
Effect of Different UML Diagrams to Evaluate the Size Metric for1

Different Software Projects2

Preety Verma Dhaka13

1 Jayoti Vidyapeeth Womenas University, Jaipur4

Received: 8 December 2014 Accepted: 1 January 2015 Published: 15 January 20155

6

Abstract7

In Software Engineering, an important activity is measuring of the Software in different ways.8

For Measuring the Software, appropriate metrics are needed. Using Software metrics we are9

able to attain the various qualitative and quantitative aspects of Software. To measure the10

Software in terms of quality, size, efforts, efficiency, and reliability, performance etc. we have11

different metrics available in Software Engineering and it has been an area of interest for the12

various researchers. Measures of specific attributes of the process, project and product are13

used to compute Software metrics. This work proposes a similar approach of measuring14

software using various UML diagrams and applied Software size metric to evaluate the size of15

the Software. This paper discusses the proposed approach using two different case studies and16

their source codes. This paper discusses the different results obtained using different17

perspectives of the Software size metric measurements and maintainability of the Software.18

19

Index terms— software metrics, size metric, uml diagrams, use cases, cocomo, maintainability20

1 Introduction21

he objectives of this analysis square measure to create associate empirical analysis of computer code size metrics22
supported UML with the assistance of 2 case studies then calculate that empirical information consisting of actual23
values and therefore thereby showing that however the computer code size metrics are going to be derived from24
associate UML model via category Diagrams and the below listed interaction diagrams. 1. Activity Diagrams 2.25
State chart Diagrams26

2 Component Diagrams 4. Collaboration Diagrams27

For winding up this analysis, 2 real case studies particularly (i) Virtual category space and (ii) information28
Secrecy System are going to be taken for sensible analysis. The UML modeling of those systems are going to29
be done and therefore the computer code size metrics of those systems are going to be evaluated supported the30
UML models, the non-functional techniques (LOC, FP, and COCOMO-II). The metrics are going to be such31
UML extension mechanism then are going to be calculated with the assistance of a tool. The calculable values32
are going to be compared with the particular computer code. Thus, the aim of our analysis is to judge the33
empirical worth sets of UML models and thereby, showing the utilization of assorted size metrics and validate34
their extraction procedure from UML style with the assistance of interaction diagrams. II.35

3 Existing Work36

Many scientists and researchers have studied the package metrics supported UML models. And therefore have37
given their large contributions to the sector of analysis within the laptop sciences .A lot of labor has been done38
until date within the space of analysis whereas considering package metrics associated with UML style.39

In their paper Tong Yi et al. [7] analyzed and compared some typical metrics for UML category diagrams40
from totally different viewpoints , differing types of relationships, differing types of metric values, complexity,41

1

Global Journals LATEX JournalKaleidoscope™
Artificial Intelligence formulated this projection for compatibility purposes from the original article published at Global Journals.
However, this technology is currently in beta. Therefore, kindly ignore odd layouts, missed formulae, text, tables, or figures.

6 PROPOSED METHODOLOGY

and fragrance theoretical and empirical validation. They need tried to investigate the present well-liked metrics42
for UML category diagrams each on paper and by experimentation from many totally different viewpoints. The43
analysis shows that the majority current metrics have their shortcomings whereas being effective or economical44
for a few special characteristics of the system.45

Li Wei dynasty et al. [8] has conferred AN empirical study of OO metrics in 2 unvaried methodes: the short-46
cycled agile method and therefore the longcycled framework evolution process. They need found that OO metrics47
area unit effective in predicting style efforts and supply lines of code superimposed, changed, and deleted within48
the short-cycled agile method and ineffective in predicting identical aspects within the long-cycled framework49
method. This leads them to believe that OO metrics’ prophetic capability is proscribed to the planning and50
implementation changes throughout the event iterations, not the long evolution of a longtime system in numerous51
releases.52

Mitchell et al. [9] conferred a footing paper outlining a programmed of analysis supported the quantification53
of run-time parts of Java programs. Especially, we tend to adapt 2 common object-oriented metrics, coupling54
and cohesion, so they’ll be applied at run-time. The results conferred during this paper area unit of a preliminary55
nature, and don’t offer a excusable basis for generalization. However, she believed that they are doing offer a56
sign that the analysis of package57

