QoS Considerations in OBS Switched Backbone Networks

By Bakhe Nleya & Andrew Mutsvangwa

Durban University of Technology, South Africa

Abstract- Optical Burst Switching (OBS) was proposed as a hybrid switching technology solution to handle the multi-Terabit volumes of traffic anticipated to traverse Future Generation backbone Networks. With OBS, incoming data packets are assembled into super-sized packets called data bursts and then assigned an end to end light path. Key challenging areas with regards to OBS Networks implementation are data bursts assembling and scheduling at the network ingress and core nodes respectively as they are key to minimizing subsequent losses due to contention among themselves in the core nodes. These losses are significant contributories to serious degradation in renderable QoS. The paper overviews existing methods of enhancing it at both burst and transport levels. A distributed resources control architecture is proposed together with a proposed wavelength assignment algorithm.

Keywords: data bursts, quality of service, distributed control architecture, drop ratio, random routing, shortest path routing.

GJCST-E Classification : C.2

Strictly as per the compliance and regulations of:
QoS Considerations in OBS Switched Backbone Networks

Bakhe Nleya & Andrew Mutsvangwa

Abstract - Optical Burst Switching (OBS) was proposed as a hybrid switching technology solution to handle the multi-Terabit volumes of traffic anticipated to traverse Future Generation backbone Networks. With OBS, incoming data packets are assembled into super-sized packets called data bursts and then assigned an end to end light path. Key challenging areas with regards to OBS Networks implementation are data bursts assembling and scheduling at the network ingress and core nodes respectively as they are key to minimizing subsequent losses due to contention among themselves in the core nodes. These losses are significant contributors to serious degradation in renderable QoS. The paper overviews existing methods of enhancing it at both burst transport levels. A distributed resources control architecture is proposed together with a proposed wavelength assignment algorithm.

Keywords: data bursts, quality of service, distributed control architecture, drop ratio, random routing, shortest path routing.

I. Introduction

Optical burst switching (OBS) has become a perspective solution towards narrowing the gap between switching and transmission speeds in future generation backbone networks. At transmission level, data packets sourced from edge nodes are aggregated and assembled into optical burst units generally re-ferrred to as bursts. A burst control packet is transmitted for each assembled burst in a dedicated control channel and delivered with a small relative offset time prior to the actual data burst’s arrival. This offset timing allows for electronic processing of the control packet by a controller at an intermediate node thus creating an allowance for a wavelength reservation on its output link and switch matrix reconfiguring usually for the duration time of the incoming burst. The burst will then shortly fly by and immediately afterwards the reserved wavelength can now be freed and made available for other connections. This effectively alleviates the need for optical buffering at intermediate nodes which otherwise would escalate network design and operational costs. Further more, such a temporary usage of wavelengths promotes higher resource utilization as well as better adaptation to highly variable input traffic in comparison to optical circuit-switching networks. OBS architectures with limited buffering capabilities would still be susceptible to congestion states. The existence of a few highly congested links may seriously aggravate the network throughput [1]. The congestion itself can be reduced either by appropriate network dimensioning or by a proper routing in the network. The dimensioning approach fits the node and link capacities according to the matrix of actual traffic load demands and after such optimization it needs only a simple shortest path algorithm or a similar mechanism [2]. Some parts of such a network, may however, encounter the congestion problem if the traffic demands change. On the contrary, the routing approach introduces some operational complexity since it often requires advanced mechanisms with signaling protocols involved. Nevertheless, the advantage is that it adapts to the changes in the traffic demands. A great part of the research on routing in OBS networks addresses the problem of deflection routing, [3],[4] in which in the event of contention or its imminent, one of the contending bursts is deflected to an alternative route. However, the deflection routing approach can partially improve network performance under rela-tively low traffic loads and gradual degrade it as the traffic intensity increases [4]. Overall in OBS networks burst loss probability and delay jitter are the main primary performance metrics of interest which adequately represent the congestion state of the entire network and at the same time dictating renderable QoS. Its provisioning consistently for the various diverse applications with varying handling demands remains a problematic task. The current lack or inadequacy of optical buffering facilities further posses a real challenge in the operation of OBS net-works in this regard, especially, in a scenario where it is desirable to guarantee a certain level of QoS consistency. Stringent QoS demanding traffic types such as real-time voice or interactive video transmissions require additional QoS differentiation mechanisms in order to preserve them from low priority data traffic especially when the network is near to resource con-strained. In this context burst assembling/contention resolution mechanisms that facilitate minimal low burst blocking probabilities, latency as well as jitter metrics will be very vital in the operation of OBS networks that are consistent QoS capable. Various approaches to QoS differentiation and implementation schemes have been discussed extensively in various literatures e.g. [5],[6],[7].

