
© 2016. Anshu Mishra & Garima Goyal. This is a research/review paper, distributed under the terms of the Creative Commons
Attribution-Noncommercial 3.0 Unported License http://creativecommons.org/licenses/by-nc/3.0/), permitting all non-commercial use,
distribution, and reproduction inany medium, provided the original work is properly cited.

An Optimized Input Sorting Algorithm
By Anshu Mishra & Garima Goyal

 Jyothy Institute of Technology, India

 Abstract- One of the fundamental issues in compute science is ordering a list of items. Although
there is a huge number of sorting algorithms, sorting problem has attracted a great deal of research,
because efficient sorting is important to optimize the use of other algorithms. Sorting involves
rearranging information into either ascending or descending order. This paper presents a new sorting
algorithm called Input Sort. This new algorithm is analyzed, implemented, tested and compared and
results were promising.

Keywords: algorithm, sorting, input sort, insert.

GJCST-H Classification: F.2.2

AnOptimizedInputSortingAlgorithm

Strictly as per the compliance and regulations of:

Global Journal of Computer Science and Technology: E
Network, Web & Security
Volume 16 Issue 1 Version 1.0 Year 2016
Type: Double Blind Peer Reviewed International Research Journal
Publisher: Global Journals Inc. (USA)
Online ISSN: 0975-4172 & Print ISSN: 0975-4350

An Optimized Input Sorting Algorithm
Anshu Mishra α & Garima Goyal σ

Abstract- One of the fundamental issues in compute science is
ordering a list of items. Although there is a huge number of
sorting algorithms, sorting problem has attracted a great deal
of research, because efficient sorting is important to optimize
the use of other algorithms. Sorting involves rearranging
information into either ascending or descending order. This
paper presents a new sorting algorithm called Input Sort. This
new algorithm is analyzed, implemented, tested and
compared and results were promising.
Keywords: algorithm, sorting, input sort, insert.

I. Introduction

nformation growth rapidly in our world and to search
for this information, it should be ordered in some
sensible order. Many years ago, it was estimated that

more than half the time on many commercial computers
was spent in sorting. Fortunately this is no longer true
organizing data, methods which do not require that the
data be kept in any special order [1].

Many algorithms are very well known for sorting
the unordered lists. Most important of them are Bubble,
Heap, Merge, Selection[2]. As stated in [3], sorting has
been considered as a fundamental problem in the study
of algorithms, that due to many reasons:
1. The need to sort information is inherent in many

applications.
2. Algorithms often use sorting as a key subroutine.
3. In algorithms design there are many essential

techniques represented in the body of sorting
algorithms.

4. Many engineering issues come to the fore when
implementing sorting algorithms.

Efficient sorting algorithms is important to
optimize the use of other algorithms that require sorted
lists to work correctly; it is also often in producing
human readable output. Formally, the output should
satisfy two major conditions:
1. The output is in non-decreasing order.
2. The output is a permutation or reordering of the

input.
Since the early beginning of computing, the

sorting problem has attracted many researchers,
perhaps due to the complexity of solving it efficiently.
Bubble sort was analyzed as early as 1956[6].

 Author

α

σ : Assistant Professor, Department of Information Science &

Engineering Jyothy Institute of Technology, Bangalore.

e-mails: anshu.garg13@gmail.com, goyal.garima18@gmail.com

introductory computer science classes, where the
abundance of algorithm for the problem provides a
gentle introduction of core algorithm concepts[4,5].
In [4], they classified sorting algorithms by:
1. Computational complexity (worst, average and

best)of element comparison in terms of list
size(n).For typical sorting algorithms good behavior
is O(nlogn) and bad behavior is Ω(n2). Ideal
behavior for a sort is O(n). Sort algorithms which
only use an abstract key comparison operation
always need Ω(nlogn) comparison in worst case.

2. Use of memory and computer resources. Some
sorting algorithms are “in-place”, such that only
O(1)or O(log n)memory is needed beyond the items
being stored, while others need to create auxiliary
locations for data to temporally stored.

3. Recursion some algorithms are either recursive or
non recursive, while others may be both (e.g merge
sort).

4.