4 (C)58

metrics at run-time will offer a motivating measurement of a program.59
Through their paper Christodoulakis et al. [10] have derived the results on metrics employed in object60

orientating environments. Their survey includes a tiny low set of the foremost renowned and ordinarily applied61
ancient package metrics that can be applied to objectoriented programming and a group of object-oriented metrics62
(i.e. those designed specifically for objectoriented programming). These metrics were evaluated mistreatment63
existing meta-metrics further as metametrics derived from our studies, primarily based on the practitioner’s64
purpose of read, and accenting pertinence in 3 totally different programming environments: Object Pascal, C++65
and Java.66

In this paper M. Das et al. [11] have expressed that Component-Based package Engineering (CBSE) has67
shown important prospects in speedy production of huge package systems with increased quality, and stress68
on decomposition of the built systems into purposeful or logical elements with well-defined interfaces used for69
communication across the elements. During this paper, a series of metrics projected by numerous researchers are70
analyzed, evaluated and benchmarked mistreatment many large-scale publically. A scientific analysis of the values71
for numerous metrics has been administrated and several other key inferences are drawn from them. Varieties of72
helpful conclusions are drawn from numerous metrics evaluations, which embrace inferences on quality, reusability,73
testability, modularity and stability of the underlying elements. The inferences area unit argued to be useful for74
CBSE-based package development, integration and maintenance.75

Jamali [12] has expressed the central role that package development plays within the delivery and application76
of data technology, managers’ area unit progressively that specializes in method improvement within the package77
development space. The main target on method improvement has inflated the demand for package measures, or78
metrics with that to manage the method. The necessity for such metrics is especially acute once a corporation is79
adopting a brand new technology that established practices have however to be developed. He has self-addressed80
these wants through the event and implementation of a collection of metrics for OO style.81

Shaik Amjan, et al. [13] has conferred the getable and new package metrics helpful within the totally different82
part of the Object-Oriented package Development Life Cycle. Metrics area unit utilized by the package trade83
to itemize the development; operation and maintenance of package. They have conferred metrics for Object-84
oriented package systems. A mechanism is provided for comparison measures, that examine identical ideas in85
numerous ways that, and facilitating a lot of rigorous decision-making, relating to the reason of latest measures86
and therefore the choice of existing measures for a selected goal of menstruation.87

5 III.88

6 Proposed Methodology89

This work is the UML diagrams to calculate the dimensions metrics. It’s been found that existing researches90
specialize in the utilization CASE to be the UML diagram for analysis of the dimensions metric. Inclusion of the91
opposite UML diagrams in analysis method of the dimensions metric has been projected during this analysis.92
The whole work is being carried in following steps: 1. Taken 2 case studies and their ASCII text file because the93
input of this work 2. UML diagrams of the case studies has been drawn and enclosed for the evaluations of the94
dimensions metric 3. Meta Mil computer code is getting used to come up with the XMI document for analysis95
of the dimensions metric 4. Generated XMI file is employed with the Mount Rushmore State Metric tool for96
analysis of the metric values. 5. For comparison purpose 2 alternative size metric techniques are used i.e. Lines97
of Codes and performance purpose Analysis 6. After analysis of the metrics varied strategies, a chart of the all98
the metric values are going to be generated to indicate the results.99

The proposed work shall be carried out using the following structural diagram: Unified Modeling Language100
(UML) is well-liked these days for capturing necessities and for describing the design of a software-intensive101

2

system. One among the UML constructs may be a use case, that diagrammatically depicts the manner within102
which a user can act with the system to perform one operate or one category of functions. 3 aspects of use103
cases are often useful as inputs to a size estimate: the quantity of use cases, the quantity of actors concerned104
in every use case, and therefore the variety of situations. AN actor may be a person or system that interacts105
with the system beneath consideration; usually, there’s one actor per use case, however typically there square106
measure additional. A state of affairs may be a potential outcome from exploitation the software; the quantity107
of situations will vary from one to thousands or millions, counting on the system and its quality. This technique108
may be helpful once the dimensions estimate is needed once a UML specification is completed. It may also be109
used as a insure of another method; if the answers from each strategies square measure similar, the analysts could110
have additional confidence within the result.111