Author a: Durban University of Technology, Department of Electronic Engineering, Durban, South Africa. e-mail: bmnleya@gmail.com
Author a: North West University, Mafikeng Campus, F.O.E, Mahikeng, South Africa. e-mail: andrew.mutsvangwa@nwu.ac.za

© 2014 Global Journals Inc. (US)
Basically two kinds of QoS differentiation models have been defined: relative versus absolute differentiation [7]. With the relative QoS differentiation model, traffic is segregated according to classes. The performance of each class is not defined quantitatively in absolute terms based on loss, delay and bandwidth. Instead, the QoS of one class is defined relatively to other classes. The absolute QoS model aims to provide worst-case guarantees on the loss, delay and bandwidth to applications. This type of hard guarantee is considered essential for the classes of delay and loss sensitive applications, which include multimedia and mission-critical applications. Generally QoS differentiation can be provided either with respect to forwarding performance (e.g., the burst loss rate), or with respect to service availability. In the former case, a pre-defined quality guarantee is expected during a normal, fault-free operation while the latter case concerns QoS-enhanced protection mechanisms in the resilience problem. Effective QoS provisioning in OBS engages both the definition of specific QoS classes to be given for higher level applications and some dedicated mechanisms in order to provide such classes, [8]. Each class will be classified by pre-setting upper limit bounds on known QoS parameters such as end-to-end latency, jitter and burst loss probability. The delays arise mostly due to the propagation delay in fiber links, the introduced offset time, edge node processing (i.e., burst assembly) and optical fiber delay lines (FDL) buffering. The first two factors can be easily limited by properly setting up the maximum hop distance allowed for the routing algorithm. Also the delay produced in the edge node can be imposed by a proper timer-based burst assembly strategy. Finally the optical buffering, which in fact has limited application in OBS, introduces relatively small delays. Since there are many factors that influence the end-to-end data delays, the problem of jitter is more complicated and needs more focus. Overall it is clear that the key to successful implementation of effective QoS mechanisms in OBS networks is Burst Assembly and Scheduling techniques. The rest of this review paper is presented as follows: Section 2 gives an overview of burst assembling algorithms including burst reservation protocols, whilst burst reservation, scheduling and contention methods are discussed in section 3. The two sections are discussed with regards to QoS support. In section 4 we briefly describe a framework model for QoS provisioning based on both advance and immediate reservation of resources depending on application in a decentralized resources control and management network, and finally we conclude the paper.

II. Burst Assembling

Burst assembling at edge nodes is key in the design and implementation of OBS networks with pre-settable QoS. The strategy implemented will determine the end to end performance of the network. The primary focus of any burst assembly strategy mechanism is to minimise the packet burstification delays thus ensure that the end to end delays fall within acceptable bounds. It should also reduce the rate of control packets generation by maximising the burst sizes, otherwise overhead processing loads at the intermediate /core nodes may increase drastically and eventually lead to congestion. On the other hand, in-creasing the burst sizes leads to burstification delays especially in low traffic scenarios. Hence a trade-off between the two is thus desirable. To date several burst assembly schemes have been proposed and are all geared towards improving QoS, [8]-[13]. Generally these are broadly classified into different schemes such as; time based, volume-based, as well as hybrid schemes. An example of a time based scheme is the Fixed Time-based scheme [9]. With this scheme, also denoted as \(T_{\text{max}} \) in the literature i.e., [10] a time counter starts any time a packet arrives and when the timer reaches a time threshold \(T_{\text{max}} \), a burst under assembly is dispatched. The timer is reset again and only re-initiated upon next packet arrival at the burstification queue. Hence, the ingress router generates bursts with a duration \(T_{\text{max}} \) independently of the yielding burst size. The pre-setting a fixed interval time will create drawbacks such as increasing the loss rate in case of high traffic or reaching the interval time \(T_{\text{max}} \) before aggregation of enough packets in the burst. (In this case padding may be necessary if the resultant burst is below a minimum threshold \(L_{\text{min}} \).

