
© 2016. Mark Burgin. This is a research/review paper, distributed under the terms of the Creative Commons Attribution-Noncommercial
3.0 Unported License http://creativecommons.org/licenses/by-nc/3.0/), permitting all non-commercial use, distribution, and
reproduction inany medium, provided the original work is properly cited.

Inductively Computable Hierarchies and Inductive Algorithmic
Complexity

By Mark Burgin
 University of California, United States

 Abstract- Induction is a prevalent cognitive method in science, while inductive computations are
popular in many fields of computer and network technology. The most advanced mathematical
model of inductive computations and reasoning is an inductive Turing machine, which is natural
extension of the most widespread model of computing devices and computations - Turing machine.
In comparison with Turing machines, inductive Turing machines represent the next step in the
development of computer science providing better models for contemporary computers and
computer networks. In this paper (Section 3), we study relations between inductively computable
sets, inductively recognizable sets, inductively decidable sets and inductively computable functions.
In addition (Section 4), we apply the obtained results to algorithmic information theory demonstrating
how inductive Turing machines allow obtaining more information for essentially decreasing
complexity in comparison with Turing machines.

Keywords: algorithmic information theory, inductive computation, turing machine, inductive turing
machine, kolmogorov complexity, inductive computability, inductive complexity, inductive decidability.

GJCST-H Classification: F.1.3 F.2.2

InductivelyComputableHierarchiesandInductiveAlgorithmicComplexity

 Strictly as per the compliance and regulations of:

Global Journal of Computer Science and Technology: E
Network, Web & Security
Volume 16 Issue 1 Version 1.0 Year 2016
Type: Double Blind Peer Reviewed International Research Journal
Publisher: Global Journals Inc. (USA)
Online ISSN: 0975-4172 & Print ISSN: 0975-4350

Inductively Computable Hierarchies and
Inductive Algorithmic Complexity

Mark Burgin

Abstract- Induction is a prevalent cognitive method in science,
while inductive computations are popular in many fields of
computer and network technology. The most advanced
mathematical model of inductive computations and reasoning
is an inductive Turing machine, which is natural extension of
the most widespread model of computing devices and
computations - Turing machine. In comparison with Turing
machines, inductive Turing machines represent the next step
in the development of computer science providing better
models for contemporary computers and computer networks.
In this paper (Section 3), we study relations between
inductively computable sets, inductively recognizable sets,
inductively decidable sets and inductively computable
functions. In addition (Section 4), we apply the obtained
results to algorithmic information theory demonstrating how
inductive Turing machines allow obtaining more information for
essentially decreasing complexity in comparison with Turing
machines.
Keywords: algorithmic information theory, inductive
computation, turing machine, inductive turing machine,
kolmogorov complexity, inductive computability,
inductive complexity, inductive decidability.

problems unmanageable by Turing machines providing
means for decreasing complexity of computations and
decision-making (Burgin, 2005). Consequently, in
comparison with Turing machines and other recursive
algorithms, inductive Turing machines represent the next
step in the development of computer science as well as
in the advancement of network and computational
technology.

In additi on, inductive Turing machines supply
more adequate than recursive algorithms and automata
models of computations, algorithms, networks, and
information processing systems. As a result, inductive
Turing machines have found diverse applications in
algorithmic information theory and complexity studies
(Burgin, 2004; 2010), software testing (Burgin and
Debnath, 2009; Burgin, Debnath and Lee, 2009), high
performance computing (Burgin, 1999), machine
learning (Burgin and Klinger, 2004), software
engineering (Burgin and Debnath, 2004; 2005),
computer networks (Burgin, 2006; Burgin and Gupta,
2012) and evolutionary computations (Burgin and
Eberbach, 2009; 2009a; 2012). For instance, inductive
Turing machines can perform all types of machine
learning – TxtEx-learning, TxtFin-learning, TxtBC-
learning, and TxtEx*-learning, (Beros, 2013). While the
traditional approach to machine learning models
learning processes using functions, e.g., limit partial
recursive functions (Gold, 1967), inductive Turing
machines are automata, which can compute values of
the modeling functions and perform other useful
operations while functions only describe such
operations.

Inductive Turing machines also provide efficient
tools for algorithmic information theory, which is one of
the indispensable areas in information theory and is
based on complexity of algorithms and automata
(Chaitin, 1977; Burgin, 2010). There are different kinds
and types of complexity with a diversity of different
complexity measures. One of the most popular and
important of them is Kolmogorov, also called
algorithmic, complexity, which has turned into an
important and popular tool in many areas such as
information theory, computer science, software
development, probability theory, and statistics.
Algorithmic complexity has found applications in
medicine, biology, neurophysiology, physics,
economics, hardware and software engineering. In
biology, algorithmic complexity is used for estimation of

© 2016 Global Journals Inc. (US)

