
Adaptive Genetic Algorithm Based Artificial Neural Network for1

Software Defect Prediction2

Racharla Suresh Kumar1 and Prof. Bachala Sathyanarayana23

1 Sri Krishnadevaraya University4

Received: 16 December 2014 Accepted: 1 January 2015 Published: 15 January 20155

6

Abstract7

To meet the requirement of an efficient software defect prediction,in this paper an8

evolutionary computing based neural network learning scheme has been developed that9

alleviates the existing Artificial Neural Network (ANN) limitations such as local minima and10

convergence issues. To achieve optimal software defect prediction, in this paper,11

Adaptive-Genetic Algorithm (A-GA) based ANN learning and weightestimation scheme has12

been developed. Unlike conventional GA, in this paper we have used adaptive crossover and13

mutation probability parameter that alleviates the issue of disruption towards optimal14

solution. We have used object oriented software metrics, CK metrics for fault prediction and15

the proposed Evolutionary Computing Based Hybrid Neural Network (HENN)algorithm has16

been examined for performance in terms of accuracy, precision, recall, F-measure,17

completeness etc, where it has performed better as compared to major existing schemes. The18

proposed scheme exhibited 97.9919

20

Index terms— software defect prediction, machine learning, genetic algorithm, artificial neural network,21
object oriented software metrics.22

1 I.23

I ntroduction s per high pace rise in software applications and major dependency on it, the fault prediction has24
become one of the inevitable parts of software development life cycle (SDLC) that can play significant role in25
reducing the probability of software failure.26

Software defect prediction (SDP) can be performed while planning to identify fault-prone modules in software27
product that as a result can provide the insight to the need for increased quality of monitoring during software28
development. In addition, it can also facilitate necessary approaches to incorporate certain proper fault29
verification schemes leading to enhanced software quality [1, ??,3,4] and reliability. SDP can be functional30
based on certain software metrics [3,4,5], such as source code changes, previous defects, etc. In fact software31
metrics are the quantitative data that are employed for characterizing the properties of source code and can be32
significant for predicting software quality. The efforts made through many generations have facilitated a number33
of schemes to mitigate defects, but the continuation of researches still indicates towards search for certain optimal34
SDP solution to ensure optimal performance, reliability, cost optimization and minimal maintenance. A number35
of efforts have been made for SDP using machine learning and neural network [6,7,8,9,10], clustering techniques,36
statistical method, mining and random forest [44,45, ??0] etc. In recent years, majority of software are being37
developed based on Object-Oriented (OO) paradigm. Thus, the quality of the software can be optimally assessed38
by employing software metrics, such as Abreu MOOD metric suite [11], QMOOD metrics suite [12], Bieman39
and Kang [13], Briand et al. [14], Etzkorn et al. [15], ??alstead [16], Henderson-sellers [17], Li and Henry [18],40
McCabe [19], Tegarden et al. [20], Lorenz and Kidd [21] and CK metric [22] suite. These software metrics plays41
significant role in assessing the quality of software such as precision, accuracy, fault-resilience and sensitivity etc.42
The significance of these object oriented software metrics lies in their capability to predict the software quality43

1

Global Journals LATEX JournalKaleidoscope™
Artificial Intelligence formulated this projection for compatibility purposes from the original article published at Global Journals.
However, this technology is currently in beta. Therefore, kindly ignore odd layouts, missed formulae, text, tables, or figures.



7 PROBLEM DEFINITION

in terms of adaptability, functionality, usability, portability, supportability, reliability and cost effectiveness.44
Predominantly two data driven algorithms, support vector machine (SVM) and artificial neural network (ANN)45
algorithms have been employed for fault detection. ANN approach functions on the basis of the human brain46
behaviorand possesses neurons and directed edges with certain weights existing between input and output layers.47
ANN employs output as the input so as to learn complex non-linear input-output relationship and can be stated48
to be a complex nonlinear mapping model between input and output layer. The processes in ANN comprise data49
sets to enhance the weight parameters, risk minimization scheme for stopping training as soon as the learning50
error enters in expected margin level. In fact, ANN has been employed in numerous utilities, but still it possesses51
certain limitations in terms of slow learning ability, local minima etc and hence require further optimization to52
achieve certain optimal SDP efficiency and performance. Thus, there is the requirement of further optimization of53
ANN approaches to accomplish a potential SDP solution. Some researches [23,24] advocate the implementation54
of evolutionary computing techniques for SDP optimization. This paper proposes a novel evolutionary computing55
based enhanced ANN algorithmnamed Hybrid Evolutionary Computation56

2 Year ( )57

3 D58

based Neural Network (HENN) for defect prediction and classification. HENN system employs Adaptive Genetic59
Algorithm (A-GA) for optimal weight estimation so as to enhance weight update and learning efficiency of60
the ANN.In this paper, the object oriented software metrics, CK metrics [22] have been employed as a fault61
classification data and the respective performance has been analyzed using confusion matrix.62