IV.112

7 Metrics of Sdmetric113

Metric NumAttr: the amount of attributes within the category. The metric counts all properties no matter their114
kind (data kind, category or interface), visibility, quality (read solely or not), and owner scope (class-scope, i.e.115
static, or instance attribute). Not counted square measure genetic properties, associate degreed properties that116
square measure members of an association, i.e., that represents passable association ends. Metric NumOps: the117
amount of operations during a category. Includes all operations within the category that square measure expressly118
modeled (overriding operations, constructors, destructors), no matter their visibility, owner scope (class-scope,119
i.e., static), or whether or not they square measure abstract or not. Genetic operations don’t seem to be counted.120
Metric NumPubOps: the amount of public operations during a category. This can be same as metric NumOps,121
however solely counts operations with public visibility. It measures the dimensions of the category in terms of122
its public interface. Metric Setters: the amount of operations with a reputation beginning with ’set’. Note that123
this metric doesn’t perpetually yield correct results. As an example, associate degree operation settle Account124
are going to be counted as setter methodology. Metric Getters: the amount of operations with a reputation125
beginning with ’get’, ’is’, or ’has’. Note that this metric doesn’t perpetually yield correct results. As an example,126
associate degree operation isolate Node are going to be counted as getter methodology.127

Metric Nesting: The nesting level of the category (for inner classes). Measures however deeply a category128
is nested at intervals different categories. Categories not outlined within the context of another category have129
nesting level zero, their inner categories have nesting level one, etc. Nesting levels deeper than one square measure130
unusual; associate degree excessive nesting structure is troublesome to know, and may be revised.131

Metric IFImpl: the amount of interfaces the category implements. This solely counts direct interface realization132
links from the category to the interface. as an example, if a category C implements associate degree interface I,133
that extends another interfaces, solely interface I’ll be counted, however not the interfaces that I extends (even134
although category c implements those interfaces, too). Metric NumDesc: the amount of descendents of the135
category (UML Generalization). This counts the amount of youngsters of the category, their kids, and so on.136
Metric NumAnc: the amount of ancestors of the category. This counts the amount of fogeys of the category,137
their oldsters, and so on. If multiple inheritances don’t seem to be used, the metric yields constant values as138
telegraphic signal.139

Metric DIT: The depth of the category within the inheritance hierarchy. This can be calculated because the140
longest path from the category to the basis of the inheritance tree. The telegraphic signal for a category that141
has no oldsters is zero. A class with high telegraphic signal inherits from several categories and so harder to142
know. Also, categories with high telegraphic signal might not be correct specializations of all of their ascendant143
categories.144

Metric CLD: category to leaf depth. This can be the longest path from the category to a leaf node within the145
inheritance hierarchy below the category.146

Metric OpsInh: the amount of genetic operations. An outsized variety of kid categories could indicate particle147
of the parent category.148

The amount of descendents of the category UML Counts the amount of youngsters of the category, their149
variety of ancestors of the category i.e. parents of the category, their parents, and so on. If multiple inheritances150
don’t seem to be used, the metric yields constant values because the depth of the category within the inheritance151
this can be calculated because the longest path from the basis of the inheritance tree.152

The telegraphic signal for a category that has no oldsters is zero. Classes with from several categories and so is153
harder to know. Also, categories with high telegraphic signal might not be correct specializations of sophistication154
to leaf depth. This can be calculated because the ad of metric NumOps seized all ascendant categories of the155
category.156

8 a) Lines of Codes157

This methodology tries to assess the seemingly variety of lines of code within the finished merchandise. Clearly,158
associate actual count typically created only the merchandise is complete; lines of code area unit often thought-159
about to be inappropriate for size estimates early within the project life cycle. However, since several of the160

3

11 FP = UAF * VAF

size-estimation strategies specific size in terms of lines of code, we will contemplate lines of code as a separate161
methodology in this it expresses the dimensions of a system in an exceedingly explicit method.162

9 b) Function Point Analysis163

Function points were developed by Albrecht (1979) at IBM as the simplest way to live the quantity of practicality164
in an exceedingly system. They’re derived from the wants. In contrast to lines of code, that capture the dimensions165
of associate actual product, operate points don’t relate to one thing physical however, rather, to one thing logical166
which will be assessed quantitatively.167