G
lo
ba

l
Jo

ur
na

l
of
 C

om
pu

te
r
Sc

ie
nc

e
an

d
Te

ch
no

lo
gy

 V

ol
um

e
X
V
I
Is
su

e
I
V
er
sio

n
I

35

Y
e
a
r

20
16

 (

)
H

I. Introduction

Author: University of California, Los Angeles 405 Hilgard Ave.
e-mail: markburg@cs.ucla.edu

However, with the discovery of super-recursive
algorithms and exploration of unconventional
computations, more powerful models than Turing
machines came to the forefront of computer science
(Burgin, 2005; Burgin and Dodig-Crnkovic, 2012). One
of the most natural extensions of conventional
algorithmic models is inductive Turing machine, which is
an innovative model of computations, algorithms and
information processing systems more powerful than
Turing machine. Inductive Turing machines can solve

or a long time, Turing machines dominated
theoretical computer science as researchers
assumed that they were absolute and all-

encompassing models of computers and computations.
Although Turing machines are functionally equivalent to
many other models of computers and computations,
such as partial recursive functions, cellular automata or
random access machines (RAM), which are called
recursive algorithms or recursive automata, computer
scientists and mathematicians have been mostly using
Turing machines for theoretical exploration of
computational problems.

F

protein identification (Dewey, 1996; 1997). In physics,
problems of quantum gravity are analyzed based on the
algorithmic complexity of a given object. In particular,
the algorithmic complexity of the Schwarzschild black
hole is estimated (Dzhunushaliev, 1998; Dzhunushaliev
and Singleton, 2001). Benci, et al (2002) apply
algorithmic complexity to chaotic dynamics. Zurek
elaborates a formulation of thermodynamics by
inclusion of algorithmic complexity and randomness in
the definition of physical entropy (Zurek, 1991).
Gurzadyan (2003) uses Kolmogorov complexity as a
descriptor of the Cosmic Microwave Background (CMB)
radiation maps. Kreinovich, and Kunin (2004) apply
Kolmogorov complexity to problems in classical
mechanics, while Yurtsever (2000) employs Kolmogorov
complexity in quantum mechanics. Tegmark (1996)
discusses what can be the algorithmic complexity of the
whole universe. The main problem with this discussion
is that the author identifies physical universe with
physical models of this universe. To get valid results on
this issue, it is necessary to define algorithmic
complexity for physical systems because conventional
algorithmic complexity is defined only for such symbolic
objects as words and texts (Li, and Vitanyi, 1997). Then
it is necessary to show that there is a good correlation
between algorithmic complexity of the universe and
algorithmic complexity of its model used by Tegmark
(1996).

In economics, a new approach to
understanding of the complex behavior of financial
markets using algorithmic complexity is developed
(Mansilla, 2001). In neurophysiology, algorithmic
complexity is used to measure characteristics of brain
functions (Shaw, et al, 1999). Algorithmic complexity has
been useful in the development of software metrics and
other problems of software engineering (Burgin, and
Debnath, 2003; Lewis, 2001). Crosby and Wallach
(2003) use algorithmic complexity to study low-
bandwidth denial of service attacks that exploit
algorithmic deficiencies in many common applications’
data structures.

Thus, we see that Kolmogorov/algorithmic
complexity is a frequent word in present days' scientific
literature, in various fields and with diverse meanings,
appearing in some contexts as a precise concept of
algorithmic complexity, while being a vague idea of
complexity in general in other texts. The reason for this
is that people study and create more and more complex
systems.

Algorithmic complexity in its classical form gives
an estimate of how many bits of information we need to
build or restore a given text by algorithms from a given
class. This forms the foundation for algorithmic
information theory (Chaitin, 1977; Burgin, 2010).
Conventional Kolmogorov, or recursive algorithmic
complexity and its modifications, such as uniform
complexity, prefix complexity, monotone complexity,

process complexity, conditional Kolmogorov complexity,
quantum Kolmogorov complexity, time-bounded
Kolmogorov complexity, space-bounded Kolmogorov
complexity, conditional resource-bounded Kolmogorov
complexity, time-bounded prefix complexity, and
resource-bounded Kolmogorov complexity, use
conventional, i.e., recursive, algorithms, such as Turing
machines. Inductive complexity studied in this paper is a
special type of the generalized Kolmogorov complexity
(Burgin, 1990), which is based on inductive Turing
machines. It is possible to apply inductive algorithmic
complexity in all cases where Kolmogorov complexity is
used and even in such situations where Kolmogorov
complexity is not defined. In particular, inductive
algorithmic complexity has been used in the study of
mathematical problem complexity (Calude, et al, 2012;
Hertel, 2012; Burgin, et al, 2013), as well as for
exploration of other problems (Burgin, 2010a).