The remaining sections discusses, related work in Section II, problem definition is briefed in Section III, which63
has been followed by proposed research discussion in Section IV. Section V presents the results and analysis and64
conclusion has been discussed in Section VI.65

4 II.66

5 Related Work67

The emergence of software applications and associated need of quality and reliability has motivated software prac-68
titioners as well as academia to develop certain novel scheme for defect prediction.With an objective to examine69
the relation between software metrics and associated faults some initiatives were made in [25,26,27,28,29,30] where70
machine learning mechanism were used for fault detection. With an enthuse to compare the performance of varied71
other schemes such as decision trees, naïve Bayes, and 1rule [31] performed fault detection using NASA MDP72
project. Chug et al [32] performed data mining based fault estimation using conventional J48, Random Forest, and73
Naive Bayesian Classifier (NBC) schemes but still couldn’t employ the benefits of advanced classification schemes.74
With an objective to enhance conventional schemes Pushphavathi et al [33] introduced hybrid scheme of random75
forest (RF) and Fuzzy C Means (FCM) clustering. Then while, these systems were found limited for unbalanced76
data sets, which motivated author [34] to propose an approach called AdaBoost.NC that explored varied kinds of77
class imbalance learning schemes comprising resampling techniques, threshold moving, and ensemble algorithms.78
With an objective to explore SVM optimization in [35,36] a dynamic SVM model was proposed for fault detection79
in source code using with error data and faulty code execution. Researcher in [37] developed an ANN based SDP80
system. This is the matter of fact that SVM refers the functional paradigm of single layer perceptron’s NN which81
on addition with kernels behaves like multilayered perceptron’s [38]. Till available systems based neural network82
with conventional learning and weight estimation suffers from local optima and convergence issue, which has not83
been discussed dominantly. On contrary, these days the software are developed and examined for faults using84
object oriented software metrics which even being significant has not been explored in depth to ensure optimal85
solution for reliability oriented defect prediction. This paper intends to provide an optimal solution for software86
defect prediction using evolutionary computing based neural network for efficient fault classification.87

6 III.88

7 Problem Definition89

In software development life cycle the reliability assurance is of great significance and to achieve it, the defect90
prediction is an inevitable need. The defect prediction can be performed using software metrics data, in which91
either it is predicted whether the code is defective or not or the magnitude of the probable defect and its severity92
is examined. In this research work, the predominant questions are whether evolutionary computing schemes,93
specifically GA can optimize neural network based artificial intelligence (AI) to achieve optimal software defect94
prediction. An another question that this research paper considers is that whether the conventional Genetic95
Algorithm can be further enhanced to deal with a scenario where multiple chromosomes are having similar fitness,96
and how this enhancement would perform classification or fault prediction?. In order to explore the answers of97
this significant question, in this paper it has been intended to optimize ANN learning and respective optimal98
weight estimation using GA, which has further being optimized to behave as an Adaptive GA (A-GA) scheme99
that ensures adaptive GA parameters (Crossover and mutation) estimation. Here, considering requirements of100

2



object oriented software metrics, CK metrics [22] have been considered that characterizes overall features of101
software in terms of varied component features. In this paper, the key software metrics considered are WMC,102
NOC,DIT,CBO,RFC,LCOM, which can be considered for defect prediction in certain class or data model. Based103
on the proposed model, the defect can be predicted which can be useful for ensuring quality and reliability of104
the software product. Given a training data, certain learning model can be developed that can classify the data105
for its faulty or non-faulty status. The artificial intelligence technique neural network has been used extensively106
so far for classification utilities, but being conventional these approaches do suffer from local minima and weight107
update issues. Thus, to enhance the systems, certain global optimization schemes like evolutionary computing108
can be considered. Since Particle Swarm Optimization suffers due to optimal minima and convergence issues, here109
we proposed an adaptive GA (A-GA) for ANN weight estimation where the weights are estimated dynamically110
in each iteration. Here, mean square error has been considered as the fitness value for A-GA. Further, the GA111
parameters such as crossover probability and mutation probability can be adaptively updated to make the overall112
system more robust and efficient. The optimization of ANN with A-GA can make it more effective and can be a113
potential candidate for fault detection in SDLC applications. The114

8 Global Journal of C omp uter S cience and T echnology115

Volume XV Issue I Version I Year ( ) D performance evaluation for these two approaches can be done in terms116
of accuracy, precision, recall, specificity etc.117