10 IFPUG FPA:168

Formal methodology to live size of business applications. It introduces complexness issue for size outlined as169
operate of input, output, query, external input data and internal logical file. All elements area unit rated as Low,170
Average or High After the elements are classified together of the 5 major elements (EI’s, EO’s, EQ’s, ILF’s or171
EIF’s), a ranking of low, average or high is allotted. For transactions (EI’s, EO’s, EQ’s) the ranking relies upon172
the variety of files updated or documented (FTR’s) and also the number of knowledge part sorts (DET’s). For173
each ILF’s and EIF’s files the ranking relies upon record part sorts (RET’s) and information part sorts (DET’s).174
A record part sort could be a user recognizable subgroup of knowledge parts among associate ILF or EIF. A175
knowledge part sort could be a distinctive user recognizable, non algorithmic, field.176

Each of the subsequent tables assists within the ranking method (the numerical rating is in parentheses).177
As an example, associate EI that references or updates a pair of File sorts documented (FTR’s) and has seven178
information parts would be allotted a ranking of average and associated rating of four. Wherever FTR’s area179
unit the combined variety of Internal Logical Files (ILF’s) documented or updated and External Interface Files180
documented. Like all components, EQ’s are rated and scored. Basically, an EQ is rated (Low, Average or High)181
like an EO, but assigned a value like and EI. The rating is based upon the total number of unique (combined182
unique input and out sides) data elements (DET’s) and the file types referenced (FTR’s) (combined unique input183
and output sides). If the same FTR is used on the input and output side, then it is counted only one time. If184
the same DET is used on the input and output side, then it is only counted one time.185

For both ILF’s and EIF’s the number of record element types and the number of data elements types are used186
to determine a ranking of low, average or high. A Record Element Type is a user recognizable subgroup of data187
elements within an ILF or EIF. A Data Element Type (DET) is a unique user recognizable, non recursive field188
on an ILF or EIF.189

Table ?? The counts for every level of complexness for every variety of part may be entered into a table like190
the subsequent one. Every count is increased by the numerical rating shown to work out the rated price. The191
totals are then summed across the table, giving a complete price for every variety of part. These totals are then192
summed all the way down to reach the overall range of Unadjusted perform Points.193

The value adjustment issue (VAF) relies on fourteen general system characteristics (GSC’s) that rate the194
final practicality of the appliance being counted. Every characteristic has associated descriptions that facilitate195
confirm the degrees of influence of the characteristics. The degrees of influence vary on a scale of zero to 5, from196
no influence to robust influence. The IFPUG investigating Practices Manual provides elaborated analysis criteria197
for every of the GSC’S, the table below is meant to produce a summary of every GSC. Rate every issue (Fi, i=1198
to14) on a scale of zero to 5: Are there distributed processing functions? F5. Will the system run in an existing,199
heavily utilized operational environment? F6. Does the system require on-line data entry? F7. Does the on-line200
data entry require the input transaction to be built over multiple screens or operations? F8. Are the master201
files updated on-line? F9. Are the inputs, outputs, files or inquiries complex? F10. Is the internal processing202
complex? F11. Is the code designed to be reusable? F12. Are conversion and installation included in the design?203
F13. Is the system designed for multiple installations in different organizations? F14. Is the application designed204
to facilitate change and ease of use by the user?205

Once all the fourteen GSC’s are answered, they must be tabulated victimization the IFPUG price Adjustment206
Equation (VAF) –14 VAF = 0.65 + [(Ci) / 100] .i = is from one to fourteen representing every GSC.207

Where: Ci = degree of influence for every General System Characteristic208
The final operate purpose Count is obtained by multiplying the VAF times the Unadjusted operate purpose209

(UAF).210

11 FP = UAF * VAF211

Summary of advantages of operate purpose Analysis Function Points may be accustomed size software system212
applications accurately. Filler is a vital element in decisive productivity (outputs/inputs).213

They can be counted by totally different folks, at totally different times, to get a similar live at intervals an214
affordable margin of error.215

Function Points are simply understood by the non technical user. This helps communicate filler data to a user216
or client.217

Function Points may be accustomed confirm whether or not a tool, a language, associate surroundings, is218
additional productive in comparison with others.219

4

12 c) Cocomo-Ii220

The COCOMO II model makes its estimates of needed effort (measured in Person-Months -PM) based mostly221
totally on your estimate of the software system project’s size (as measured in thousands of SLOC, KSLOC):Effort222
= 2.94 * EAF * (KSLOC) E ... (3)223