The goal of this work is to find properties of
inductively computable and inductively decidable sets
and functions applying these properties to inductive
algorithmic complexity. This paper has the following
structure. In Section 2, we give definitions of simple
inductive Turing machines, which can compute much
more than Turing machines. In Section 3, we study
relations between inductively computable sets,
inductively recognizable sets, inductively decidable sets,
and inductively computable functions. In Section 4, we
use the obtained relations to advance inductive
algorithmic complexity and algorithmic information
theory. Utilization of inductive algorithmic complexity
makes these relations more exact as for infinitely many
objects, inductive algorithmic complexity is essentially
smaller than Kolmogorov complexity (Burgin, 2004).
Section 5 contains conclusion and directions for further
research.

II. Simple Inductive Turing Machines as
a Computational Model

Here we consider only simple inductive Turing
machines (Burgin, 2005) and for simplicity call them
inductive Turing machines although there are other
kinds of inductive Turing machines. A simple inductive
Turing machine M

works with words in some alphabet

and has the same structure and functioning rules as a
Turing machine

with three heads and three linear tapes

(registers) –

the input tape (register), output tape
(register) and working tape (register). Any inductive
Turing machine of the first order is functionally
equivalent to a simple inductive Turing machine.
Inductive

Turing machine of higher orders are more

powerful than simple inductive Turing machines allowing
computation of more functions and sets.

The machine M

works in the following fashion.

At the beginning, an input word w

is written in the input

tape, which is

a read-only tape. Then the machine M

Inductively Computable Hierarchies and Inductive Algorithmic Complexity
G
lo
ba

l
Jo

ur
na

l
of
 C

om
pu

te
r
Sc

ie
nc

e
an

d
Te

ch
no

lo
gy

 V

ol
um

e
X
V
I
Is
su

e
I
V
er
sio

n
I

36

Y
e
a
r

20
16

 (

)
H

© 2016 Global Journals Inc. (US)1

rewrites the word w from the input tape to the working
tape and starts working with it. From time to time in this
process, the machine M rewrites the word from the
working tape to the output tape erasing what was before
written in the output tape. In particular, when the
machine M comes to a final state, it rewrites the word
from the working tape to the output tape and stops
without changing the state.

The machine M gives the result when M halts in
a final state, or when M never stops but at some step of
the computation, the content of the output tape
(register) stops changing. The computed result of M is
the word that is written in the output tape of M. In all
other cases, M does not give the result.

This means that a simple inductive Turing
machine can do what a Turing machine can do but in
some cases, it produces its results without stopping.
Namely, it is possible that in the sequence of
computations after some step, the word (say, w) on the
output tape (in the output register) is not changing, while
the inductive Turing machine continues working. Then
this word w is the final result of the inductive Turing
machine. Note that if an inductive Turing machine gives
the final result, it is produced after a finite number of
steps, that is, in finite time, even when the machine does
not stop. So contrary to confusing claims of some
researchers, an inductive Turing machine does not need
infinite time to produce a result.

We assume that inductive Turing machines
work with finite words in some alphabet Σ or with natural
numbers represented by such words. Consequently,
inductive Turing machines compute sets X of finite
words in Σ, i.e., X ⊆ Σ* where Σ* is the set of all finite
words in the alphabet Σ, or sets of natural numbers Z ⊆
N represented by words. As it is possible to code any
alphabet by words in the alphabet {0, 1}, we can
assume (when it is necessary) that this binary alphabet
is used by all considered inductive Turing machines.

If an inductive Turing machine M transforms
words from Σ* into words from Σ*, then Σ* is called the
domain and codomain of M.

If an inductive Turing machine M transforms
numbers from N into numbers from N, then N is called
the domain and codomain of M.

The set of words (numbers) for which the
machine M is defined (gives the result) is called the
definability domain of M.

The set of words (numbers) computed
(generated) by the machine M

is called the range

of M.

III.

Inductively Computable and
Inductively Decidable Sets

Definition 3.1.

A set X

⊆

Σ* or X

⊆

N

is called inductively

computable

if there is an inductive Turing machine M

with the range X.

Informally, an inductively computable set
consists of all final results of some inductive Turing
machine M.

Sets Σ* and N are simple examples of
inductively computable sets.

We remind that a recursively computable set,
which is also called a recursively enumerable set, is the
range of some Turing machine or of another recursive
algorithm (Burgin, 2005).

Inductively computable sets are closely related
to inductively computable functions, which have the
form f: Σ* → Σ* or g: N → N.
Definition 3.2. A functions f is called inductively
computable if there is an inductive Turing machine M
that computes X, i.e., given an arbitrary input x, the
machine M computes the value f(x) when f is defined for
x and does not give the result when f is undefined for x.
The domain, codomain, definability domain and range
of an inductively computable function coincides with the
domain, codomain, definability domain and range,
respectively, of the inductive Turing machine that
computes this function.

We remind that a recursively computable
function, which is also called a partial recursive function,
is a function computed by some Turing machine or of
another recursive algorithm (Burgin, 2005).