Whether or not they are a comparison sort. A
comparison sort examines the data only by
comparing two elements with a comparison
operator.

This paper presents a new sorting algorithm
called input sort. Its typical use is when sorting the
elements of a stream from file.

II.

Input

Sort

a)

Concept

A simple sorting algorithm which sort the data
whenever it is input from any input source e.g. keyboard
or data from a stream of file. when new item comes then
it is inserted at its specific position through a recursive
function if there are n elements then n items 1 at a time
is inserted in array which increase array size
automatically and take its appropriate position.

b)

Steps

1.

Input one element one at a time.

2.

Call the INPUT-SORT function to insert

the item.

3.

Recursive function determines where is to be the
new item inserted in existing array by comparing
from the middle element and place it at its specific
position

4.

After inserting n elements we have new array which
is finally sorted.

5.

End.

I

© 2016 Global Journals Inc. (US)

G
lo
ba

l
Jo

ur
na

l
of
 C

om
pu

te
r
Sc

ie
nc

e
an

d
Te

ch
no

lo
gy

 V

ol
um

e
X
V
I
Is
su

e
I
V
er
sio

n
I

11

Y
e
a
r

20
16

 (

)
H

Many researchers considered sorting as a
solved problem. Even so, useful new sorting algorithms
are still being invented. For example, library sort was first
published in 2004. Sorting Algorithms are prevalent in

The procedure of the algorithm can be
described as follows:

c) Pseudo Code
Size:=0,array c[1…max] //Global variables
INPUT_SORT(ele , p,r)
q:=(p+r)/2//calculate mid position
if p == r //base criteria for recursion
{
INSERT(ele,p)
return;
}
 if(ele<c[q]
INPUT_SORT(ele,p,q)
else
INPUT_SORT(ele,q+1,r)
end.

INSERT(ele,pos)
for j= size down to pos
c[j+1]:=c[j]
c[pos]:=ele
size:=size+1
end.

GET_INPUT()
for i = 1 to n
{
scan(c[i])
call INPUT_SORT(c[i],1,size+1)
}
end

III. Working
Suppose we have array c[1…5] of five elements as
follows:

First we call GET_INPUT() function and read
input from input source

5 4 3 2 1

During 1st Pass: insert 5 call INPUT_SORT(1,1)
Content of array c[size] i.e c[1]

5

P=1,q=1,r=1,size=1

During 2nd Pass: insert 4 call INPUT_SORT(1,2)
Content of array c[size] i.e c[2]

4

5

P=1,q=1,r=2

P=1,q=1,r=1

Similarly ,

During 5th Pass: insert 4 call INPUT_SORT(1,5)

Content of array c[size] i.e c[1…5]

1

2

3

4

5

P=1,q=3,r=5

P=1,q=2,r=3

P=1,q=1,r=2

P=1,q=1,r=1
Now finally: Content of Array c[1…5]

1 2 3 4 5

Which is Sorted Array .

IV.
 Complexity

Generally the complexity of an algorithm is
measured in two phases. When one measures the
complexity of an algorithm by pen and paper, he/she
can only predict the complexity which give an idea how
much time and space this algorithm takes to finish in its
execution. This phase is called priory analysis. After
implementing the algorithm in computer, we get the
actual time and space. This phase of analyzing the
algorithm is called the posterior analysis. complexity of
an algorithm can be of two types:

1.

Time Complexity:

The analysis of algorithm for the

prediction of computation time for execution of each
and every instruction in the algorithm is called the
time complexity.

2.

Space Complexity:

The analysis of algorithm for
prediction of memory requirement of the

algorithm

is known as space complexity.

The complexity of the algorithms are as follows:

1.

Our algorithm run in O(n log n) time

2.

Better in average and worst case of bubble and
Insertionsort.

3.

Better in all cases of selection sort.

4.

Better from worst case of quick sort.

5.

Easy to implement.

6.

It required less memory space than Heap and
Merge Sort

V.