9 IV.118

10 Proposed System119

This section discusses the proposed evolutionary computing based hybrid neural network (HENN) for software120
defect prediction. HENN: Evolutionary Computing Based Neural Network for Software Defect Prediction Neural121
networks (NN) have seen an explosion of interest over the years, and are being successfully applied across a range122
of problem domains. Indeed, anywhere dealing with the problem of classification and prediction, neural networks123
are being used. For software defect prediction, ANN can be employed with learning approaches such as Gradient124
Descent (GD), Gauss Newton, and Levenberg Marquardt (LM) etc. Unlike conventional approach, in this paper,125
we have proposed an evolutionary computing technique called Adaptive Genetic Algorithm for ANN learning126
optimization and weight estimation, which has been further employed for fault prediction. Here, we intend127
to find relation between object oriented software metrics and fault prone classes and six CK metrics; WMC,128
NOC, DIT, RFC, CBO, LCOM have been taken as independent variable while fault data has been considered as129
dependent data. To design ANN, six inputs have been considered which do receive CK metrics individually as130
input having multiple classes, as per benchmark data (here PROMISE data). In this paper we have considered 8131
hidden layers. Since, in the proposed SDP model, only FAULTY and NON-FAULTY are the results expected for132
prediction, therefore only one output node. The overall design of the proposed ANN model can be presented as133
follows: The above mentioned figure illustrates the architecture of ANN containing three layers i.e., input layer,134
hidden layer and output layer. In the considered ANN model, the linear activation function has been used for135
input layer i.e., the output of the output layer is treated as input of the input layer(?? ?? = ?? ?? ). Further,136
the sigmoid function has been employed for hidden layer?? ? . Hence, the result of the hidden nodes ?? ? with137
the fed input of ?? ? is estimated mathematically as ?? ? = 1 1+?? ??? ? and final outcome of output nodes138
O o is presented mathematically by?? ?? = 1 1+?? ??? ?? . In general, ANN is represented by a function ?? ?139
= ð�??”ð�??”(??, ??) where ??? represents the output vector and?? and ?? are the weight vector and the input140
vector respectively. In process, the weight factor ??is updated in each iterations to reduce Mean Square Error141
(MSE), which is estimated as follows:?????? = 1 ?? ? ??? ?? ? ? ?? ?? ? 2 ?? ??=1 (1)142

Where ?? represents the actual output while the expected output is given by?? ?? ? . In order to process the143
datasets using ANN, at first the normalization of data is required. A discussion of the proposed data normalization144
technique in this paper is given as follows:145

11 a) Data normalization146

In the proposed model, initially the normalization has been performed before data processing that strengthens147
the system for better readability and defect prediction. Here the data normalization has been done over the range148
of [0, 1] for adjusting the defined range of input feature value and avoid the saturation of neurons. A number149
of schemes such as Min-Max normalization, Z-Score normalization and decimal scaling can be employed for the150
purpose of data normalization. In this paper, Min-Max normalization approach has been used that performs a151
linear transformation on the original data and maps each of the actual data ?? ?? of attribute ?? to normalized152
value ??? ?? that exists in the range of [0, 1]. The Min-Max based normalized data has been obtained by the153
following expression:????????????????????(?? ?? ) = ?? ?? ” = ?? ?? ??????? (??) ?????? (??)??????? (??)(2)154

Where ??????(??) and ??????(??) represent the maximum and minimum value of the attribute ?? respectively.155
Performing data normalization the ANN model has been employed for fault classification and SDP functions.156

In ANN based artificial intelligence systems, the efficient weight estimation is of great significance and till157
existing approaches have explored techniques such as Gauss Newton, Gradient descent, Levenberg Marquardt158

3



15 GLOBAL JOURNAL OF C OMP UTER S CIENCE AND T ECHNOLOGY

etc. Unfortunately these approaches couldn’t be enhanced by scientific society to make weight estimation effective159
by means of certain global optimization techniques such as Genetic Algorithm.160

12 Efficient weight estimation during ANN learning can161

13 Global Journal of C omp uter S cience and T echnology162

Volume XV Issue I Version I Year ( ) D make classification optimal. This requirement motivated us to employ163
genetic algorithm for dynamic weight estimation during ANN learning. A brief discussion of the proposed164
Adaptive Genetic Algorithm (A-GA) is given in the following section.165