As it is possible to simulate any Turing machine
by an inductive Turing machine (Burgin, 2005), we have
the following result.
Proposition 3.1. Any recursively computable function is
inductively computable.

Definition 3.3. a) A set X ⊆ Σ* or X ⊆ N is called
inductively recognizable, also called inductively
semidecidable, if there is an inductive Turing machine M
such that gives the result 1 for input x if and only if x
belongs to X.
b) A set X ⊆ Σ* or X ⊆ N is called inductively

corecognizable if there is an inductive Turing
machine M such that gives the result 1 for input x if
and only if x does not belong to X.

Definition 3.4. A set X ⊆ Σ* or X ⊆ N is called inductively
decidable if there is an inductive Turing machine M such
that gives the result 1 for any input x from X and gives
the result 0 for any input z from Σ*\X (from N\X).

Informally, a set X is inductively decidable if
some inductive Turing machine M can indicate whether
an arbitrary element belongs to X or does not belong. In
other words, a set X is inductively decidable if its
indication (characteristic) function is inductively
computable.

Lemma 3.1. A set X ⊆ Σ* or X ⊆ N is inductively
recognizable if and only if it is inductively computable.
Proof. Sufficiency. Let us consider an inductively
computable set X. By definition, there is an inductive
Turing machine MX the range of which is equal to X. It is

Inductively Computable Hierarchies and Inductive Algorithmic Complexity

© 2016 Global Journals Inc. (US)

G
lo
ba

l
Jo

ur
na

l
of
 C

om
pu

te
r
Sc

ie
nc

e
an

d
Te

ch
no

lo
gy

 V

ol
um

e
X
V
I
Is
su

e
I
V
er
sio

n
I

37

Y
e
a
r

20
16

 (

)
H

possible to assume that the machine MX gives the result
if and only if its output stabilizes.

To show that X is inductively recognizable, we
add a new component (subprogram) C to the machine
MX , building the new inductive Turing machine NX . After
each step of the machine MX (as a subprogram of the
machine NX), the subprogram C checks if the two
consecutive intermediate outputs of MX are equal or not.
When they are equal, the machine NX gives the
intermediate output 1and then the machine MX (as a
subprogram of the machine NX) makes the next step.

When the two consecutive intermediate outputs
of MX are not equal, the machine NX gives the
intermediate output 1, followed by the intermediate
output 0 and then the machine MX (as a subprogram of
the machine NX) makes the next step.

This construction shows that the output of NX
stabilizes if and only if the output of MX stabilizes. It
means that the inductive Turing machine NX gives the
result 1 for any input x from X and does not gives the
result otherwise. Thus, the set X is inductively
recognizable.

Necessity. Let us consider an inductively
recognizable set X. By definition, there is an inductive
Turing machine KX that gives the result 1 for any input x
from X and either does not give the result otherwise or
gives the result 0. It is possible to assume that the
machine KX gives the result if and only if its output
stabilizes and all intermediate outputs of KX are equal
either to 1 or to 0.

To show that X is inductively computable, we
transform the machine KX , building the new inductive
Turing machine NX . At the beginning, KX stores the input
x. Then when the machine KX gives the intermediate
output 1, the machine NX gives the intermediate output
x. When the machine KX gives the intermediate output 0
the first time, the machine NX gives the intermediate
output w, which is not equal to x. When the machine KX

gives the intermediate output 0 next time, the machine
NX gives the intermediate output x. Next time, the
machine KX gives the intermediate output 0, the machine
NX gives the intermediate output w and so on. Thus,
even if the machine KX obtains the result 0, the machine
NX does not give the result.

In such a way, the machine NX obtains the result
if and only if the machine KX obtains the result. In
addition, all results of NX belong to the set X and only to
it because KX computes the indicating function of X.
Thus, X is equal to the range of the function computed
by NX and consequently, X is inductively computable.
Lemma is proved.

Lemma 3.2. The range of a total monotone inductively
computable function is inductively decidable.

Proof. Let us consider a total monotone
inductively computable function f with the range X. Then
there is an inductive Turing machine M that computes f.

We build an inductive Turing machine K that gives 1 as
its result for all inputs from X and gives 0 as its result for
all inputs that does not belong to X. It means that K
decides the set X.

To achieve this goal, we include the machine M
as a part (in the form of subroutine) of the machine K
and define functioning of K in the following way. When K
obtains a word x as the input x, the goal is to whether x
belongs to the set X or does not belong. To do this, the
machine K starts simulating the machine M for all inputs
x1 , x2 , … , xn that are less than x in a parallel mode. It
means that each step is repeated for all inputs x1 , x2 ,
… , xn , then the next step is also repeated for all inputs
x1 , x2 , … , xn , and so on. On each step, the machine K
compares intermediate outputs of the machine M with
the word x. When, at least, one of the intermediate
outputs of the machine M for these inputs is equal to x,
the machine K gives the intermediate output 1. When no
intermediate outputs of the machine M for these inputs
coincide with x, the machine K gives the intermediate
output 0.