Where EAF is that the Effort Adjustment issue derived from the price Drivers. E Is a disciple derived from the224
5 Scale Drivers. As associate example, a project with all Nominal value Drivers associated Scale Drivers would225
have an EAF of one.00 and exponent, E, of 1.0997. presumptuous that the project is projected to accommodates226
eight,000 supply lines of code, COCOMO II estimates that twenty eight.9 Person Months of effort is needed to227
finish it: Effort = a pair of.94 * (1.0) * (8)1.0997 = 28.9 Person-Months228

13 d) MAINTAINABILITY229

In engineering, maintainability is that the ease with that a product may be maintained so as to:230
? isolate defects or their cause,231
? correct defects or their cause, ? repair or replace faulty or worn-out elements while not having to switch232

still operating components, ? prevent surprising breakdowns, ? maximize a product’s helpful life, ? maximize233
potency, dependableness, and safety, ? meet new needs, ? make future maintenance easier, or ? Cope with234
modified surroundings.235

In some cases, maintainability involves a system of continuous improvement -learning from the past so as236
to boost the flexibility to take care of systems, or improve dependableness of systems supported maintenance237
expertise.238

Software maintenance prices result from modifying your application to either support new use cases or update239
existing ones, at the side of the continual bug fixing when readying. The maximum amount as 70-80% of the240
entire possession value (TCO) of the software system may be attributed to maintenance prices alone! Software241
maintenance activities may be classified as:242

? Corrective maintenance -prices thanks to modifying software system to correct problems discovered when243
initial readying (generally two hundredth of software system maintenance costs) ? Adaptive maintenance -244
prices thanks to modifying a software system resolution to permit it to stay effective in a very ever-changing245
business surroundings (25% of software system maintenance costs) ? Perfective maintenance -prices thanks to246
up or enhancing a software system resolution to boost overall performance (generally five-hitter of software247
system maintenance costs) ? Enhancements-prices thanks to continued innovations (generally five hundredth or248
additional of software system maintenance costs) ? Since maintenance prices eclipse alternative software system249
engineering activities by great deal, it’s imperative to answer the subsequent question:250

Measuring software system maintainability is non-trivial as there’s no single metric to state if one application251
is additional rectifiable than the opposite associated there’s no single tool which will analyze your code repository252
and supply you with a correct answer either. There’s no substitute for a personality’s reviewer, however even253
humans can’t analyze the complete code repositories to grant a definitive answer. Some quantity of automation254
is critical.255

So, however are you able to live the maintainability of your application? To answer this question let’s dissect256
the definition of maintainability additional. Imagine you have got access to the ASCII text file of 2 applications257
-A and B. Let’s say you furthermore may have the super human ability to match each of them in a very little span258
of your time. Are you able to tell, albeit subjectively, whether or not you think that one is additional rectifiable259
than the other? What will the adjective rectifiable imply for you once creating this comparison -suppose this for260
a second before we have a tendency to move?261

Most software system engineers would think about some combination of testability, perceive ability and262
modifiability of code, as measures of maintainability. Another facet that’s equally vital is that the ability to grasp263
the need, the ”what” that’s enforced by the code, the ”how”. These core aspects may be lessened additional, to264
achieve additional insight into the maintainability of the application: 1) Testability -the presence of an efficient265
takes a look at harness; what proportion of the applying is being tested, the categories of tests (unit, integration,266
situation etc.,) and therefore the quality of the take a look at case themselves?267

2) Understandability -the readability of the code; are naming conventions followed? Is it self-descriptive and/or268
well commented? Are things (e.g., classes) doing just one factor or several things at once? Are the ways extremely269
long or short and might their intent be understood in a very single pass of reading or will it take an honest deal270
of screen staring and whiteboard analysis? 3) Modifiability -structural and style simplicity. 4) Requirement to271
implementation mapping and contrariwise: This data is preponderant for maintenance efforts and it should or272
might not exist for the applying into consideration, forcing you to reverse engineer the code and fathom the273
’what’ yourself.274

Those are the four major dimensions on that one will measure maintainability. Every of the aspects will (and275
is) lessened additional for an additional granular comparison. These might or might not be the precise same ones276
that you simply thought of; however there’ll be a good deal of overlap. Also, not each criterion is equally vital. For277
a few groups, testability might trump structural/design simplicity. That is, they’ll care lots additional regarding278
the presence of take a look at cases (depth and breadth) than deep inheritance trees or a rather additional tightly279
coupled style. It’s therefore important to understand that dimension of maintainability is additional important280

5

15 RESULT AND DISCUSSION

for your maintenance team once menstruation the standard of your application and perform the reviews and281
refactoring with those in mind.282