14 b) Adaptive Genetic Algorithm(A-GA)166

Genetic Algorithm (GA) is an adaptive search method for finding optimal or near optimal solutions, premised167
on the evolutionary ideas of natural selection. The fundamental concept of GA is emphasized on simulating168
processes in the natural system required for evolution, distinctively those that consider the Charles Darwin169
principles representing the terms of the survival of the fittest. Considering procedural flow, GA at first generates170
the initial population arbitrarily, where population refers a set of solutions. These solutions are nothing else171
but a chromosome that possesses a form of binary strings where all the comprising parameters are supposed to172
be encoded. Generating the population, GA estimates the fitness function of individual chromosome. Here the173
fitness function states toward a user-defined function that returns the evaluation results of each chromosome,174
thus a higher fitness value means its chromosome is a dominant gene. As per retrieved fitness values, offspring175
are generated using genetic operators-crossover and mutation. Applying these genetic operators the generations176
of the population are repeated iteratively until the stopping criteria are satisfied and an optimal solution is177
achieved. As illustrated in Figure -1, in this paper, the proposed HENN model comprises?? ? ? ? ?? network178
configuration with ?? input layer, ? hidden layer and ?? output layer or neurons. In the proposed ANN model,179
all the six considered CK metrics or feature vector are fed as input to the individual input node, where each180
feature vector metrics accompanies the number of classes available in datasets. Considering Figure-1 and relevant181
network configuration, there is N weight required to be estimated. Mathematically, the number of weight vectors182
is:?? = (?? + ??) * ?(3)183

Here, the individual weight, which is considered as gene in the chromosomes of the A-GA, is a real number.184
Considering the gene length or the number of digits be??. Then the length of the chromosome ?? ????????? can185
be estimated by the following expression:?? ????????? = ?? * ?? = (?? + ??) * ? * ??(4)186

These all chromosomes are considered as the population of the genetic algorithm. In the proposed model187
to estimate the fitness value of the individual chromosome, the weights are required to be extracted from the188
individual chromosome. In our proposed model, the weights (?? ?? ) are estimated by the following expression:189
?? ?? = ? ? ? ? ? ??ð�??”ð�??” 0 ? ?? ???? +1 < 5 ? ?? ???? +2 * 10190

In order to process the Adaptive Genetic Algorithm (A-GA), the fitness values for each chromosome are191
required to be estimated. The fitness generation algorithm for the proposed A-GA system is given in Figure ??2192
?? ?? = 1 ?? ?? = 1 ? ? ?? ?? ?? =?? ?? =1193

?? Figure ?? : Algorithm for Fitness generation using A-GA This is the matter of fact that the evolutionary194
computing scheme named Genetic Algorithm has established itself as a potential optimization technique for195
various application scenarios, still this approach possess scopes for further optimization that specifically depends196
on the working environment. In this paper, there might be the possibility that after every generation to achieve197
optimal fitness, certain new population would be generated and thus the processing data might be increased after198
each iterations, thus resulting into certain199

15 Global Journal of C omp uter S cience and T echnology200

Volume XV Issue I Version I Year ( ) D restraints such as premature convergence caused due to local optima and201
low convergence speed, which is common in other evolutionary techniques such as Particle Swarm Optimization.202
In order to alleviate these issues, the parameters like cross over probability (?? ?? ) and mutation probability203
(?? ?? ) can be made dynamic and weight adaptive. In addition, such novelty can deal with a common204
scenario, where there is the possibility of multiple chromosomes having similar fitness value, causing degraded205
classification accuracy. Taking into consideration of these all factors and motivations, in this paper a weight206
adaptive genetic algorithm (A-GA) has been developed where the genetic parameters (Crossover and mutation)207
are updated dynamically. In the proposed approach the parameters ?? ?? and ?? ?? have been dynamically208
updated by means of the following mathematical model:(?? ?? ) ??+1 = (?? ?? ) ?? ? ?? 1 * ?? 5 (6) (?? ?? )209
??+1 = (?? ?? ) ?? ? ?? 2 * ??5210

Where (?? ?? ) ??+1 and (?? ?? ) ??+1 represent the updated probability of cross over and mutation, (?? ??211
) ?? and (?? ?? ) ?? are the current probability of cross over and mutation, ?? 1 and ?? 2 can be the positive212
constant and?? is the number of chromosome having same fitness value. Thus, implementing these discussed213
approaches, if the final output estimated is greater than 0.5, then the class is labeled as FAULTY otherwise214
NON-FAULTY. Figure -3 represents the overall process of software defect prediction using Adaptive Genetic215
Algorithm (A-GA). Weight Estimation: Obtained the weight vector W_kfor each chromosome as the input to216

4



hiddenlayer and hidden layer to output layer and thus the weight of input to hidden node and hidden node to217
output are estimated using equation 5. Fitness Estimation: On the basis of weights retrieved, the fitness value is218
estimated for each chromosome, where the proposed HENN intends to minimize the mean square error as defined219
in Figure ??. Ranking of Chromosomes: Perform the ranking of each chromosomes based on respective fitness220
value and substitute the chromosomes with minimum fitness value by the chromosomes with highest fitness value221
chromosome.222

Perform two point crossover processdynamically vary the GA parameters P c and P m till reaching optimal223
criteria using equation (6).224