Recurrence Equation of Input Sort

Using the standard recurrence equation
T(n)=aT[n/b]+f(n) get this equation:

T(n)=2T[n/2]+n a=2 b=2 f(n)=n

nlog a
b = n

log 2
2 = n

using master method’s 2nd

case apply

An Optimized Input Sorting Algorithm
G
lo
ba

l
Jo

ur
na

l
of
 C

om
pu

te
r
Sc

ie
nc

e
an

d
Te

ch
no

lo
gy

 V

ol
um

e
X
V
I
Is
su

e
I
V
er
sio

n
I

12

Y
e
a
r

20
16

 (

)
H

Sorting Best
Case

Average Worst

Bubble θ(n) Θ (n2) O(n2)
Insertion θ (n) Θ (n2) O(n2)
Selection θ (n2) θ (n2) O(n2)
Merge θ

(nlogn)
θ
(nlogn)

O(nlogn)

Quick θ
(nlogn)

θ
(nlogn)

O(n2)

Heap θ
(nlogn)

θ
(nlogn)

O(nlogn)

Input θ
(nlogn)

θ
(nlogn)

O(nlogn)

© 2016 Global Journals Inc. (US)1

if f(n)=θ (nlog a
b), then

T(n)= θ (nlog a
b . log n)

Time complexity of Input Sort is
T(n)= θ (n logn)

VI. comparison with heap and merge
sort

Now if we talk about heap merge sort than our
algorithm is better from two in the sense that In merge
sort we need two extra temporary array which increase
its space complexity but no need of extra memory in our
algorithm. our algorithm has order of O(nlog n) but it
execute fast because of less comparisons than Merge
heap and Quick sort.

VII. Conclusion

In this paper new sorting algorithm is presented
INPUT-SORT has O(nlog n) complexity but it is faster
than existing sort mentioned in section 4 in detail.
INPUT-SORT is definitely faster than other sort to sort n
elements. Furthermore, the proposed algorithms are
compared with some recent sorting algorithms;
selection sort and bubble sort, heap, merge, insertion,
quick sort. These algorithm can be applied on a real
world application. any sorting algorithm might be a
subroutine of another algorithms which affects its
complexity.

1. Knuth D., The Art Of Computer Programming,
Addison Wesley,1998.

2. Shahzad B. and Afzal M.,”Enhanched Shell Sorting
Algorithm,”computer general of Enformatika, vol.21,
no.6, pp.66-70,2007.

3. Cormen T., Leisersion C., Rivest R, and Stein C.,
Introduction to Algorithms, McGraw Hill,2001.

4. Aho A. Hopcroft J., and Ullman J., the design and
analysis of computer Algorithms, Addison Wesley,
1974.

5. Thoroup M.,”Randomized Sorting in O(n log log n)
Time And Linear Space Addition, Shift, and Bit Wise
Boolean Operations,”Computer Journal of Algo
rithms, vol:42, no.2, pp.205-230, 2002.

6. Astrachanm O., Bubble Sort: An Archaeological
Algorithmic Analysis, Duk University, 2003

An Optimized Input Sorting Algorithm

© 2016 Global Journals Inc. (US)

G
lo
ba

l
Jo

ur
na

l
of
 C

om
pu

te
r
Sc

ie
nc

e
an

d
Te

ch
no

lo
gy

 V

ol
um

e
X
V
I
Is
su

e
I
V
er
sio

n
I

13

Y
e
a
r

20
16

 (

)
HReferences Références Referencias

G
lo
ba

l
Jo

ur
na

l
of
 C

om
pu

te
r
Sc

ie
nc

e
an

d
Te

ch
no

lo
gy

 V

ol
um

e
X
V
I
Is
su

e
I
V
er
sio

n
I

14

Y
e
a
r

20
16

 (

)
H

An Optimized Input Sorting Algorithm

This page is intentionally left blank

© 2016 Global Journals Inc. (US)1

	An Optimized Input Sorting Algorithm
	Author
	Keywords
	I. Introduction
	II. InputSort
	III. Working
	IV. Complexity
	V. Recurrence Equation of Input Sort
	VI. comparison with heap and mergesort
	VII. Conclusion
	References Références Referencias