As the inductive Turing machine M computes a
total function, all intermediate outputs start repeating at
some step of the machine M computation. That is why
the word x belong to X if on this step, it coincides with
one of the outputs. By construction, the machine K
continues to repeat the output 1 forever. If the word x
does not coincide with any of the outputs of the
machine M, then the word x does not belong to X
because x can be the value of f only for arguments x1 , x2
, … , xn , x as f is a monotone function.

In such a way, the machine K decides whether
an arbitrary word belongs to X or does not belong.
Lemma is proved.

These lemmas allow us to prove existence of
definite relations between inductively computable sets
and inductively decidable sets.
Theorem 3.1. Any infinite inductively computable set
contains an infinite inductively decidable subset.

Proof. Let us consider an inductively
computable set X. By Lemma 3.1, the set X is inductively
recognizable. It means that there is an inductive Turing
machine KX that gives the result 1 for any input x from X
and either does not give the result otherwise or gives the
result 0. It is possible to assume that the machine KX
gives the result if and only if its output stabilizes and all
intermediate outputs of KX are equal either to 1 or to 0
(Burgin, 2005).

As we know, there is the natural order in the set
N and the lexicographical order in the set Σ* (cf., for
example, (Burgin, 2005)). It means that the domain of
any inductive Turing machine is the ordered sequence {
x1 , x2 , x3 , … , xn , …} where xk < xk + 1 for all = 1, 2, 3,
… .

To find an inductively decidable subset in the
set X, we extend the alphabet Σ by adding a new symbol

Inductively Computable Hierarchies and Inductive Algorithmic Complexity
G
lo
ba

l
Jo

ur
na

l
of
 C

om
pu

te
r
Sc

ie
nc

e
an

d
Te

ch
no

lo
gy

 V

ol
um

e
X
V
I
Is
su

e
I
V
er
sio

n
I

38

Y
e
a
r

20
16

 (

)
H

© 2016 Global Journals Inc. (US)1

and build a new inductive Turing machine M, output of
which can include this new symbol #. The machine M
contains the machine KX as a component (subroutine), a
component (subroutine) G, which generates words x1 ,
x2 , x3 , … , xn , … one after another, and a counter C as
another component (subroutine) C.

The machine M processes information in cycles
organized in the following way.

Cycle 1*1: When the machine M gets the word
x1 as its input, it gives x1 to the machine KX , which starts
processing it. At the same time, the counter C counts
the number of steps made by KX . When the machine KX
gives the intermediate output 1, the machine M gives the
intermediate output x1 , which is stored in the memory of
M. When the machine KX gives the intermediate output
0, the machine M gives the intermediate output #, the
machine KX stops processing x1 , the number n1 of steps
made by KX is stored in the memory of M and the
generator G generates the word x2 .

Cycle 1*2: Then the machine M gives x2 to the
machine KX , which starts processing it. At the same
time, the counter C counts the number of steps made by
KX . When the machine KX makes less than n1 steps, the
machine M always gives the intermediate output x2 .
After n1 steps, when the machine KX gives the
intermediate output 1, the machine M gives the
intermediate output x2 . When the machine KX gives the
intermediate output 0, the machine M gives the
intermediate output #, the machine KX stops processing
x2 , the number n2 of steps made by KX is stored in the
memory of M and the machine KX starts once more
processing the word x1 . At the same time, the counter C
counts the number of steps made by KX .

Cycle 1*3: When the machine KX makes less
than n2 steps, the machine M always gives the
intermediate output x1 . After n2 steps, when the machine
KX gives the intermediate output 1, the machine M gives
the intermediate output x1 . When the machine KX gives
the intermediate output 0, the machine M gives the
intermediate output #, the machine KX stops processing
x1 , the number n3 of steps made by KX is stored in the
memory of M and the machine KX starts once more
processing the word x2 . At the same time, the counter C
counts the number of steps made by KX .

Cycle 1*4: When the machine KX makes less
than n3 steps, the machine M always gives the
intermediate output x2 . After n2 steps, when the machine
KX gives the intermediate output 1, the machine M gives
the intermediate output x2 . When the machine KX gives
the intermediate output 0, the machine M gives the
intermediate output #, the machine KX stops processing
x2 , the number n4 of steps made by KX is stored in the
memory of M and the generator G generates the word
x3.

Cycle 1*5: Then the machine M gives x3 to the
machine KX , which starts processing it. At the same
time, the counter C counts the number of steps made by

KX . When the machine KX makes less than n4 steps, the
machine M always gives the intermediate output x3 .
After n4 steps, when the machine KX gives the
intermediate output 1, the machine M gives the
intermediate output x3 . When the machine KX gives the
intermediate output 0, the machine M gives the
intermediate output #, the machine KX stops processing
x3 , the number n5 of steps made by KX is stored in the
memory of M and the machine KX starts once more
processing the word x1 . At the same time, the counter C
counts the number of steps made by KX .