In the simulation model, the initial P c and P m are 0.6 and 0.1 respectively and n signifies the number225
of chromosome having similar fitness value. Stopping Criteria: The developed system terminates once the226
95% chromosomes in the gene pool accomplishes its unique fitness value and beyond this the fitness level of227
chromosomes gets saturated. Classify Faults: If the final weight is greater than 0.5, then the class is labeled as228
FAULTY otherwise NON-FAULTY. Confusion Matrix Generate the confusion matrix for each classes of OO-SM229
and classify fault/non-fault distribution for performance evaluation.230

Thus, employing the proposed HENN model, the fault classification and prediction has been done. The231
simulation, results and discussion is provided in the following section.232

V.233

16 Result and Analysis234

This section discusses the research variables, simulation setups, results obtained and respective performance235
analysis.236

17 a) Data collection237

In this paper, the CK metric suites have been employed which have been defined for varied objectives such as238
software fault detection/prediction, effort evaluation, re-usability and maintenance. Considering the robustness239
of CK metric suite [27], it has been used as object oriented software metrics which has been processed using240
Chidamber and Kemerer Java Metrics tool (CKJM) tool that extracts software metrics by executing byte code of241
compiled Java cases and assigns a definite weight of the comprising classes having feature vectors. In this paper,242
PROMISE fault benchmark data [39] and NASA MDP datasets ??40] and PROMISE repository to evaluate243
the performance of the proposed fault prediction scheme. We intended to establish the relationship between244
Object-Oriented software metrics (OO-SM) and the fault proneness at the class level. In order to perform defect245
prediction using regression analysis paradigm, we have considered fault as a dependent variable while the CK246
metric as the independent variable. The predominant OO-SM metrics are given in Table-1 In our work, we have247
developed a function to explore the relation between Object-Oriented software metrics (OO-SM) (WMC, NOC,248
DIT, RFC, CBO and LCOM) and faults existing in class under consideration. The minimization of faults can be249
of great significance towards optimization of software equality, and to ensure optimal defect prediction, the fault250
has been derived as the function of software metrics as illustrated as follows: ???????????? = ð�??”ð�??”(??????,251
??????, ??????, ??????, ??????, ????????)252

We used four public domain defect datasets from the PROMISE repository [9][39]. The considered data sets are253
JEdit, IVY, Ant and Camel which contain static code measures along with varied modules sizes, defective modules254
and defect rates. In our simulation model, the respective extracted weights and features of the data classes are255
taken as input. The datasets with respective classes or modules are given in Table-2. In this paper, HENN256
algorithm has been developed for simulation using MATLAB 2012b software tool having artificial intelligence257
and ANN toolboxes. The proposed models examined defect datasets and the FAULTY and NON FAULTY data258
have been classified. Here on the basis of FAULT distribution by proposed model, a confusion matrix has been259
generated that encompasses two rows and columns comprising true negatives, true positive, false negative and260
false positive variables. The respective values of True negatives (TN) refer the modules which are NON FAULTY261
or fault-free on the other hand, true positives (TP) represents for those modules which are classified as FAULTY.262
False negatives (FN) are those modules which are FAULTY and are classified incorrectly as NON FAULTY.263
Similarly, false positives (FP) modules are those modules which are faultless but are classified incorrectly as264
FAULTY. A matrix presentation of confusion matrix is given in Table 3. Generally, the meanings of the values of265
the binary variables are not needed to be defined, however, in our work, especially for performance assessment the266
variables have been labeled as positive and negative. The positive levels refer towards the results as FAULTY in267
that specific simulation scenario. In this paper, we have measured the performance of the proposed HENN SDP268
in terms of correctness, precision, F-measures, accuracy, recall, specification and cost factor analysis. A brief269
mathematical definition of these variables is given as follows: 91.8 –C4.5 [47] 88.39 –J 48 [47] 90.90 Levenberg-270
Marquardt-NN [47] 88.0 –NNEP-Evolutionary [43] 88.8 81.2 -PSO [46] 78.78 –PSO-NN [48] 97.75 –HENN SDP271
* 97.9 * 1 98.9272

18 *-The best performance of HENN273

Thus, the results obtained exhibit that the optimization made by means of Adaptive Genetic Algorithm has274
enhanced ANN learning for fault detection. The ultimate results obtained for HENN represents the most effective275

5



19 CONCLUSION

and optimal results as compared to other existing approaches, especially neural network based SDP models. The276
performance analysis for the proposed systems is given in Table-6.277

