
Pipeline).Obviously, the more pipeline stages, each
stage time shorter, clock cycle can be designed more
short, instruction faster, instruction average execution
time is short. Pipelining is by increasing the computer
hardware to achieve. It requires each functional section
can work independently of each other, which should
increase the hardware, correspondingly increase the
complexity of control. Without the operating
components independent of each other, is likely to occur

© 2015 Global Journals Inc. (US)

in various conflicts. For example, to be able to prefetch
instructions, we need to increase the hardware
instruction, and store the fetched instructions in the
instruction queue buffer, so the microprocessor can
fetch and execute instructions to operate at the same
time.

b) Design of each stage of the pipeline
i. The design of the instruction fetch stage IF
1. Functional description

IF stage is the first stage of the pipeline, it has
four main functions.

1) Automatically adds 4 to PC address according to
the clock.

2) Take PC address to the instruction memory, and
fetch the next instruction from the instruction
memory, and pass it to the pipeline register in the
next level.

3) Make decision for the instruction process flow. First,
when the CPU processes according to the
sequence of the instruction address, we choose the
address of the next instruction as the address of the
previous instruction plus 4. Second, when the CPU
performs conditional branch instruction, we use mux
to choose branch address. Third, when the CPU
performs register branch instruction, we register
branch address according to the mux. Fourth, when
the CPU performs jump instruction, we use mux to
choose branch address.

When the control hazard occurs, the CPU fetches
temporary instruction and send empty instruction to
the decode stage.

2. Module division

As Figure 3-1 shows, IF stage is made of two
modules — program pointer register PC and program
memory module.

[e
DIDROCIDROC
2 da3zcla
dfe32 regpe mud_fimuedd
wo) enable
woir [clfk 3.0
A .0 af[3t.0)
(5 :Z) ——] o3t
g —)
—
s1.0]
= y
il
= pipeimem:instmen i3 1.0]
pesourcel 10|
c|kD ok | e
. et g21.0] | {0
iz]

Figure 3-1 : IF stage module division

3. Logic implementation

The design uses 32 bit register with enable bit
to implement program pointer register PC. The
automatically adding of the address is done by a
constant adder with incremental value 4. We use Altera
LPM_Mem IP to implement instruction memory quickly.

ii. The design of the instruction decode stage ID
1. Functional description

ID stage is the second stage of the pipeline, it
has three main functions.

(1) Decode the instruction and control each module of
the CPU according to the decoding result.

2) Implement register file
(3) Control the pipeline process through control unit.
2. Module division
As Figure 3-2 shows, ID stage is made of three

modules —pipeline register, common register file and
control unit.

dffe32:regins

wpcir [T enable
clk - clk]
clm i q[31..0] I sinst[31..0]
ins[31. 0] d[31..0]
dffe32regpc
enable
Ik
i ars1..01 Edpc431.0]
po4[31 0] [d[31..0]

© 2015 Global Journals Inc. (US)

Year 2015

(I
w

Volume XV Issue II Version I

(A)

Global Journal of Computer Science and T echnology

(A) Volume XV Issue Il Version I E Year 2015

Global Journal of Computer Science and T echnology

wwreg E——
clk O
clrn [

regfileregfile

inst[31..0) [

wdi[31..0][25

FFNC --
wrn[4..U]D———]_

we
clk
clrn
rnal4..0]
rn b[4..0]
wn [4..0]

d[31..0]

qal31..0] pP——m
qb[31..0]

pipeidcu:cu

e g
ewreg
emireg
mm2req
rertequ
mrn[4..0]
ern[4..0]
func[5..0]
op[5..0]
rs[4..0]
rif4..0]

L ELAL]]

R

aluc[3..0]
fwdaft..0]
Fwdb [1..01
pesource(1..01

wreg
m2reg
wWImem
regri
aluimm
no stall
sext
shift

jal

CETETTETEET

Figure 3-2 : 1D stage module division

3. Logic implementation

Realization method of pipeline registers is
identical with the PC in the front section, so we will not
repeat them. Redfile uses multiplexer for multiple
address choice. At the same time, according to MIPS
architecture, we set the value of register 0 as constant 0.
The control unit all uses a hard-wired logic circuits to
achieve.

ii. The design of the execution stage EXE
1. Functional description

EXE stage is the thirdstage of the pipeline. Its
main functions areto calculate the input data and other
logic process according to the control signal aluc.
Control signal aluc is defined as follows

Table 3-1 : aluc control signal

aluc[3:0]
X000 ADD
X100 SUB
X001 AND
X101 OR
X010 XOR
X110 LUI
0011 SLL
0111 SRL
1111 SRA

© 2015 Global Journals Inc. (US)

2. Module division

As Figure 3-3 shows, EXE stage is made of ALU

and multiplexer.

BMm~2

L—t:.bernu‘.m

mux2x32:save_pch

ern0f4. 0] []
o3I
ermn~3
ern~2
)
ern~1
)
emn-~{0
)
alu:al_unit
mux2x3Z:alu_ina a0
P b3..0) 31.9]
eshn?D sel i [|
CEIRR)| - dataDxl31..01 wiiaglly
aimmi3 .01 1 catast i
mux2x3Z:alu_inb
ealuimm [0 sl '
eb[31..0 | dataDul31..00 resultf. 0}
datatx[31..0]
cla3Zret_addr
0 ci
epcd(31.0] [y al31..0] sumf3.0}
3 HO0000004 S =i B[34..0]
4
ealucl3. 0|

Figure 3-3 : EXE stage module division

3. Logic implementation

Because the ALU to complete a series of logic
operations such as addition and subtraction shift, so we

szl

datalx{31..0]
dataix31..01

™)

2. Module division

RAM module.

need to use special optimization algorithms and
architectures, in order to realize the fast operation, and

shorten the critical path delay line.
iv. The design of the memory stage MEM
1. Functional description

MEM stage is the fourth stage of the pipeline.

Its main function is to read and write data memory.

inclk F
comb

addr31. 0] ID—

lpm_ram_dgiram

inclock

outclock

we q[31..0]

data[31..0]
address[4..0]

As Figure 3-4 shows, MEM stage is made of a

———{dataout[31..0]

datain[31..0] p—

outclk T —

Figure 3-4 : MEM stage module division

© 2015 Global Journals Inc. (US)

resulfB1. 0] |———{Tpealul21.0]

Year 2015

(I
(%)

Volume XV Issue II Version I

(A)

Global Journal of Computer Science and T echnology

(A) Volume XV Issue Il Version I E Year 2015

Global Journal of Computer Science and T echnology

3. Logic implementation

We use Altera’s LPM_Mem Ram IP core to build
the RAM module.

2. Module division

v. The design of the write back stage WB
1. Functional description

Write back stage is the fifth stage of the
pipeline. Its main function is to put the result of previous
stage back to the register file.