The table below, towards the top of the article, shows a close breakdown of the on top of dimensions of283
maintainability and elaborates on their connectedness to menstruation the standard of the ASCII text file [2]:284
Correlation with quality: what proportion will the metric relate with our notion of software system quality?285
It implies that almost all programs with the same price of the metric can possess the same level of quality.286
Importance: however vital is that the metric and are low or high values desirable once menstruation them?287
The scales, in declivitous order of priority are: very vital, vital and sensible to possess Feasibility of automatic288
evaluation: are things absolutely or partly automatic and what types of metrics are obtainable? Ease of automatic289
evaluation: just in case of automation however simple is it to cipher the metric? Will it involve mammoth290
effort to line up or will or not it’s plug-and-play or will it has to be developed from scratch. Completeness of291
automatic evaluation: will the automation utterly capture the metric price or is it inconclusive, requiring manual292
intervention? Do we have a tendency to ought to verify things manually or will we directly deem the metric293
reportable by the tool? Units: units/measures accustomed quantify the metric. They provide an extremely294
effective structure at intervals that you’ll lay out choices and investigate the doable outcomes of selecting those295
choices. They additionally assist you to create a balanced image of the risks and rewards related to every doable296
course of action.297

14 f) Drawing a Decision Tree298

You start a choice Tree with a choice that you simply ought to create. Draw a tiny low sq. to represent this299
towards the left of an outsized piece of paper.300

From this box put off lines towards the correct for every doable resolution, and write that resolution on the301
road. Keep the lines apart as way as doable so you’ll expand your thoughts.302

At the top of every line, think about the results. If the results of taking that call are unsure, draw a tiny low303
circle. If the result’s another call that you simply ought to create, draw another sq.. Squares represent choices,304
and circles represent unsure outcomes. Write the choice or issue on top of the sq. or circle. If you have got305
completed the answer at the top of the road, simply leave it blank.306

Starting from the new node on your diagram, put off lines representing the decisions you want to choose. From307
the circles draw lines representing doable outcomes. Once more create a short note on the road expression what308
it suggests that. Keep it up doing this till you have got drawn out as several of the doable outcomes and choices309
as you’ll see leading on from the first choices.310

Once you have got done this, review your tree. Challenge every sq. and circle to visualize if there are any311
solutions or outcomes you have got not thought of. If there are, draw them in. If necessary, draft your tree312
if components of it are too full or untidy. You ought to currently have an honest understanding of the doable313
outcomes of your choices.314

V.315

15 Result and Discussion316

Results of the Proposed UML Diagram Based Metric Calculation & Count of Operations in Actual Software.317
These are number of operations required in the complete package and are an indicator of the number of functions318
required in the project. This value is a measure of the work done and found to be accurate for both the case319
studies. purpose analysis (FPA) are applied to live the computer code size metrics. From the results obtained320
from the output of American state Metric Tool, LOC and FPA, it’s found that the results obtained from the321
inclusion of the various UML diagrams and most correct and matches with the particular computer code ASCII322
text file. 1 2323

1© 2015 Global Journals Inc. (US)
2© 2015 Global Journals Inc. (US) 1

6

1

Figure 1: Figure 1 :

Figure 2: Global

7

15 RESULT AND DISCUSSION

2

Figure 3: Figure 2 :

Figure 4:

8

Figure 5: 4

Year 2015

Figure 6: T

1

FTR’s 1-4 DATA ELEMENTS 5-15 >15
0-1 LOW Low Average
2 LOW Average High
3 or More Average High High

Figure 7: Table 1 :

2

FTR’s 1-5 DATA ELEMENTS 6-19 >19
0-1 LOW Low Average
2-3 LOW Average High
> 3 Average High High

Figure 8: Table 2 :

9

15 RESULT AND DISCUSSION

3

Rating EO VALUES EQ EI
Low 4 3 3
Average 5 4 4
High 7 6 6

Figure 9: Table 3 :

RET’s 1-19 DATA ELEMENTS 20-50 > 50
1 Low Low Average
2-5 Low Average High
> 5 Average High High

Figure 10: :

5

Rating ILF VALUES EIF
Low 4 3
Average 5 4
High 7 6

Figure 11: Table 5 :

6

F1. Does the system require reliable backup
and recovery?
F2. Are data communications required?
F3.