19 Conclusion278

Software defect prediction has become an inevitable need for organizations to ensure quality and reliability279
of software products. The early defect prediction can facilitate managers to rectify and enrich reliability of280
product. Approaches such as machine learning and neural network have become eminent solution for training and281
classification of data and can be significant for defect prediction. However, these approaches need optimization282
in terms of weight update, parametric enhancement while performing defect prediction. The local minima and283
convergence issue of ANN can be significantly dealt with employing evolutionary computing schemes and the284
implementation of genetic algorithm can be the dominant candidate. In this paper, Adaptive Genetic Algorithm285
(A-GA) has been used for ANN optimization, where A-GA functions for optimal weight estimation. The proposed286
HENN model has been tested with PROMISE data sets, where the average accuracy for HENN was retrieved287
as 87.23 % while the best classification performance was observed with JEdit datasets where HENN exhibited288
97.99% accuracy while ensuring 100% precision. Performance in terms of F-measure using HENN was obtained289
as 98.97%. The results also depicted 1 2 3

1

Figure 1: Figure 1 :

10 ???2
??ð�??”ð�??” 5 <= ?? ???? +?? <= 9

+ ?? ???? +2 * 10 ???2 +?? ???? +3 * 10 ???3 +?+?? (??+1)?? 10 ???2

Figure 2:
290

1© 2015 Global Journals Inc. (US) 1
2© 2015 Global Journals Inc. (US)
3Adaptive Genetic Algorithm Based Artificial Neural Network for Software Defect Prediction

6



Algorithm for Fitness Estimation
Input:?? ? ?? = (?? 1?? , ?? ?? = ? ? ? ? ? ? ? ? ?? ???? +2 Phase-4: Estimate Root mean square error (RMSE) of ??ð�??”ð�??” 0 ? ?? ???? +1 < 5
chromosome?? ??
?? ?? = ? ? ??

=??
??
=1
??

??
??

Where ?? is the total number of training data set
Phase-5: Estimate the fitnessvalue for chromosome?? ??

[Note: * 10 ???2 + ?? ???? +3 * 10 ???3 + ? + ?? (??+1)?? 10 ???2 ??ð�??”ð�??” 5 <= ?? ???? +?? <=
9 + ?? ???? +2 * 10 ???2 + ?? ???? +3 * 10 ???3 + ? + ?? (??+1)?? 10 ???2]

Figure 3:
1

[22])
WMC Overall complexities of the methods in

comprising classes
NOC Number of sub-classes subordinate to a class

in the class hierarchy
DIT Maximum height of the class hierarchy
CBO Number of other classes to which it is allied

with
RFC A set of approaches that can be executed in

response to a message received by an object
of that class

LCOM Dissimilarity measurement of varied methods in
a class using instanced attributes/variables

NOM Number of methods (in a class)
NOA Number of attribute (in a class)
NOAI Number of attributes inherited by subclasses.
NOMI Number of methods inherited by subclasses.
Fan-
in

Total number of local flows in certain process

and data structures from where it retrieves
information

Fan-
out

Total number of local flows in certain process

and data structures from where it retrieves
information

NOPMTotal number of private methods in a class
NOPA Total number of private attribute in a class
NOPMTotal number of public methods in a class
NOPA Total number of public attribute in a class
NLOC Size of program by counting the number of

lines in the source code.

Figure 4: Table 1 :

7



19 CONCLUSION

2

PROMISE JEdit IVY Ant Camel
Number of 492 352 744 965
modules

Figure 5: Table 2 :

3

Predicted Predicted Defect
Defective Free

FAULTY True Positive False Negative
NON-FAULTY False Positive True Negative

Figure 6: Table 3 :

4

Construct Mathematical Description
Expression

Recall TP/(TP+FN) Proportion of
defective units
correctly classified

Precision TP/(TP+FP) Proportion of Units
correctly predicted
as defective

Specification TN/(TN+FP) Proportion of
correctly classified
non defective units

Figure 7: Table 4 :

6

2015
Year
Volume XV Issue I Version I
( ) D
Global Journal of C omp uter S
cience and T echnology

TechniqueData Modules Accuracy Precision F-
Measure

Recall Specification

HENN JEdit 492 0.9799 1 0.9897 1 0.9756
HENN IVY 352 0.8835 0.9936 0.9380 0.8883 0.3333
HENN Ant 744 0.8145 0.9343 0.8867 0.8438 0.6346
HENN Camel 965 0.8114 1 0.8952 0.8102 1

Figure 8: Table 6 :

8



5

Figure 9: Table 5 :

Figure 10:

9



19 CONCLUSION

10



[ Colonnade Road Suite] , Colonnade Road Suite 204.291

[Boehm ()] , B W Boehm . Software Engineering Economics 1981. Prentice-Hall.292

[Henderson-Sellers and Metrics ()] , B Henderson-Sellers , Software Metrics . 1996. UK: Prentice-Hall.293

[Mccabe (1976)] ‘A complexity measure’. T J Mccabe . IEEE Transactions on Software Engineering December294
1976. 2 p. .295

[Fenton et al. ()] ‘A Critique of Software Defect Prediction Models’. N E Fenton , M Neil , I Bellini , P Bruno ,296
D Nesi , Rogai . IEEE Trans. Softw. Engineering 1999. 25 (5) p. . University of Florence297