Ipm_muxlpm_mux_component
Ly

data0x31..0] [———o
data1x31..0] [m———
sel ——

data[0][31..0]
data[1][31..0]
zel[0..0]

LN

result{31..0]

———{ e sult[31..0]

Figure 3-5 : WB stage module division

3. Logic implementation
Write back stage is only made of a multiplexer.

c) Solve the pipeline hazard
Foreword
Hazard means

In CPU design, Hazards are problems with the
instruction pipeline in central processing unit (CPU)
microarchitectures when the next instruction cannot
execute in the following clock cycle, and can potentially
lead to incorrect computation results. There are typically
three types of hazards.

e data hazards
e structural hazards
e control hazards (branching hazards)

There are several methods used to deal with
hazards, including pipeline stalls/pipeline bubbling,
register forwarding, and in the case of out-of-order
execution, the scoreboarding method and the Tomasulo
algorithm.

i. Data hazard
Data hazard

Data hazards occur when instructions that
exhibit data dependence modify data in different stages
of a pipeline. Ignoring potential data hazards can result
in race conditions (sometimes known as race hazards).
There are three situations in which a data hazard can
occur:

1. Read after write (RAW),a true dependency
2. Write after read (WAR),an anti-dependency
3. Write after write (WAW), an output dependency

For simple pipeline, only RAW may result in data
hazard. Other two circumstances can only occur in
superscalar CPU. So we will only discuss RAW data
hazard in this paper.

Solution

First we'll analyze what lead to data hazard.

© 2015 Global Journals Inc. (US)

Situation 1 data hazard occurs when the
previous instruction doesn’t finish, while its next
instruction will use its results. For register level, see the
following instruction sequence.

add r3, r1, r2
subr4, r9, r3
or r5r3,r9
Xor r6,r3,r9
andr7,r3,r9

The first instruction put the result of the adding
process into register r3.In this case, the following
instructions sub, or, xor cannot take the right result in the
ID stage.

There are two ways to solve this problem.

1. Stall the pipeline. Although this way can
fundamentally solve data hazard, it will make
pipeline stall and reduce instruction number in unit
time. Therefore it is the worst.

2. Use internal forwarding. Let’s look into the first and
the second instruction. Because when ALU is doing
subtraction, addition has been completed.
Therefore we allow ALU sent the result of the
addition directly to the next instruction in the ID
stage to use. This method will not stall the pipeline.
So it has advantages over method one.

i b i 2 : . . . =
- RM1 EM2 . RM3 L mWa | RS | AR
2 1F1D :
5 : ':
ADDRI,R2,R3 | Mem [[k :
| M
SUB R4, R1, RS 1™ nr :
AND R6, R1, R7 ; { e | C
‘- ': N T .
; ; ! IFAD | ID/EX EX/MEM
E .' ! P 1
OR RE, R1, R9 ~| ', ;i sem | ReG .
E :' i ; IF1D ID/EX
¥ XORRIO, RI, R f ; i | men] rec [
Figure 3-6 : MEM stage module division
Fief ke 3 B - >
Flmin @ Ami2 P A3 D Emae D mus o EWe

1FD

ADD R1, R2, R3

pAAAs==saszas

LOAD R4, (R1)

l STORE 12(R1), R4

Figure 3-7 : MEM stage module division

When specific to the logic circuit design,
consider by increasing the connection from the EXE
stage and MEM stage to the ID stage to achieve Internal
Forwarding.

Make different stages of the internal forwarding
pipeline input into one MUX, and the control unit control
the MUX channel selection by forwarding conditions.

© 2015 Global Journals Inc

(Us)

Year 2015

[N
~N

(A) Volume XV Issue II Version I

Global Journal of Computer Science and T cchn()l()g\'

(A) Volume XV Issue II Version I E Year 2015

Global Journal of Computer Science and T echnology

The main circuit is as follow

regfile:regfilet

wwreg [————— *=
o o
CTan’ :m muxd_T:muxdia
| om
inst[31..0] mal4. 0] aa[31.0] ot 0y
mb[4..0] ab[31.0] | 1310 i
wdi31..0) [wnid. 0] 231.0] outf31..0] D
- 230310} _._)
wrn[4..0] []_ b ==1.0]
i M —_— rartequ~1
muxd_1:muxd1b | ’D
——{ a0[31..0] rﬁu-—z
ealul31..0] a1031.0] .
maluf31...0] [o010 gz 0 _____._,)
mmo[31..0] [2331.0] rsrequ~3
sa1.0])D
rsrequ-~4

Figure 3-8 : internalforwarding

As Figure 3-6 shows, signal ealu[31:0] is the
internal forwarding signal of ALU’s output, malu[31:0] is
the internal forwarding signal of MEM stage. mmo[31:0]
is the internal forwarding signal of data cache’s output.
We use MUX to connect each data path.

Situation 2 Can we solve all the data hazard by
internal forwarding? No. The result of ALU can push
forward from EXE stage and MEM stage to ID stage,
while the data that instruction Iw read from data memory
can only push from MEM to ID. That means if the next
instruction is associated with the LW instruction, we
have to stall the pipeline for one cycle-results in pipeline
bubble.

See the following instruction sequence.

wr3, 0(1)
subr4, r9,r3
or r5,r3,19
Xor rg, r3, r9
andr7,r3,r9

As Figure 3-9 shows, when the CPU processing
the second instruction, it has to stall the pipeline for one
cycle to ensure that ID stage gets the right input data,
which means the CPU has to repeat the execution for
one time.

R R A
LS|

1A 2

Load [MEM

F
B
E
—y
:
L5

REG

4 2 [e | weo “g i S oy B
e]

fi% 3 i E’ MEM ir REG I: ;.u.ul
T e g 1 2

- O

fhi% 4 : | § =

REG

Figure 3-9 : pipeline bubble

When specific to the logic circuit design,
consider by adding enable control signal to control PC
and ID stage’s pipeline register, thus to stall the pipeline.

© 2015 Global Journals Inc. (US)

Corresponding to this, we can use logic statements to
judge if there is data hazard. Since if we do not take
other measures, stalling the pipeline will result in the re-

execution of the instruction in the IR stage, so the CPU
has to discard the execution for one time. We can
achieve this by banning modifying CPU state — to block
the write register signal wreg and write memory signal
wmem.

HDL code is as follows.

Stall = ewreg & em2reg & (e = 0) & (i rs &
emn==rs) |irn&em==r));

Among them, stall is the control signal to stall
the pipeline when data hazard occurs. Ewreg is the
signal for writing register file in the EXE stage. Em2reg
signal controls the data memory to write data into
register file.If the condition is true the stall signal turns
high, the line suspension.

ii. Control hazard
Control hazard

Branching hazards (also known as control
hazards) occur with branch. On many instruction
pipeline microarchitectures, the processor will not know
the outcome of the branch when it needs to insert a new
instruction into the pipeline (normally the fetch stage).