This process continues until it stabilizes, which
happens because the definability domain of the
machine KX is not empty.

In such a way, the machine M makes the
machine KX to process more and more elements xn ,
making more and more steps with each of them as its
input. As the definability domain of the machine KX is not
empty, at some step m1, the machine KX continues
forever repeating 1 as its output for an input xk . By
construction, the machine M continues forever repeating
xk as its output for an input x1 . It means M(x1) = xk . Note
that x1≤ xk and xk may be not the least element in the
definability domain X of the machine KX .

Given the word x2 as its input, the machine M
performs similar cycles as before but with pairs of words
(xi , xj).

Cycle 2*1: Thus, at the beginning when the
machine M gets the word x2 as its input, it gives x2 and
the word x3 generated by G to the machine KX , which
starts processing both words in a parallel mode. At the
same time, the counter C counts the number of steps
made by KX. When the machine KX gives the
intermediate output 1 for both inputs, the machine M
gives the intermediate output x3 , which is stored in the
memory of M. When the machine KX gives the
intermediate output 0 for the input x2 before it gives the
intermediate output 0 for the input x3 , the machine M
gives the intermediate output #, the machine KX stops
processing the pair (x2 , x3), the number n1 of steps
made by KX is stored in the memory of M, the generator
G generates the word x4 and the machine M goes to the
cycle 2*2.

When the machine KX gives the intermediate
output 0 for the input x3 at the same time or before it
gives the intermediate output 0 for the input x2 , the
machine M gives the intermediate output #, the
machine KX stops processing the pair (x2 , x3), the
number n2 of steps made by KX is stored in the memory
of M, the generator G generates the word x4 and the
machine M goes to the cycle 2*3.

Cycle 2*2: Then the machine M gives the pair
(x3 , x4) to the machine KX , which starts processing it in a
parallel mode. At the same time, the counter C counts
the number of steps made by KX . When the machine KX
makes less than n1 steps, the machine M always gives
the intermediate output x4. After n1 steps, when the

Inductively Computable Hierarchies and Inductive Algorithmic Complexity

© 2016 Global Journals Inc. (US)

G
lo
ba

l
Jo

ur
na

l
of
 C

om
pu

te
r
Sc

ie
nc

e
an

d
Te

ch
no

lo
gy

 V

ol
um

e
X
V
I
Is
su

e
I
V
er
sio

n
I

39

Y
e
a
r

20
16

 (

)
H

machine KX gives the intermediate output 1 for both
inputs, the machine M gives the intermediate output x4 .
When the machine KX gives the intermediate output 0 for
the input x3 before it gives the intermediate output 0 for
the input x4 , the machine M gives the intermediate
output #, the machine KX stops processing the pair (x3 ,
x4), the number n3 of steps made by KX is stored in the
memory of M and the machine M goes to the cycle 2*4.
When the machine KX gives the intermediate output 0 for
the input x4 at the same time or before it gives the
intermediate output 0 for the input x3 , the machine M
gives the intermediate output #, the machine KX stops
processing the pair (x2 , x3), the number n2 of steps
made by KX is stored in the memory of M, the generator
G generates the word x4 and the machine M goes to the
cycle 2*5.

Cycle 2*3: Then the machine M gives the pair
(x2 , x4) to the machine KX , which starts processing it in a
parallel mode. At the same time, the counter C counts
the number of steps made by KX . When the machine KX
makes less than n2 steps, the machine M always gives
the intermediate output x4 . After n1 steps, when the
machine KX gives the intermediate output 1 for both
inputs, the machine M gives the intermediate output x4 .
When the machine KX gives the intermediate output 0 for
the input x2 before it gives the intermediate output 0 for
the input x4 , the machine M gives the intermediate
output #, the machine KX stops processing the pair (x2 ,
x4), the number n2 of steps made by KX is stored in the
memory of M and the machine M goes to the cycle 2*6.
When the machine KX gives the intermediate output 0 for
the input x4 at the same time or before it gives the
intermediate output 0 for the input x3 , the machine M
gives the intermediate output #, the machine KX stops
processing the pair (x2 , x3), the number n2 of steps
made by KX is stored in the memory of M, the generator
G generates the word x4 and the machine M goes to the
cycle 2*7 and so on.

This process continues until it stabilizes, which
happens because the definability domain of the
machine KX is infinite.

In such a way, the machine M makes the
machine KX to process more and more pairs (xi , xj)
functioning in a parallel mode and making more and
more steps with each pair as its inputs. As in the case of
the input x1, the machine M, at first, finds the word xk for
which the machine KX continues forever repeating 1 as
its output and then locates a word xn

 > xk for which the
machine KX also continues forever repeating 1 as its
output. The machine M can do this because the
definability domain of the machine KX is infinite. When
the machine M finds this word xn , it continues forever
repeating xn

 as its output for an input x2 . It means M(x2)
= xn

 and xn
 > xk . Note that x2≤

 xn and xn may be not the
least element in the definability domain X of the machine
KX that is larger than xk .