[Zuse ()] A Framework of Software Measurement, H Zuse . 1998. Walter de Grutger Publish.298

[Bansiya and Davis (2002)] ‘A hierarchical model for Object-Oriented design quality assessment’. J Bansiya , C299
G Davis . ACM Transactions on Programming Languages and Systems August 2002. 128 p. .300

[Shrivastava and Shrivastava] A Hybrid Model of Soft Computing Technique for Software, Anurag Shrivastava ,301
Vishal Shrivastava .302

[Kutlubay and Bener ()] A Machine Learning Based Model for Software Defect Prediction, O Kutlubay , A Bener303
. 2005. Boaziçi University, Computer Engineering Department (working paer)304

[Chidamber and Kemerer (1994)] ‘A metrics suite for Object-Oriented design’. S R Chidamber , C F Kemerer .305
IEEE Transactions on Software Engineering June 1994. 20 p. .306

[Xia et al. (2014)] ‘A new metrics selection method for software defect prediction’. Ye Xia , Guoying Yan ,307
Xingwei Jiang , Yanyan Yang . Progress in Informatics and Computing (PIC), International Conference,308
May 2014. p. .309

[Xing et al. ()] ‘A novel method for early software quality prediction based on support vector machine’. F Xing310
, P Guo , M R Lyu . Software Reliability Engineering, International Symposium, 2005. p. .311

[Pushphavathi et al. ()] ‘A novel method for software defect prediction: Hybrid of FCM and random forest’. T312
P Pushphavathi , V Suma , V Ramaswamy . Electronics and Communication Systems (ICECS), 2014.313

[Tegarden et al. ()] ‘A software complexity model of Object-Oriented systems’. D P Tegarden , S D Sheetz , D314
E Monarchi . Decision Support Systems 1995. 13 (3) p. .315

[Bo et al. (2007)] ‘A study on software reliability prediction based on support vector machines’. Bo , Xiang Yang316
, Li . The Annual IEEE International Conference on Industrial Engineering and Engineering Management,317
2-4 Dec. 2007. p. .318

[Rojas and Fernandez-Reyes (2005)] ‘Adapting multiple kernel parameters for support vector machines using319
genetic algorithms’. S A Rojas , D Fernandez-Reyes . The 2005 IEEE Congress on Evolutionary Computation,320
September, 2005. 1 p. .321

[Khoshgoftaar et al. (2001)] ‘An Application of Zero-Inflated Poisson Regression for Software Fault Prediction.322
Software Reliability Engineering’. T M Khoshgoftaar , K Gao , R M Szabo . ISSRE 2001. Proceedings of 12th323
International Symposium, 27-30 Nov. 2001. p. .324

[Gondra (2008)] ‘Applying machine learning to software fault-proneness prediction’. Gondra . Journal of Systems325
and Software Feb. 2008. 81 (2) p. .326

[Briand et al. (2002)] ‘Assessing the Applicability of Fault-Proneness Models Across Object-Oriented Software327
Projects’. L C Briand , W L Melo , J Wu , St . IEEE Trans. Software Eng July 2002. 28 (7) p. .328

[Cai ()] K Cai . 0n the Neura1 Network Approach in Software Reliability Modeling, 2001. p. .329

[Kang and Bieman (1995)] ‘Cohesion and reuse in an Object-Oriented system’. B K Kang , J M Bieman .330
Proceedings of the ACM SIGSOFT Symposium on software reusability, (the ACM SIGSOFT Symposium331
on software reusabilitySeattle) March 1995. p. .332

[Bellini ()] ‘Comparing Fault-Proneness Estimation Models’. P Bellini . 10th IEEE International Conference on333
Engineering of Complex Computer Systems (ICECCS’05), 2005. p. .334

[Lanubile et al. (1995)] ‘Comparing Models for Identifying Fault-Prone Software Components’. F Lanubile ,335
A Lonigro , G Visaggio . Proceedings of Seventh International Conference on Software Engineering336
and Knowledge Engineering, (Seventh International Conference on Software Engineering and Knowledge337
Engineering) June 1995. p. .338

[Etzkorn et al. ()] ‘Design and code complexity metrics for Object-Oriented classes’. L Etzkorn , J Bansiya , C339
Davis . Object-Oriented Programming 1999. 12 (10) p. .340

[Hu et al. (2006)] ‘Early software reliability prediction with extended ANN model’. Q Hu , Y S Dai , M341
Xie , S H Ng . Proceedings of the 30th Annual International Computer Software and Applications342
Conference (COMPSAC’06), (the 30th Annual International Computer Software and Applications Conference343
(COMPSAC’06)) September 2006. 2 p. .344