Solution
Traditional ways

1. Delay the pipeline for two cycles. Since the address
and condition for branch target are identified in EXE
stage, so the next two instructions after beq have
already been put into the pipeline. As Figure 3-10

shows.
= 1 2 3 4 5 & 7 3 o
4 IF ID EXE MEM WE
ARIEE 1L IF D EXE MEM WB
5 ikdE S 1 stall all IF ID EXE MEM WB
FdkiE4 2 IF D EXE MEM

Figure 3-10 : Delay the pipeline for two cycles

2. Delay the pipeline for one cycle. If we can identify
the address and condition in ID stage, then only one

subsequent instruction will put into the pipeline. .As
Figure 3-11 shows.

Rk 1 2 3 4 5 & 7 3 9
s IF 18] EXE NMEM WB
ALt IF D EXE MEM WEB
a4 1 stall IF ¥ EXE MEM WEB
fadh4 2 IF D EXE MEM WB

Figure 3-11 : pipeline bubble

Solutions for control hazard in MIPS architecture

MIPS architecture introduces Branch delay slot
concept and it solves the problem of control hazard.
Branch delay is an instruction after a branch instruction.
No matter branch occurs or not it's always executed.
Besides, the instruction in the delay slot is committed
before branch instruction.

In the pipeline, branch instruction has to wait
until the second stage to identify the address of next
instruction. The instruction fetch stage of pipeline will not
work until branch instruction is executed, therefore the
pipeline has to waste (block) a time slice.

To use this time slice, we define a time slice
after branch instruction as branch delay slot. In the
branch delay slot the instruction is always executed, and
branching occurs whether or not it doesn't matter. In this

way we efficiently take advantage of a time slice,
eliminating a "bubble line".
Solution methods in this paper

According to the MIPS architecture, this paper
chooses a design method which using a delay slot to
identify branch target address and condition in ID stage.
Whether to branch or not, the one (instruction i) after
branch instruction (instruction i+1) is always executed.
As if it’s instruction i-1. As Figure 3-12 shows.

© 2015 Global Journals Inc. (US)

Year 2015

[
(o]

Volume XV Issue II Version I

(A)

Global Journal of Computer Science and T echnology

S

(A) Volume XV Issue II Version I E Year 201

Global Journal of Computer Science and T echnology

Ins R—Wem~-R Reg R:[ﬁiﬁ':-ﬂ-[Meij— Reg

Reg R

—— — e e o

R—hem—R Reg RjnLQ:J—R hem— R — Reg

AI;_-I;!':J—R Wem — R — Reg

Figure 3-12 : pipeline bubble

For the pipeline CPU in this paper, there're 5
branch instructions — jr, beq, bne, j and jal. Since |, jal
and jr are unconditional jump instruction, the CPU can
identify branch target in ID level. For instruction beq and
bne, we consider using XOR gate and NOR gate to
realize these two comparisons in ID level.

iii. Structure hazard
Structure hazard

Structure hazard occurs when multiple
instructions visit a hardware component of the
processor at the same time. A typical example is an

instruction fetches operands from a storage unit while
the other one writes into it.

Let's take MIPS pipeline for example. For the
early processors, programs and data memory are not
separated, as Figure 3-13 shows, there’re memory
access at the same time in IF and MEM stage. This
results in that one of the accesses has to wait for a
cycle. For modern processors, the program is stored in
L1P Cache and the data is stored in L1D Cache. They
are accessed separately so structure hazard is not a
problem.

U AT il 38

load IF o EX | mEM|| wB
add 15 1 EX [mEM | wB
add IF o | | X | e pwes
add T e EX | MEM
A—
Y A= fowN]

Figure 3-13 : structure hazards

Solution methods in this paper

In this paper, since we use separated I-cache
and D-cache, structure hazard is avoided.

IV. DESIGN OF THE INTERRUPT AND
ExcerTIONAL CIRCUIT

In this chapter we introduce design of the
Interrupt and Exceptional Circuit. First we introduce the
concept of interrupt, exception and precise interrupt.
And then we introduce the hardware interrupt
processing structure with MIPS architecture and the
related interrupt exception handling instruction set.
Finally, we discuss the pipelined CPU terminal and
exception handling circuit realization. Meanwhile, we will
provide the RTL diagram and related codes.

a) The MIPS exception and interrupt handling principle
i. Exception, interrupt and precise exception
In systems programming, an interrupt is a signal
to the processor emitted by hardware or software
indicating an event that needs immediate attention. An

© 2015 Global Journals Inc. (US)

interrupt alerts the processor to a high-priority condition
requiring the interruption of the current code the
processor is executing (the current thread). The
processor responds by suspending its current activities,
saving its state, and executing a small program called
an interrupt handler (or interrupt service routine, ISR) to
deal with the event. This interruption is temporary, and
after the interrupt handler finishes, the processor
resumes execution of the previous thread.

A hardware interrupt is an electronic alerting
signal sent to the processor from an external device,
either a part of the computer itself such as a disk
controller or an external peripheral. For example,
pressing a key on the keyboard or moving the mouse
triggers hardware interrupts that cause the processor to
read the keystroke or mouse position. Unlike the
software type (below), hardware interrupts are
asynchronous and can occur in the middle of instruction
execution, requiring additional care in programming.
The act of initiating a hardware interrupt is referred to as
an interrupt request (IRQ).

http://images.51cto.com/files/uploadimg/20111208/112611120.jpg�

A software interrupt is caused either by an
exceptional condition in the processor itself, or a special
instruction in the instruction set which causes an
interrupt when it is executed. The former is often called a
trap or exception and is used for errors or events
occurring during program execution that are exceptional
enough that they cannot be handled within the program
itself. For example, if the processor's arithmetic logic unit
is commanded to divide a number by zero, this
impossible demand will cause a divide-by-zero
exception, perhaps causing the computer to abandon
the calculation or display an error message. Software
interrupt instructions function similarly to subroutine calls
and are used for a variety of purposes, such as to
request services from low level system software such as
device drivers. For example, computers often use
software interrupt instructions to communicate with the
disk controller to request data be read or written to the
disk.

ii. Exception and interrupt handling in MIPS
Interrupts

The processor supports eight
requests, broken down into four categories:

e Software interrupts - Two software interrupt requests
are made via software writes to bits IPO and IP1 of
the Cause register.

e Hardware interrupts - Up to six hardware interrupt
requests numbered 0 through 5 are made via
implementation-dependent external requests to the
processor.

e Timer interrupt - A timer interrupt is raised when the
Count and Compare registers reach the same
value.

e Performance counter interrupt - A performance
counter interrupt is raised when the most significant
bit of the counter is a one, and the interrupt is
enabled by the IE bit in the performance counter
control register.