Given the word x2 as its input, the machine M
performs similar cycles as before but with triples of
words (xi , xt , xj) as inputs to the machine KX , which
processes them in a parallel mode. In this case, the
machine M, at first, finds the word xk for which the
machine KX continues forever repeating 1 as its output
and then locates a word xn > xk for which the machine
KX also continues forever repeating 1 as its output. After
this, the machine M finds the word xp > xn for which the
machine KX continues forever repeating 1 as its output.
The machine M can do this because the definability
domain of the machine KX is infinite. When the machine
M finds this word xp , it continues forever repeating xp as
its output for an input x3 . It means M(x3) = xp and xp > xn
> xk . Note that x3≤ xp and xp may be not the least
element in the definability domain X of the machine KX

that is larger than xn .
In such a way, the machine M finds results for

any input xi computing a total monotone function. By
Lemma 2, the range Z of this function is inductive
decidable and by construction, it is infinite.
Theorem is proved.

This result allows us to find additional properties
of inductive algorithmic complexity (cf. Section 4).

Let us consider the set RM = {(x, t); given the
input x, an inductive Turing machine M gives the result in
not more than t steps}, i.e., RM consists of all pairs (x, t),
in which x is a word from {0, 1}* and t is a natural
number.
Lemma 3.3. The set RM is inductively decidable.

Proof. We build an inductive Turing machine K
that gives 1 as its result for all inputs from RM and gives
0 as its result for all inputs that does not belong to RM . It
means that K decides the set RM .

To achieve this goal, we include the machine M
as a part (in the form of subroutine) of the machine K
and define functioning of K in the following way. When K
obtains a word (x, t) as the input x, it starts simulating
the machine M for the input x. When the step number n
is made the machine K gives the intermediate output 1.
Then the machine K makes one more step simulating
the machine M for the input x and compares the new
intermediate output of the machine M with its previous
result. When these outputs coincide, the machine K
gives the intermediate output 1. Otherwise the machine
K gives the final output 0 and stops.

After each intermediate output 1, the machine K
makes one more step simulating the machine M for the
input x and compares the new intermediate output of the
machine M with its previous result. When these outputs
coincide, the machine K gives the intermediate output 1.
As the result, the inductive Turing machine K gives 1
when the outputs of M start repeating from the step t
and gives 0 as its result otherwise. In such a way, the
machine K decides whether an arbitrary word (x, t)
belongs to RM or does not belong.

Inductively Computable Hierarchies and Inductive Algorithmic Complexity
G
lo
ba

l
Jo

ur
na

l
of
 C

om
pu

te
r
Sc

ie
nc

e
an

d
Te

ch
no

lo
gy

 V

ol
um

e
X
V
I
Is
su

e
I
V
er
sio

n
I

40

Y
e
a
r

20
16

 (

)
H

© 2016 Global Journals Inc. (US)1

Lemma is proved.
Now we find additional relations between

inductively computable sets and inductively decidable
sets.

Taking a binary relation R ⊆ Σ* × Σ*, it is possible to
consider two projections of this relation:
The left projection Prl R ={ x; ∃y ((x, y) ∈ R)}

The right projection Prr R ={ y; ∃x ((x, y) ∈ R)}

Theorem 3.2. A set X is inductively computable if and
only if it is the left projection of an inductively decidable
binary relation.

Proof. Necessity. Let us consider an inductively
computable set X. By definition, there is an inductive
Turing machine M, which computes X.

Let us consider the set RM
 = {(x, t); given the

input x, an inductive Turing machine M gives the result
not more than in t steps}, i.e., RM

 consists of all pairs (x,
t), in which x is a word from {0, 1}* and t is a natural
number. By Lemma 3.3, the set RM

 is inductively
decidable and Prl RM

 = X because an element x is
computed by M if and only if there is a number t such
that given the input x, an inductive Turing machine M

gives the result not more than in t steps.

Note that X = Prlr Ro
M
 where Ro

M
 = {(t, x); {(x, t)

∈ RM
 } and thus, Ro

M
 is inductively decidable

Sufficiency. Let us consider an inductively
decidable binary relation R ⊆ Σ* × Σ* and its left
projection Prl R ={ x; ∃y ((x, y) ∈ R)}, which we denote
by X. By definition, there is an inductive Turing machine
KR

 that gives the result 1 for any input (x, y) from R and
gives the result 0 for any input (z, u) that does not
belong to R.