In contrast to time-based schemes, a volume-based scheme, which is non-adaptive, sets a minimum burst size value \(B_{\text{min}} \) before the burst can be dispatched. Alternatively to that is whereby a threshold \(B_{\text{max}} \) is used to determine the end of the assembly process. As soon as that value is reached, the assembly is dispatched. A minimum burst size \(B_{\text{min}} \) scheme will favor real time applications during relative low traffic loads, as low delays will be experienced whereas a maximum threshold \(B_{\text{max}} \) scheme will reduce the frequency of control packets especially when \(B_{\text{max}} >> B_{\text{min}} \). This however will attract delays for real time applications during low traffic conditions. A hybrid scheme is proposed and analyzed in [11], [12]. That is, the burst is created either by reaching a maximum value of the timer \(T_{\text{max}} \) or by reaching the minimum / or maximum burst size. Since this scheme combines the benefits of the time-based burst assembly scheme and the minimum /maximum volume-based scheme, it is considered to be the default burst assembly scheme. Nonetheless, the low traffic load problem remains unsolved since the packets still have to wait for reaching
the maximum value which affects the real time traffic delay requirements. A Learning-based Burst Assembly (LBA) is adaptive scheme was proposed to reduce burst losses [13]. With this algorithm, the burst assembly process is adapted according to the loss pattern experienced in the network itself. By the learning automata algorithm used in this scheme, the loss is checked periodically in order to adapt the assembly time at the ingress node accordingly. Therefore, this scheme may be effective in reducing the loss but it is unsuitable to use in real time traffic since end-to-end delay is not considered. A timer based Burst-assembly algorithm with service differentiation scheme was also proposed [13] and it uses a single timer that is set to a maximum threshold value not exceeding tolerable delays by any of the traffic. Its main drawback is that the preset timer value T_{out} cannot be determined precisely as the overall end to-end delays in an OBS network is dependent on a variety of factors. Moreover, the performance of this algorithm is affected due to the small size bursts created.

III. Reservation, Scheduling and Contention

a) Reservation

A resources reservation process in the core node concerns the allocation of resources necessary for the smooth switching and transmission of data bursts from a given source to a desired destination (output port).

![Figure 1: Path establishment principles](image)

Separation of bursts and control channels together with offset-time provisioning enables the implementation of a variety of differing resources reservation schemes. One way, two way and hybrid resources reservation approaches have been studied extensively e.g. [14]. Broadly these can either be explicit or estimated.

In explicit setup, a wavelength is reserved, and the switch fabric is configured immediately upon processing of the control packet. In estimated setup, the OBS node delays reservation and configuration until the actual burst arrives. The allocated resources can be released after the burst has come through using either explicit release or estimated release. In explicit release, the source sends an explicit trailing control packet to signify the end of a burst transmission, whereas in estimated release, an OBS node knows exactly the end of the burst transmission from the burst length, and therefore can precisely estimate when to release the occupied resources. Based on this classification, the following four possibilities exist: explicit setup/explicit release, explicit setup/estimated release, estimated setup/explicit release, and estimated setup/estimated release, see e.g. [15],[16],[17]. Several light paths (resources) reservation algorithms have been proposed in adherence to some or all of these fundamental rules. Examples include, immediate reservation (JIT, E-JIT), delayed reservation with void filling (JET), delayed reservation without void filling (Horizon), and modified immediate reservation (JIT+). An extensive performance comparisons of the JIT, JIT+, JET and Horizon protocols can be found in [24]. Overall delayed schemes promote better and efficient utilization of available resources, especially when void filling is applied, and perform better in terms of burst loss probability. However, the sophisticated scheduling algorithms that they require increase the processing times of BCPs at intermediate nodes. Thus, given the scenario, the simplicity of JIT may balance its relative poor performance.

Overall from a QoS perspective, the absence of acknowledgement in one-way reservation algorithms will suit delay sensitive applications, more than two-way based reservation protocols as the latter has to incur acknowledgement delays. However two way reservation will enhance reliability in the sense that there is provision for, retransmission should the initial burst not succeed. As such hybrid schemes generally inherit the better features of both to enhance QoS support.