Timer interrupts, performance counter
interrupts, and hardware interrupt 5 are combined in an
implementation dependent way to create the ultimate
hardware interrupt 5.

interrupt

Exceptions

Normal execution of instructions may be
interrupted when an exception occurs. Such events can
be generated as a by-product of instruction execution
(e.g., an integer overflow caused by an add instruction
or a TLB miss caused by a load instruction), or by an
event not directly related to instruction execution (e.g.,
an external interrupt). When an exception occurs, the
processor stops processing instructions, saves
sufficient state to resume the interrupted instruction
stream, enters Kernel Mode, and starts a software
exception handler. The saved state and the address of
the software exception handler are a function of both the
type of exception, and the current state of the processor.

b) Pipeline CPU precise exception and interrupt
processing circuit

The complexity of pipelined CPU exception and
interrupt handling is mainly reflected in two respects. (1)
Pipeline CPU has multiple instructions simultaneously in
operation. There is not a time point that all the
instructions are executed. (2) MIPS pipeline allows the
branch delay. If exception and interrupt occurs in the
delay slot of ID stage, then the return address will not be
judged. Therefore, to achieve precise exception and
interrupt handling, we must carefully study the
characteristics of CPU and design of hardware.

i. Types of exception and interrupt and associated
registers
The registers for pipeline CPU exceptions and
interrupts are shown as below. The sixth to second bit of
the cause register is the codes that generate exception
and interrupt. IM[3:0] in the status register is a 4 bit
mask. Each corresponding to an exception or interrupt
mask bit, 1 allows the exception or interrupt and 0 bans
it. S[3:0] is IM[3:0] which is left shifted by 4 bits. EPC is
used for saving the return address. If the instruction that
causes exception is in the delay slot of branch or jump
instruction, then the BD bit is set to 1. Under normal
circumstances we set BD to 0.

Table 4-1 : MIPS exception and interrupt registers

Cause

3 43

| BD | Unused
Status

31 8 7 43
| Unused

EPC

31

The following table lists the exceptions and
interrupts may appear which levelin the pipeline.

0

:Echodr | 0 |

[s[3:0] IM][3:0] |

EPC |

© 2015 Global Journals Inc. (US)

Year 2015

8]
[

Volume XV Issue II Version I

(A)

Global Journal of Computer Science and T echnology

(A) Volume XV Issue Il Version I E Year 2015

Global Journal of Computer Science and T echnology

Table 4-2 : MIPS exception and interrupt

ExcCode Alias Type Mask Description Stage
0 Int Int IM[O] External Any stage
Interrupt
1 Sys Except IM[1] Syscall ID stage
2 Unimpl Except IM[2] Non-exist ID stage
instruction
3 Ov Except IM[3] Overflow EXE stage

When interrupt occurs EPC saves the return
address, and when exception occurs EPC saves the
address that causes exception. However, if the
abnormal instruction is in delay slots, EPC save the
delayed branch instruction address. Therefore, we must
have some means to determine whether an instruction
in the delay slot. When an exception or interrupt occurs,
we need to scrap the subsequent instruction and even
the current instruction.

ii. Interrupt response process of the pipeline CPU
In order to realize the precise interrupt, we
divide the interrupt request into the following 3 kinds of
circumstances.

(1) Interrupt occurs while ID’s executing the transfer
instruction

The design idea is to put the address of branch
instruction into EPC register, and the base address of

interrupt execution into PC. When returns from interrupt
execution, the CPU re-execute branch instruction.

As Figure 4-1 shows, if the address of branch
instruction is PC in the IF level, then in the ID level is
PCD. When ID finish, the CPU write PCD into EPC, and
put the entrance address of exception and interrupt into
PC. Meanwhile, the cancel signal generated at the ID
level is also written to the pipeline register, its output at
EXE stage is e_cancel, to abolish the next instruction.
When it returns from interrupt, directly write the value of
EPC into PC, and re-execute the branch instruction.

PCD

v

intr

EPC

e

Figure 4-1 : Interrupt occurs while ID’s executing the transfer instruction

(2) Interrupt occurs while ID’s the delay slot

The design idea is to let the instruction in the
delay slot be finished. Because the branch address is
decoded in ID stage, so we put the address value of PC
into EPC. Meanwhile the BD bit in the Cause register
should be set to 1.

As Figure 4-2 shows, At the ID level delay slot
instruction at the end, the branch target address
instruction has been taken into the pipeline, we disable it
using e_cancel.

© 2015 Global Journals Inc. (US)

EPC

intr

o

Figure 4-2 : Interrupt occurs while ID’s the delay slot

(3) Interrupt occurs in general situation

The design idea in this circumstance is to
response to the interrupt in ID stage, to abolish the next
instruction, and write the address of the next instruction
into EPC. In this case we don't need to set the BD to 1.
The pipeline design in this case is identical to the
second situation, so It is unnecessary to go into details
here.

iii. Precise interrupt of the pipeline CPU
The pipeline CPU puts the address that causes
exception into EPC. If this instruction is in the delay slot,
then put its previous branch or jump address into EPC
and set the BD as 1. The following descripts in detail the
methods to handle pipeline exception.

(1) Syscall

No matter using assembly language or high
level language to program, we can let the syscall
instruction not to appear in the delay slot. Therefore, we
consider only usually system call instructions
implementation. Figure 4-3 shows the pipeline progress
that CPU executing syscall instruction. Jump to
exception and interrupt handling program and abolish
its next instructions. EPC saves PCD -the address of
syscall instruction. As the figure shows the input of the
EPC connects to a mux, when it modifies EPC it
chooses DATA.

DATA
PCD

EPC

EXE ME

=

WB

E cancel

Figure 4-3 : Interrupt occurs in general situation

(2) Unimplemented instruction

The following picture shows the pipeline that
CPU’s executing unimplemented instructions in the
delay slot. In this case EPC will save the address of its
previous instruction PCE, the BD bit of Cause register
should be set to 1.

Figure 4-4 shows the pipeline progress that
CPU executing unimplemented instruction. It is similar
with the implementation of the syscall instruction.

© 2015 Global Journals Inc. (US)

Year 2015

N
w

Volume XV Issue II Version I

(A)

Global Journal of Computer Science and T echnology

(A) Volume XV Issue Il Version I E Year 2015

Global Journal of Computer Science and T echnology

D

ST
ok

EPC
DATA

PCE

s

E_cancel

Figure 4-4 : Interrupt occurs in general situation

(3) Calculation result overflow

Calculation result overflow appears in EXE
stage, and the result of overflow cannot be saved into

register file. So the CPU has to block the wreg signal in
the EXE stage. Besides, instructions in ID stage should
be abolish too.

PC
NPC 0
= by IF ID
A

EPC
DATA
PCD PCE

EXE MEM WB

E cancel

Figure 4-5 : Interrupt occurs in general situation

Figure 4-4 is the pipeline that when CPU is in
the delay slot overflow. At this time EPC has to save the
PCM address of its previous instruction. The BD bit of
cause register should be set to 1.