Figure 12: Table 6 :

7

UML DESIGN ACTUAL
CASE METRIC SOFTWARE
STUDY NUMOPSCLS OPERATIONS

VALUE COUNT
DSS 1 1
VCR 12 12

Figure 13: Table 7 :

10

8

ALGORITHM AVERAGE PERMISSIBLE ERROR
LOC 27.5
FPA 7.5
UML TOOLS 3.5

Figure 14: Table 8 :

11

15 RESULT AND DISCUSSION

12

[Tong (2004)] ‘A Comparison of Metrics for UML Class Diagrams’. Yi Tong . ACM SIGSOFT Software324
Engineering Notes Page September 2004. 1.325

[Vafaei] A New Method Software Size Estimation based on UML Metrics, Jahan Vafaei .326

[Yue and Barry] An Empirical Study of eServices Product UML Sizing Metrics, Chen Yue , Boehm Barry .327

[Wei ()] ‘An Empirical Validation of Object-Oriented Metrics in Two Different Iterative Software Processes’. Li328
Wei . IEEE Transactions On Software Engineering November 2003. 1043. 29 (11) .329

[Ramanath (2003)] ‘Empirical Analysis of CK Metrics for Object-oriented Design Complexity: Implications for330
Software Defects’. Subramanyam Ramanath . IEEE Transactions on Software Engineering April 2003. 29 (4)331
.332

[Arasimhan Lakshmi ()] ‘Evaluation of a Suite of Metrics for Component Based Software Engineering (CBSE)’.333
. V Arasimhan Lakshmi . Issues in Informing Science and Information Technology 2009. 6.334

[James et al.] Rumbaugh James , Ivar Jacobson , Booch Grady . The Unified Modeling Language User Guide”335
Second Edition2008, pg 5, chap1, ISBN p. .336

[Chidamber] Managerial use of metrics for Object-oriented software: an exploratory analysis, Chidamber . IEEE.337

[Edith (2011)] ‘Metrics for Component based Measurement Tools’. Linda Edith , P . International Journal of338
Science & Engineering May -2011. 2 (5) .339

[Shaik Amjan ()] ‘Metrics for Object Oriented Design Software Systems: A Survey’. Shaik Amjan . Journal of340
Emerging Trends in Engineering and Applied Sciences 2010. 1 (2) p. . (JETEAS))341

[Xenos ()] ‘Object-oriented metrics -a survey’. M Xenos . Federation of European Software Measurement342
Associations, (Madrid, Spain) 2000. 2000.343

[Jacobson Magnus Christerson et al. ()] Object-oriented Software Engineering, Patrick Jacobson Magnus Chris-344
terson , Gunnar Jonsson , Overgaard . 2008. 66 p. .345

[Orysolya] Doban Orysolya . Cost Estimation Driven Software Development Process,346

[Pressman and Roger ()] Software Engineering, S Pressman , Roger . 2005. 22 p. . (Sixth Edition)347

[Tegarden and David] P Tegarden , David . Effectiveness of Traditional Software Metrics for Object-Oriented348
Systems,349

[James et al. ()] The Unified Modeling Language User Guide, Rumbaugh James , Jacobson Ivar , Booch Grady350
. 2008. ISBN p. . (Second Edition)351

[James et al.] The Unified Modeling Language User Guide” Second Edition2008, pg 6, chap1, Rumbaugh James352
, Jacobson Ivar , Booch Grady . ISBN p. .353

[Aine ()] ‘Toward a definition of run-time object-oriented metrics’. Mitchell Aine . 7TH ECOOP Workshop on354
Quantitative Approaches in Object-Oriented Software Engineering, 2003.355

[Luigi ()] ‘Using Function Point in the Estimation of Real-Time Software: an Experience’. Lavazza Luigi .356
Proceedings 5 th Software Measurement European Forum, (5 th Software Measurement European ForumMilan)357
2008.358

13

	1 Introduction
	2 Component Diagrams 4. Collaboration Diagrams
	3 Existing Work
	4 (C)
	5 III.
	6 Proposed Methodology
	7 Metrics of Sdmetric
	8 a) Lines of Codes
	9 b) Function Point Analysis
	10 IFPUG FPA:
	11 FP = UAF * VAF
	12 c) Cocomo-Ii
	13 d) MAINTAINABILITY
	14 f) Drawing a Decision Tree
	15 Result and Discussion