For an example, proposed in [21], is a Dual-header Optical Burst Switching (DOBS) signalling scheme that decouples the resource reservation process from the service request process in core nodes and allows for delayed scheduling to be implemented. This relaxes the constraints on burst reservation operations and allows the offset sizes of bursts to be precisely controlled in core nodes without the use of fiber delay line buffers, thus allowing for increased flexibility, control, and performance. A variant of the scheme called the constant-reservation/scheduling-offset (CSO-DOBS) in which the offset size of every burst on a core link is set to a constant value is evaluated, with the result that it realizes lower ingress delay, higher throughput, and better fairness in comparison to the conventional sin gle-header OBS systems, while simultaneously require only $O(1)$ burst scheduling complexity.
b) Burst Scheduling

The principal aim of a burst scheduling algorithm is to obtain the right switching configuration matrix for efficiently transferring received bursts to the desired output port.

Table 2: Comparisons of scheduling algorithms

<table>
<thead>
<tr>
<th>algorithm</th>
<th>complexity</th>
<th>(P_B)-burst</th>
<th>(U_{link})</th>
</tr>
</thead>
<tbody>
<tr>
<td>FFUC</td>
<td>(O(\log w))</td>
<td>high</td>
<td>low</td>
</tr>
<tr>
<td>LAUC</td>
<td>(O(w))</td>
<td>high</td>
<td>low</td>
</tr>
<tr>
<td>FFUC-VF</td>
<td>(O(w \log N_b))</td>
<td>low</td>
<td>high</td>
</tr>
<tr>
<td>LAUC-VF</td>
<td>(O(w \log N_b))</td>
<td>high</td>
<td>low</td>
</tr>
<tr>
<td>Min/EV</td>
<td>(O(w \log 2N_b))</td>
<td>low</td>
<td>high</td>
</tr>
<tr>
<td>Min-SV</td>
<td>(O(w \log 2N_b))</td>
<td>low</td>
<td>high</td>
</tr>
<tr>
<td>Best Fit</td>
<td>(O(w \log 2N_b))</td>
<td>low</td>
<td>high</td>
</tr>
</tbody>
</table>

Several algorithms in this regard have been suggested broadly categorized as either without void filling or with void filling. Without void algorithms do not aim to maximize the use of resources but rather to generate low processing times. Examples include the latest available unused channel (LAUC) and the first fit unscheduled channel (FFUC) [17]. More advanced scheduling algorithms belong to the void filling category. These are designed to achieve efficient use of resources coupled with minimal blocking probabilities. However, void filling algorithms are more complex, hence difficult in implementation and sluggish. Examples of algorithms that are void filling include latest available unused channel with void filling (LAUC-VF) and first fit unscheduled channel with void filling (FFUC-VF).

Modified versions of these include the minimum starting void (Min-SV) and the minimum ending void (Min-EV) scheduling algorithms, [18], which significantly improve processing time in comparisons with the LAUC-VF. It appears however that Min-SV/EV algorithms involve time-consuming memory accesses and hence generally considered too sluggish to provide a viable solution to the problem. Table 2 summarizes the comparison between the algorithms based on the study in [17]. In the table, \(\omega \) is the number of wavelengths at each output port; \(\Delta_\omega \) is the offset delay, \(\gamma \) is the throughput and \(N_b \) is the number of bursts currently scheduled.

c) Contention resolution

When two or more bursts contend for the same resources then contention will result. There are four principal approaches to solving contentions. These include, wavelength conversion, fibre delay lines (FDLs), deflection routing and burst segmentation. Contention and consequently partial or total data burst losses may be reduced by implementing contention resolution policies. Clearly, a combination of such techniques can be very effective. Using buffering in the core switches may not be viable, since the hardware complexity and high cost of such devices make them less attractive and limits their practicality.

Deflection routing can potentially result in inefficient routing and a high number of collisions. Furthermore, it results in high end-to-end delay and possible packet reordering, neither of which may be acceptable for many applications, thus a compromise to QoS.
QoS Considerations in OBS Switched Backbone Networks

The above diagram illustrates the deflection routing process and the burst drop policies for contention resolution.