Figure 4-5 is the pipeline that overflows occurs
in normal situation. EPC saves the PCE address of
overflow instruction.

V. CPU VERIFICATION

Figure 5-1 shows the typical FPGA design and
verification overflow. After the design personnel will be
HDL code input and comprehensive utilization
comprehensive tool, will carry on the first simulation of
design: functional simulation. Functional simulation is
not with circuit delay parameters, only validation logic
function is correct. If the function simulation, then the
layout of design, after second times simulation: timing
simulation is also the gate level simulation. With Gate
level simulation with circuit delay parameters, the result
is more accurate, more close to the actual device
performance. After passing through the gate level

© 2015 Global Journals Inc. (US)

simulation, finally the design is downloaded to the FPGA
device.

This paper will adopt the design process,
optimizing the design details, in order to achieve high
quality and efficient design objective.

Scriptum

HDL Language Editor

Entering your Design ISE and VHDL editor
and Selecting Hierarchy

1Sim
Functional Simulation
of your Design

FPGA chip pin assignment

Adding Design {PlanAhead tool) This checking and
Constraints v validation will be done all
? the time, in class and in
" —" your cooperative group

Synthesizing and Optimizing | XST
your Design

Evaluating your Design's Coding Style
E/wa'-l:;lring your Design Siz
Qc_! Performance

and System Features

Placing and Routing Timing Simulation Static Timing
your Design of your Design Analysis
1Sim Ef j-i
£ & |]
Generating a Bitstream " it file (PlanAhead tool)

Downloading to the Device,

In-System Debugging E Digilent Adept

Creating a PROM, ACE
or JTAG File NEXYS 2

Spartan-3E
XC3S500E-FG320

*10303

Figure 5-1 : Typical FPGA design & verification overflow

a) Pipeline verification instruction value, proving that IF stage can complete
We implement the idea of bottom-up, instruction fetching and pipeline process.

hierarchical verification. Firstly, we run functional

simulation for single module. If the circuit can realize

logic function then we gate-level simulation for every

single module. When all the sub-module pass

verification, we run simulation for each stage of the

pipeline and finally the whole pipeline circuit.

o |Fstage

IF stage has two functions: (1) calculate the
instruction address (2) fetch instruction and pipeline
process. As Figure 5-2 shows, when reset signal clrn is
low, register PC is set to initial value 0. Signal PC4 is the
address value plus 4, at this time the enable signal of
register PC is low, and stage IF doesn’t work yet. When
reset signal and enable signal turns high, register PC
starts to work. We can see that PC of continues adding
4 with the change of clk signal, which proves that stage
IF can finish address calculating. Meanwhile, instruction
signal ins changes with the change of PC4 signal, and
the output corresponding with ROM address of the

© 2015 Global Journals Inc. (US)

Year 2015

N
(6]

Volume XV Issue II Version I

(A)

lobal Journal of Computer Science and T cchn()l()g\'

,
b g

C

(A) Volume XV Issue Il Version I E Year 2015

Global Journal of Computer Science and T echnology

000 000 S00ns TWO0ne W0as U00ns 1300ne 1500ns T00n 1800ne 2002 2300ns 250.0114
Value at I 1 1] 1 I | | I I | I 1
Fane 0
I
wo e o500 [1 7 I L LJ L
Pl eSS o
? s (K 00000000 00000000 2010000 H424005) ‘* (C00001R * 20050004 ”(ACB20000 x ACB30000)’@
o5 ped [H OO0O00D (0000004 x 00000008 x Q00ooaac X Q000o0L0 x (0000014 x (00oota)F 000000tc r’(00000020 m
6| [H pesowee 50 0
X! wpeir o
Figure 5-2 : IF stage verification
e IDstage register number. We is write-enable signal, wn is write

ID stage has three functions: (1) decode the
instruction fetched from instruction cache (2) put the
corresponding control word, immediate word and
address value to control unit and register file (3) control
unit output corresponding signals according to the input
logic. In this chapter we will verify the regfile and control
unit.

As Figure 5-3 shows, it's each signal of register
file and their simulation waves. Clrn is reset signal. d is
input data value. ga is the output value of register file
output a. gb is the output value of register file output b.
ma is ga’s output address, which means corresponding

register number.

When clrn is low, register file is reset, and all the
value of registers are set to 0. When clrn turns to high,
register file starts to work. When write signal we turns
high, wn controls the write register address. As Figure 5-
3 shows, the CPU writes value into 0 to 4 register.
According to MIPS architecture, O register cannot be
modified, thus the output of O register is always 0. For
register 1 to 3, the output is the input value when we is
high. So this verifies that register file can work normally
and realize the logic function.

B EU‘Q i3 IBU.IU s 24U‘P hil3 EZU.IU s 4UU.IU nz 4EU‘IU hil3 SBU‘IU hil3 E4U.IU nz TEU‘IU hil3 SUU‘IU b3 EBU.IU nz QBU‘IU s |
Yae g 0ne
4
X0 T 1y g g g M g g Ay M Al
T3l clrn |
»? i
95 | B] !
Dk | B o 0 !
| Eoms I i E]
07 rnb 0 (132 Y3) 0
13 We |
Pl B i 0880 [;

Figure 5-3 : redfileverification

Each signal of control unit and corresponding
simulation waves are shown in Figure 5-4. Since control
unit is pure logic circuit, we can see apparent glitch in
the output wave of the circuit. The main signals are as
follows: aluc controls the output of signal alu. Op is
instruction word, representing instruction code.
Pcsource controls the mux for address source of pc. We
can see from the simulation waves that the control unit
can output correct control logic. Further verification will
be shown in the later chapter.

© 2015 Global Journals Inc. (US)

Ps SU.EII ns 180 P ns ZQU.P ns SZU.P ns 4EIEI.IEI ns QBUP ns SBU.P ns EQU.P ns TZU.IEI ns SUUP ns 880 P ns BBU.P ns
Hame s
f P
0 | @ alue 3 0 7 v 2 §3 E} 41 €3 41 €143 3 0 4a 1 }(3);([* 3
D5 | duiee BB L L BRI
6 enlreg
oFT ern 0
13 ewreg
14 fune]
el fida]
oo fwdb []
@] L |
@ 28 nZreg]
29 nnZreg
30 mro []
36 mireg
Lo i nostall
FEI N OIS S G 060 080 B0 €50 608 G SIS 0 SIS0 S D
s pesonrce M -1 X i E}(0 Y0 ¥ o oy i ¥ 0
Wi remt 1 L 1
49 rs i]
55 rertequ
56 rt]
B8] e i
63 shift M] M 1
6t wnen]
(65| e L] B BRI /i
4 m »
Figure 5-4 : Control Unit verification
e EXE stage signals of ALU sees the 3.2.3 section. When ALUC=0

The function of EXE stage is to calculate the
value from ID and put the result to the next stage.
According to the control signal passed from ID stage,
EXE will finish corresponding calculation in the pipeline
clock cycle. Since arithmetic unit may cause long delay,
so EXE stage is the critical path of the pipeline. We will
verify ALU in this chapter.