11



19 CONCLUSION

[Denaro (2000)] ‘Estimating Software Fault-Proneness for Tuning Testing Activities’. Giovanni Denaro . Proceed-345
ings of the 22nd International Conference on Software Engineering, (the 22nd International Conference on346
Software EngineeringLimerick, Ireland) June 2000.347

[Briand et al. (2000)] ‘Exploring the relationships between design measures and software quality in Object-348
Oriented systems’. L C Briand , J Wust , J W Daly , D V Porter . The Journal of Systems and Software May349
2000. 51 p. .350

[Brun and Michael (2004)] ‘Finding Latent Code Errors via Machine Learning over Program Executions’. Y351
Brun , D E Michael . Proceedings of the 26th International Conference on Software Engineering, (the 26th352
International Conference on Software Engineering) May, 2004.353

[Grosan and Abraham ()] C Grosan , A Abraham . Hybrid Evolutionary Algorithms: Methodologies, Architec-354
tures, and Reviews, 2011. 75 p. .355

[Halstead ()] M Halstead . Elements of Software Sciencel, (New York, USA) 1977. Elsevier Science.356

[Sandhu et al. ()] ‘Intelligence System for Software Maintenance Severity Prediction’. Parvinder Sandhu , Sunil357
Singh , Hardeep Kumar , Singh . Journal of Computer Science 2007. 3 (5) p. .358

[International Conference] International Conference, 5 p. .359

[Benlarbi et al. ()] ‘Issues in Validating Object-Oriented Metrics for Early Risk Prediction’. Saida Benlarbi ,360
Khaled El Emam , Nishith Geol . Cistel Technology 1999. p. 210.361

[Li and Henry ()] ‘Maintenance metrics for the Object-Oriented paradigm’. W Li , S Henry . Proceedings of First362
International Software Metrics Symposium, (First International Software Metrics Symposium) 1993. p. .363

[Armah et al. (2013)] ‘Multilevel data preprocessing for software defect prediction’. G K Armah , Guangchun364
Luo , Ke Qin . 6th International Conference, 2013. Nov. 2013. 2 p. . (ICIII))365

[Abreu and Carapuca ()] ‘Object-Oriented software engineering: Measuring and controlling the development366
process’. F B E Abreu , R Carapuca . Proceedings of the 4th International Conference on Software Quality,367
(the 4th International Conference on Software Quality) 1994. 186.368

[Lorenz and Kidd ()] Object-Oriented Software Metrics, M Lorenz , J Kidd . 1994. NJ, Englewood: Prentice-Hall.369

[Malhotra et al. (2014)] ‘On the applicability of evolutionary computation for software defect prediction’. R370
Malhotra , N Pritam , Y Singh . Advances in Computing, Communications and Informatics (ICACCI, 2014371
International Conference, Sept. 2014. p. .372

[Deodhar (2002)] Prediction Model and the Size Factor for Fault-proneness of Object Oriented Systems, Manasi373
Deodhar . Dec. 2002. Michigan Tech. University (MS Thesis)374

[Rosenberg and Sheppard (1994)] L Rosenberg , S B Sheppard . Metrics in Software Process Assessment, Quality375
Assurance and Risk Assessment, (London) October, 1994. (2nd International Symposium on Software Metrics)376

[Shan et al. (2014)] Chun Shan , Boyang Chen , Changzhen Hu , Jingfeng Xue1 , Ning Li . SOFTWARE377
DEFECT PREDICTION MODEL BASED ON LLE AND SVM” Communications Security Conference;378
pp 1-5, May 2014. p. .379

[Singh and Singh Salaria (2013)] ‘Software Defect Prediction Tool based on Neural Network’. Malkit Singh ,380
Dalwinder Singh Salaria . International Journal of Computer Applications May 2013. 70 p. .381

[Chug and Dhall (2013)] ‘Software defect prediction using supervised learning algorithm and unsupervised382
learning algorithm’. A Chug , S Dhall . Confluence 2013: The Next Generation Information Technology383
Summit, Sept. 2013. p. .384

[Chug and Dhall (2013)] ‘Software defect prediction using supervised learning algorithm and unsupervised385
learning algorithm’. A Chug , S Dhall . Confluence 2013: The Next Generation Information Technology386
Summit, Sept. 2013. p. .387

[Verma and Gupta (2012)] ‘Software defect prediction using two level data pre-processing’. R Verma , A Gupta388
. Recent Advances in Computing and Software Systems (RACSS), International Conference, April 2012. p. .389

[Wang and Yao (2013)] ‘Using Class Imbalance Learning for Software Defect Prediction’. S Wang , X Yao .390
Reliability, IEEE Transactions, June 2013. 62 p. .391

[Harman ()] ‘Why the Virtual Nature of Software makes it Ideal for Search Based Optimization’. M Harman .392
Fundamental Approaches to Software Engineering, 2010.393

12