Burst Drop Policies for contention resolution

In the presence of congestion or its imminence, burst dropping is generally considered as a last resort contention resolving measure as it potentially reduces QoS. At burst level, several burst drop policies that take into account fairness have been proposed. Such is the Latest arrival drop policy (LP) which in its basic form, always attempts to search for an available unscheduled channel on the desired route, re-transmission and delay. When the control packet reaches the destination, an ACK is sent back to the sources. However, if it is dropped, a NACK is instead sent to notify the source for burst retransmission. In such situations, it would seem appropriate to work out a mechanism for promoting fairness in burst dropping and effectively not over compromising QoS.

i. **Burst Drop Policies for contention resolution**

In the presence of congestion or its imminence, burst dropping is generally considered as a last resort contention resolving measure as it potentially reduces QoS. At burst level, several burst drop policies that take into account fairness have been proposed. Such is the Latest arrival drop policy (LP) which in its basic form, always attempts to search for an available unscheduled channel on the desired route, re-transmission and delay. When the control packet reaches the destination, an ACK is sent back to the sources. However, if it is dropped, a NACK is instead sent to notify the source for burst retransmission. In such situations, it would seem appropriate to work out a mechanism for promoting fairness in burst dropping and effectively not over compromising QoS.

In the presence of congestion or its imminence, burst dropping is generally considered as a last resort contention resolving measure as it potentially reduces QoS. At burst level, several burst drop policies that take into account fairness have been proposed. Such is the Latest arrival drop policy (LP) which in its basic form, always attempts to search for an available unscheduled channel on the desired route, re-transmission and delay. When the control packet reaches the destination, an ACK is sent back to the sources. However, if it is dropped, a NACK is instead sent to notify the source for burst retransmission. In such situations, it would seem appropriate to work out a mechanism for promoting fairness in burst dropping and effectively not over compromising QoS.

Further, a burst dropping policy with even selection of burst (BDPES) was proposed in which the QoS requirements of the traffic are defined based on their class. Packets of the same class and destination are assembled into the same data chunks called segments which will be priority tagged accordingly. As such a data burst may contain data chunks of the same or different priorities. The segments are assembled into data bursts, in such a way that the lower priority data segments envelop the higher priority ones. With this scheme, the dropped segments are selected even from both contending bursts but such that the residual (truncated) data bursts still retain a minimum threshold length allowed by the network.
Figure 4: Burst segmentation principles

This results in even loss of data for all sources who contributed to the burst rather than an individual source suffering data losses as is the case with most existing burst dropping schemes.

Table 3: Contention resolution mechanisms comparison

<table>
<thead>
<tr>
<th>mechanism</th>
<th>pros</th>
<th>cons</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wavelength conversion</td>
<td>Most effective solution</td>
<td>Immature and expensive</td>
</tr>
<tr>
<td>FDL buffering</td>
<td>simple</td>
<td>Increased end to end delays</td>
</tr>
<tr>
<td>Deflection routing</td>
<td>No extra h/w requirement</td>
<td>Out of sequence arrivals</td>
</tr>
<tr>
<td>Burst segmentation</td>
<td>Reduced packet loss ratio</td>
<td>Complicate control handling</td>
</tr>
</tbody>
</table>

It is further noted that both the edge nodes and core nodes must co-operate in the fully implementing of such a scheme. Overall it is note that with this scheme, the data chunks are evenly distributed between the contending bursts to achieve some kind of fairness between traffic flows and to minimize the number of short data bursts. Furthermore, the scheme enables the core nodes to monitor and manage the size (length) of the data bursts traveling within the network backbone.

IV. Resources Allocation Framework

The heterogeneous nature of NGN backbones in terms of traffic types makes guaranteed QoS provisioning quite complex as the various traffic types differ i.e., in terms of performance parameters such as loss, delay, delay jitter etc. Traffic diversities range from unicast, anycast, broadcast, multicast as well as delay/loss sensitive and insensitive traffic applications. In each case the request can be for one or more channels, where each channel can be routed independently of others using a different route and wavelength. Multicast requests would generally accommodate delivery of data bursts to multiple destinations but from a single original source. For example broad-casting a multiple video streams to several locations at the same time, or near to live IP traffic data up-dating// backups to several locations would require an optical multicast.

Furthermore, requests may be bidi-rectional, where the same route and wavelength is used in both directions, or unidirectional. For better QoS guarantees it is hereby proposed that a distributed control plane architectural framework which supports both advance and immediate resource reservations be implemented [23]. As is known, with immediate reservation (IR) data transmission starts immediately upon arrival of the request, save only for burst assemblying and control delays, and the holding time is typi-cally unknown. Advance reservation (AR) in contrast typically specifies a data transmission start time that is sometime in the future and also specifies a finite holding time, e.g. grid applications. It is herein pro-posed that the entire backbone network be re-organized into smaller multiple cluster networks (subnets) each with a cluster header controller (CHC) node. Controllers that perform core routing functions are distributed throughout the network. Each CHC node manages key network routing related information, such as e.g., static nodes and link information within each cluster, whereas a dedicated controller (C) takes care of candidate routes for all destinations, resources state in the core network (available wavelengths) for each outgoing/output link(s), and exchanged link resource information from other controllers (figure 5).