As Figure 5-5 shows, it's each signal of ALU
and their simulation waves. The definition of the control

the two input numbers are added, the result is correct.
When ALUC=4 the two input numbers are subtracted,
the result is correct. The other functions of ALU are
verified as above.

We can see from the waveform that, because
the signal judging overflow and zero is used in
combinational logic circuit, so it will easily produce burr.

I 80‘9115 IED.ID 15 240“0 1 320“0 1 IDD.ID 15 480“0 1 SED.ID 15 EID.ID 15 TZU“U 15 SUU“U 1 SSU“U 1 QED.ID ns|
Hame I

|
B0 | @ SRR 0 i [3 ¥ 0 !
FEAL LU G0S GXER 15 S118 (8 SHE A8 S0 8 S8 U8 S58 L8 S0 U S8 GERAREED
% | @ AR RS 1020 i) I){ i }
o1l | He] T 40 T i)) il 33 3§ E ;
D | [test I T 4 07 xluzn“ H () (0 | l | {8 l l
o v I I I I L1]
Fo Jk: "] U

Figure 5-5 : ALU verification
e MEM stage see from the waveform that, when signal we is low,

The function of MEM stage is to load and store
data. The main module in MEM stage is data memory. In
this paper we use the LPM Ram provided by Altera to
achieve this.

As Figure 5-6 shows, it's the simulation wave for
data memory. Addr controls the RAM address of data
input and output, and we is write enable signal. We can

dataout reads data from RAM according to the value of
addr. When signal we turns high, dataout writes data
into RAM according to the value of addr too. For data
0x0000007F, we can see that it's written into
corresponding address, and is read from it. The
simulation waves prove that the data memory works
correctly.

© 2015 Global Journals Inc. (US)

(A) Volume XV Issue II Version I E Year 2015

Global Journal of Computer Science and T echnology

(A) Volume XV Issue II Version I E Year 2015

Global Journal of Computer Science and T echnology

[ps SU.Q ns IBU.IU ns 24D‘IU nz SZD‘IU nz 4UU.IU ns 480.p ns SBU.IU ns 64U.IU ns TEU.IU nz 800,
Hane 17,225 e

J
o] addr T 1 VoY 2 [2 M 1
[T 58 otk]
FH datain T T T 00030000
e datant (IOOODE, BFB00000) O T 00000000
10 inclk]
101 outclk]
107 we | |

Figure 5-6 : Memory module verification
e \WBstage xi. Verification waves

The function of MEM stage is to store the result
calculated from EXE or data in MEM stage. Since there
are many data paths, we use mux to achieve that.
Because the circuit of this stage is simple, it's
unnecessary to run simulation specifically in this
chapter.

e pipeline integral verification
x. Verification program

As Figure 5-7 shows, clock is system clock.
memclock is ram’'s clock. Signal inst is the
corresponding instruction in a clock cycle. Ealu, malu,
walu is the pipeline register value of the output of alu. we
can see that corresponding instructions are put into the
pipeline with the change of PC. And the output of Alu
value has been sent to the next level with the pipeline.
The simulation waves prove that the pipeline works
correctly.

See appendix A.

0.02s 100.0ns 1100 ns 1200 ns 130,005 140.0 25 130.0ns 180.0ns 170.0 ns 1600 ns 190,025 200.0 25 210.0 ns 220.0 ns 230.0ns

Hane
T pigligigigiigligigigig g g gEgE gl
o'l inst wown 0010000 000 YOM0L 20050004 ACBEDUDN ECE90000 YO00040R0 YACER0000 0109400 Y0ASRFRY L 4AIRFEC)
TN pligigigigigigigigigligigligligligl
o' B 00000000 0000004 1000003 {0000000E ¥DU0000L0 UDDUL 0UDOCEE DOR0AOTD D0nd0aT4 O0a000Ts YaOuoante Ou0uouan {O00n0ue XDOn0udss)

g resetn
T | H el 0 LI I YRR D
| Hode i I i 1R EREE
D15 | [H vl 0 MEER | TR

Figure 5-7 : Pipeline integral verification

b) Interrupt and exception circuit verification

i. Verification program
See appendix B.

ii. Verification waves

As Figure 5-8 shows, clock is system clock.
memclock is ram’s clock. Signal inst is the
corresponding instruction in a clock cycle. Ealu, malu,
walu is the pipeline register value of the output of alu.
The output of Alu value has been sent to the next level
with the pipeline. The simulation waves prove that the
Interrupt and exception circuit works correctly.

© 2015 Global Journals Inc. (US)

s ﬁﬂ.q 15 IED.ID I ZQDP 15 SEDP s 400 P I

QED.ID 15

SBDP 15 BQDP 15 TED.P I BDD.ID 15 EBD.ID I QBDP 15

Fane I

I

B | e EREEIR TR 0 HE i 3 Y 0 }
FH | B IR IR R SR SR IR IR D S IR R R A D 1D [!
B | Bt AR TR S [Y 1 Y [!
o1 | B I G I E 4 {0 0 I [l 39 318 3 &N 8 1N [

D0t | H st A T A 7 T) 4 A N O 04 1 1 0 1
g | v H | 1 | [N N [

91| il eyl L1

Figure 5-8 : Interrupt and exception circuit verification

VI. SUMMARY AND FUTURE WORK

Through this thesis, Verilog HDL code for a
Altera cycloe4 FPGA board was developed, on which a
pipeline CPU runs. In chapter 1 we make a brief
introduction of the research background. It mainly
introduces the background and related research status
and CPU's integrated circuit industry. In chapter 2 we
describe the development platform and MIPS
architecture. There we also introduce the software and
hardware development platform for the project and
FPGA’s design. At the same time, we describe the
registers and instructions in our design and MIPS
architecture. In chapter 3 we firstly discuss the design of
pipeline data path. And we work out some methods for
solving pipeline hazards. In Chapter three we describe
the design of pipeline data path. It introduces the
pipeline design method, the composition of the pipeline
and design and verification of associated component.
After that, we make the interrupt circuit and whole
verification.

In the future, there are two ways to improve this
simple CPU. Firstly we will add some modules to the
original design, including timer, bus, and the whole CPO
coprocessor. Secondly we will improve the circuit thus to
make the whole circuit run in a higher frequency.
Generally speaking, more performance analysis such as
studying the impact of exceptions on the core
performance can be done further to see some
interesting and important results.