Figure 5: Distributed Control Clustered Backbone

The available network state information helps reduce blocking as each CHC/C combination makes route/wavelength reservations based on availe network state information. When a new optical path \((H_i, \lambda_i)\) is requested, the source node selects a route for transmission from pre-calculated sets availed by the local C. After route selection, the CHC/C combination check wavelength \((\lambda_i)\) availability on the output link and reserves it accordingly before sending a wavelength reservation confirmation message to the subsequent destination node(s) along the selected route. The path set-up \((H_i, \lambda_i)\) is blocked/aborted in the event that all fibres of the assigned wavelengths are not available and at the same time burst size/offset time adjusting will not help accommodate the connection. In cases where the contended node is equipped with wavelength converters, then the wavelength of the optical path is
can be converted to another available one and the reservation is continued. Should the wavelength reservation succeed, the destination node echoes an acknowledgement (ACK) message to the source node. The source node will immediately start transmitting upon receiving the ACK message. However should contention occur and there are no wavelength converters available, the intermediate node echoes a negative ACK (NACK) message to the source node.

Figure 6: Wavelength assignment

After receiving the NACK message, the source node may now change the wavelength/route reservation request to \((H_j)\). In this case during the re-reservation, similar procedures for routing and wavelength assignment are followed only that the contended wavelength and route are excluded. If the network resources are optimally dimensioned, then there is always an excellent probability that the wavelength re-reservation would succeed. The distributed control architecture is proposed as it is more robust, scalable and resilient to "a single point of failure" compared to a centralized control architecture. The proposed wavelength assignment algorithm (figure 6), is necessary in that the entire network resources state cannot be communicated in real time due to the unavoidable propagation delays \(d_{i,j}\) between any two communicating Cs. The offset time \(t_{offset}\) is therefore set to satisfy the following:

\[2d_{i,j} \leq t_{offset} \leq T_{burst_duration}\]

We also propose that the candidate routing path be computed according to the Dijkstra shortest path algorithm (spr) with collision avoidance and that both one and two way (immediate and advance) reservation be supported. This is because of the heterogeneous nature of connections which inevitably have varying QoS demands. To evaluate the performance of this distributed control architecture, we modified the simulation approach used in [23] in which we set the number of clusters varying from 4 to 10, each comprising a set of 3 ingress (subsidiary) nodes and a CHC/C. In-terlinkages between CHC/Cs are equidistant. Each link is a bundle of 16 fibers, each with 32 wavelengths and supports 10Mbps speed per wavelength. This evaluation focuses on a two-way reservation, in which the connection request packets inter arrival times are exponential distributed, and have a service time at each CHC/C. The bursts themselves have a maximum fixed \(s\), and so is the offset time static and equal to 0.6ms. Performance metrics of interest are defined as follows:

Connections requests drop ratio:

\[\gamma_{ACKs} = \frac{\text{number of ACKs}}{\text{number of requests}}\]

The ratio of dropped versus successful transmitted bursts \(\frac{XD}{T}\) and success link utilization \(U_{success}\) which is the ratio of total successful transmission time versus total links usage time (incorporating both successful and successful transmissions). A combination of different routing and wavelength assignment algorithms are explored.
These are random routing (rr) with random wavelength assignment (rwa), shortest path routing (spr) based on the Dijkstra shortest path algorithm and the proposed wavelength assignment algorithm (proposed). The impact of the number of wavelength per fiber on the connections requests drop ratio is shown in figure 7. In this case we fixed the network resource information updating interval to 10 milliseconds, otherwise setting it long degrades the proposed wavelength assignment/routing method.

V. Conclusions

In this paper we reviewed various existing methods of enhancing a consistent QoS in OBS networks. Burst assembling and scheduling algorithms were discussed in view of enhancing QoS. A wavelength reservation algorithm with burst size/offset time adjusting is also discussed A distributed resources control architecture is briefly explored.

References Références Referencias

17. Karamitsos Ioannis, Varttis Evagelos. A survey of Reservation Schemes for Optical Burst Switching (OBS) Department of Information and Communication Systems University of the Aegean, Samos 83200, GREECE.

This page is intentionally left blank