REFERENCES REFERENCES REFERENCIAS

1. N. K. Choudhary, S. V. Wadhavkar, T. A. Shah, H.
Mayukh, J. Gandhi, B. H. Dwiel, S. Navada, H. H.
Najaf-abadi, and E. Rotenberg, “FabScalar:
Composing Synthesizable RTL Designs of Arbitrary
Cores Within a Canonical Superscalar Template”,
Proceedings of the 38th Annual International
Symposium on Computer Architecture. ACM, 2011,
pp. 11. [Online]. Available: http://doi.acm.org/10.
1145/2000064.2000067

2.

3.

10.

11.

12.

13.

14.

Naoki Fujieda, Takefumi Miyoshi, and Kenji Kise
“SimMips A MIPS System Simulator”.

MIPS® Architecture For Programmers Volume IlI-A:
Introduction to the MIPS32® Architecture.

MIPS® Architecture For Programmers Volume [-A:
Introduction to the MIPS32® Architecture.

MIPS® Architecture For Programmers Volume II-A:
Introduction to the MIPS32® Architecture.

Linux Porting Guide. [Online]. Available: http://www.
embedded.com/design/embedded/4023297/Linux-
Porting-Guide

Simple Scalar Simulator Toolset. [Online]. Available:
http://www.simplescalar.com/

M. A. Khalighi, N. Schwartz, N. Aitamer, and S.
Bourennane, "Fading reduction by aperture
averaging and spatial diversity in optical wireless
systems," Journal of Optical Communications and
Networking, IEEE/OSA vol. 1, pp. 580-593, 2009.

A. O. Aladeloba, A. J. Phillips, and M. S. Woolfson,
"Performance evaluation of optically preamplified
digital pulse position modulation turbulent free-
space optical communication systems," [ET
Optoelectronics, vol. 6, pp. 66-74, February 2012.

L. C. Andrews, R. L. Phillips, and C. Y. Hopen,
"Aperture averaging of optical scintillations: power
fluctuations and the temporal spectrum," Waves
Random Media, vol. 10, pp. 53-70, 2000.

S. Bloom, E. Korevaar, J. Schuster, and H. A.
Willebrand, "Understanding the performance of free-
space optics," Journal of Optical Networking, vol. 2,
pp. 178-200, June 20083.

D. K. Borah and D. G. Voelz, "Pointing error effects
on free-space optical communication links in the
presence of atmospheric turbulence," Journal of
Lightwave Technology, vol. 27, pp. 3965-3973,
2009.

A. A Farid and S. Hranilovic, "Outage capacity
optimization for free-space optical links with pointing
errors," Journal of Lightwave Technology, vol. 25, pp.
1702-1710, 2007.

H. G. Sandalidis, T. A. Tsiftsis, G. K. Karagiannidis,
and M. Uysal, "BER performance of FSO links over

© 2015 Global Journals Inc. (US)

Year 2015

N
(o]

Volume XV Issue II Version I

(A)

Global Journal of Computer Science and T echnology

(A) Volume XV Issue Il Version I E Year 2015

Global Journal of Computer Science and T echnology

15.

16.

17.

18.

19.

20.

21.

22.

23.

24,

25.

26.

27.

28.

strong atmospheric turbulence channels with
pointing errors," IEEE Communications Letters, vol.
12, pp. 44-46, 2008.

A. J. Phillips, "Power penalty for burst mode
reception in the presence of interchannel crosstalk,"
IET Optoelectronics, vol. 1, pp. 127-134, 2007.

K. W. Cattermole and J. J. O'Reilly, Mathematical
topics in telecommunications volume 2: problems of
randomness in communication engineering,
Pentech Press Limited, Plymouth, 1984.

I. T. Monroy and E. Tangdiongga, Crosstalk in WDM
communication networks, Kluwer Academic
Publishers, Norwell, Massachusetts, USA, 2002.

J. O'Reilly and J. R. F. Da Rocha, "Improved error
probability evaluation methods for direct detection
optical communication systems," IEEE Transactions
on Information Theory, vol. 33, pp. 839-848, 1987.

L. F. B. Ribeiro, J. R. F. Da Rocha, and J. L. Pinto,
"Performance evaluation of EDFA preamplified

receivers taking into account intersymbol
interference," Journal
Mishra Prabhat, DuttNikil, Nicolau Alex.

Specification of Hazards, Stalls, Interrupts, and
Exceptions in Expression, Technical Report #01-05,
Dept. of Information and Computer Science,
University of California, Irvine, CA 92697, 2001,USA
Smith James.E., Plezskun Andrew R, Implementing
Precise Interrupts in Pipelined Processors, IEEE
Transactions on Computers. 1988, 37(5), pp. 562-
573

Wang Chia-Jiu, Emnett Frank. Implementing Precise
Interruptions in Pipelined RISC Processors. IEEE,
Micro. 1993,13(4) , pp. 36-43

KE Xi-ming. Implementation Mechanism of Precise
Interrupts in Microprocessors, High Performance
Computing Technology. 2003, 160, pp. 45~48

Xl Chen, ZHANG Sheng-bing, SHEN Xu-bang, et al.
New precise interrupt mechanism based on
backup- buffer. Computer Engineering and
Applications. 2007,43(6) , pp. 95- 98.

Liu Shibin, GaoDeyuan, Fan Xiaoya, et al. Design of
Instruction Decoder for Use in China for an
Embedded MPU, Journal of Northwestern
Polytechnic University. 2001,19(1) , pp. 1-5

D. W. Anderson, F. 1. Sparacio, and F. M.
Tomasulo, The IBM systemlI360 Model 91 : Machine
philosophy and instruction handling, "IBM 1. Res.
Develop., vol. 11, pp. 8-24, Jan. 1967.

Ozer, E.; Sathaye, S.W.; Menezes, K.N.; Banerijia,
S.; Jennings, M.D.; Conte, T.M.; "A fast interrupt
handling scheme for VLIW processors', Parallel
Architectures and Compilation Techniques, 1998.
Proceedings. 1998 International Conference on
Digital Object Identifier: 10.1109IPACT.1998.727184
Publication Year: 1998 , Page(s): 136 - 141

1. E. Smith and A. R. Pleszkun, "Implementing
precise interrupts in pipelined processors," IEEE

© 2015 Global Journals Inc. (US)

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

Trans. Comput., vol. C-37, no. 5, pp. 562-573,May
1988.

W-M.W. Hwu and Y.N. Patt, "Checkpoint Repair for
Out-of-Order Execution Machines," IEEE Trans.
Computers, Vol. C-36, No. 12,Dec. 1987, pp. 1,515-
1,522,

Pericas, M., Cristal, A., Gonzalez, R., Jimenez, D.A.,

Valero, M., "A decoupled KILO-instruction
processor", High-Performance Computer
Architecture, 2006. The Twelfth International

Symposium on, On page(s)

Dominic Sweetman, See MIPS Run, Academic
Press, 2002.

David A Patterson, John L Hennessy, Computer
Organization and Design: The Hardware/Software
Interface, Morgan Kaufmann Publishers, Inc. 1998
Stephen Brown, ZvonkoVranesic. Fundamentals of
Digital Logic with VHDL Design, McGraw-Hill, 2000.
Zhu Ziyu, Li Yamin. CPU Chip Logic Design.
Tsinghua University Press. 2005

“Altera university program—Learning through
innovation,” Altera Corporation, San Jose, CA, 2011
[Online]. Available: http://www.altera.com/
education/univ/unv-index.htmi

A. Clements, “The undergraduate curriculum in
computer architecture,” IEEE Micro, vol. 20, no. 3,
pp. 13-21, May-Jun. 2000.

J. Djordjevic, B. Nikolic, T. Borozan, and A.
Milenkovie, “CAL2: Computer aided learning in
computer architecture laboratory,” Comput. Appl.
Eng. Educ., vol. 16, pp. 172-188, 2008.

B. Nikolic, Z. Radivojevic, J. Djordjevic, and V.
Milutinovic, “A survey and evaluation of simulators
suitable for teaching courses in computer
architecture and organization,” |IEEE Trans. Educ.,
vol. 52, no. 4, pp. 449-458, Nov. 2009.

H. Oztekin, F. Temurtas, and A. Gulbag, “BZK.SAU:
Implementing a hardware and software-based
computer architecture simulator for educational
purpose,” in Proc. 2nd Int. Conf. Comput. Design
Appl., 2010, pp. 490-497.

V. Gustin and P. Bulic, “Learning computer
architecture concepts with the FPGA-based “Move”
microprocessor,” Comput. Appl. Eng. Educ., vol.

14, pp. 135-141, 2006.
VII. ACKNOWLEDGEMENTS

Foremost, | would like to express my sincere

gratitude to my Supervisor Prof.Liu for the continuous
support of my thesis work, for his patience, motivation,
enthusiasm, and immense knowledge. His guidance
helped me to perform my thesis work and in writing this
thesis report.

| also would like to say a big thank you to all my

colleagues, and the researchers in the Computer
Engineering Center at the Guangdong University of

Technology, China, for their support and for making my
time in Guangzhou an enjoyable one.

Most importantly, | would like to thank my wife
Fathai and my children - for their wonderful support
throughout my study. This dissertation is dedicated to
them as a token of my gratitude.

FAOL I 1% A A

ARNFBEFE] Fr A8 A AL SR A NAE R IT 4R
AT I AR RIS R SRR . R, B
TR LA RSO BT Ak, RSO A
i NELRERBE LB FTRRR . SRR TR
EXF AT AR T DTk Y AR SO AR T IR
B, IR TR . A NMIESA MURSE th i SO ™
A BRI ST -

WIXAEEZEA: HY:
AL SCRRARE AR IR

ACERLR AR e 4 1 R RARAT A AR S
BIRLE, RBP4 M RS2 O B O 1) B 50 R
ERHURIIE A %R S BRI AT - RRAS, - SR VFIZ 8 ST
BB o [FREAUT AR T KT DU A 2 AL 83
(1 4 B BLEE 70 AR ANAT REE R AT R R, TR
SR GBS B S A R A T B ORAT A G
ACERLR I OREER SCHE MR 3 R B RE

WXAEHEZEY: H 39
RSHNZEY H 39

APPENDIX A PIPELINE VERIFICATION PROGRAM

0: main :lui r1, 0 # address of data[0]
1:orir4, r1, 80 # address of data[0]

MOO @ > O© N O H WwN

-

:call ; jal sum # call function

: dslot1: addi r5, r0, 4 # counter, DELAYED SLOT(DS)
s return: sw r2, 0(r4) # store result

w9, 0(rd4) # check sw

:subr8, 19, r4 # sub: r8 & r9—r4

:addirb, r0, 3 # counter

:loop: addirb, r5, -1 # counter — 1

:ori 18, r5, Oxffff # zero-extended : 0000ffff

:xori r8, r8, 0x5555+#zero-extended : 0000aaaa
caddi r9, r0, -1 # sign-extended :ffffffff

;andi r10, r9, Oxffff # zero-extended : 000O0ffff
corre, r10, r9 # or: ffffffff

:xor 18, r10, r9 # xor: ffff0000

;and r7, r10, r6 # and: 0000ffff

10: beq r5, r0, shift # if r5 =0, goto shift

11: dslot2:nop # DS

12: jloop2 # jump loop2

13: dslot3: nop # DS

14 shift: addi r5, r0, -1 # r5 = ffffffff

15: sl 18, 15, 15 # < <15 = ffff8000

16: sl 18, 18, 16 # < <16 = 80000000
17:srar8, 18, 16 # >>16 = ffff8000(arith)
18: sr1 18, 18, 15 # >>15 = 0001ffff(logic)
19: finish: j finish # dead loop

20: dslot4: nop # delay slot

© 2015 Global Journals Inc. (US)

Year 2015

w
-

Volume XV Issue II Version I

Global Journal of Computer Science and T echnology

(A) Volume XV Issue Il Version I E Year

Global Journal of Computer Science and T echnology

APPENDIX B INTERRUPT AND EXCEPTION VERIFICATION PROGRAM

0: reset : j start # entry on reset

1:nop

2:EXC_BASE: mfc0 r26, CO_CAUSE # read cp0 Cause reg
3: andir27, r26, Oxc # get ExcCode, 2 bits here
:lwr27, j_table (r27) # get address from table
: nop

2 jrr27 # jump to that address

nop

s int_entry: nop #0.interrupt handler deal with interrupt here
: eret # return from interrupt

e: nop

f:sys_entry: nop # SysCall handler

10: epc_plus4: micO r26, CO_EPC # get EPC
11: addir26, r26, 4 #EPC + 4

12: mtcO r26, CO_EPC #EPC <« EPC +4

13: eret #return from exception

14: nop

15: uni_entry: nop

16: j epc_plus4 #return

17:nop

1a: ovf_entry: nop #overflow handler

1b: jepc plusd #return

1c: nop

1d: start: addir8, r0, Oxf # IM[3:0] < 1111

1e: mtcO r8, CO_STATUS # exc/intr enable

Q0 ~No o~

© 2015 Global Journals Inc. (US)

	Design of a Five Stage Pipeline CPU with Interruption System
	Author
	Keywords
	Keywords
	I. Introduction
	a) Research status of CPU design and trend
	b) RISC and Pipeline processing

	II. Development Platform and mipsArchitecture
	III. Design of the Pipeline Circuit
	a) The basic concepts of pipelining
	b) Design of each stage of the pipeline

	IV. Design of the Interrupt andExceptional Circuit
	V. CPUVerification
	VI. Summary and Future Work
	References Références Referencias