To show that the set X

is inductively
computable, we extend the alphabet Σ

by adding the

new symbol # and build a new inductive Turing
machine M, which computes X. The machine M

contains

the machine KR

as a component (subroutine), a
component (subroutine) G, which generates all words x1

, x2

, x3

, … ,

xn , … in the alphabet Σ

one after another,

and a counter C as another component (subroutine) C.

The machine M

processes information in cycles
organized in the following way.

Cycle 1:

When the machine M

gets a word w

as its input,

the generator G

produces the word x1 and the machine

M

gives the pair (w, x1) to the machine KR , which starts

processing it. At the same time, the counter C

counts

the number of steps made by KR . When the machine KX

gives the intermediate output 1, the machine M

gives the

intermediate output w, which is stored in the memory of
M. When the machine KX

gives the intermediate output

0, the machine M

gives the intermediate output #, the

machine KX

stops processing the pair (w, x1), the
number n1

of steps made by KR

is stored in the memory

of M

and the generator G

generates the word x2 .

Cycle 2: Then the machine M gives the pair (w, x2) to the
machine KR , which starts processing it. At the same
time, the counter C counts the number of steps made by
KR . When the machine KR makes less than n1 steps, the
machine M always gives the intermediate output w .
After n1 steps, when the machine KR gives the
intermediate output 1, the machine M gives the
intermediate output w. When the machine KR gives the
intermediate output 0, the machine M gives the
intermediate output #, the machine KR stops processing
the pair (w, x2), the number n2 of steps made by KR is
stored in the memory of M and the machine KR starts
once more processing the pair (w, x1). At the same time,
the counter C counts the number of steps made by KR .
Cycle 3: When the machine KR makes less than n2 steps,
the machine M always gives the intermediate output w .
After n2 steps, when the machine KR gives the
intermediate output 1, the machine M gives the
intermediate output w . When the machine KR gives the
intermediate output 0, the machine M gives the
intermediate output #, the machine KR stops processing
the pair (w, x1), the number n3 of steps made by KR is
stored in the memory of M and the machine KR starts
once more processing the pair (w, x2). At the same time,
the counter C counts the number of steps made by KR .
Cycle 4: When the machine KR makes less than n3 steps,
the machine M always gives the intermediate output w .
After n2 steps, when the machine KR gives the
intermediate output 1, the machine M gives the
intermediate output w . When the machine KR gives the
intermediate output 0, the machine M gives the
intermediate output #, the machine KR stops processing
the pair (w, x2) , the number n4 of steps made by KR is
stored in the memory of M and the generator G
generates the word x3 .
Cycle 5: Then the machine M gives pair (w, x3) to the
machine KR , which starts processing it. At the same
time, the counter C counts the number of steps made by
KR . When the machine KR makes less than n4 steps, the
machine M always gives the intermediate output w .
After n4 steps, when the machine KR gives the
intermediate output 1, the machine M gives the
intermediate output w . When the machine KR gives the
intermediate output 0, the machine M gives the
intermediate output #, the machine KR stops processing
the pair (w, x3), the number n5 of steps made by KR is
stored in the memory of M and the machine KR starts
once more processing the pair (w, x1) and this process
continues, while the counter C counts the number of
steps made by KR .

This process stabilizes if and only if the machine
KR stabilizes processing a pair (w, x) for some x. If it
happens, the machine M computes the word w. In this
case, w ∈ X. Otherwise, w does not belong to the range
of M. In this case, w also does not belong to X. As w is

Inductively Computable Hierarchies and Inductive Algorithmic Complexity

© 2016 Global Journals Inc. (US)

G
lo
ba

l
Jo

ur
na

l
of
 C

om
pu

te
r
Sc

ie
nc

e
an

d
Te

ch
no

lo
gy

 V

ol
um

e
X
V
I
Is
su

e
I
V
er
sio

n
I

41

Y
e
a
r

20
16

 (

)
H

an arbitrary word, it means that the machine M
computes the set X.
Theorem is proved.
Corollary 3.1. A set X is inductively recognizable if and
only if it is the left projection of an inductively decidable
binary relation.

If R is a binary relation, then Ro = {(y, x); (x, y) ∈
R} is the involution of R, also called the inverse of R.
Definitions imply the following results.

Lemma 3.4. Prl R = Prr Ro and Prr R =Prl Ro.

Lemma 3.5. A relation R is inductively computable
(inductively decidable) if and only if the relation Ro is
inductively computable (inductively decidable).

Theorem 3.2 and Lemma 3.5 and 3.4 give us
the following results.

Corollary 3.2. A set X is inductively computable if and
only if it is the right projection of an inductively decidable
binary relation.

Corollary 3.3. A set X is inductively recognizable if and
only if it is the right projection of an inductively decidable
binary relation.

IV.
 Inductive

 Algorithmic Complexity

Here we study inductive algorithmic complexity
for finite objects such as natural numbers or words in a
finite alphabet. Usually, it is the binary alphabet {0, 1}.

Definition 4.1.

The algorithmic complexity

ICM(x) of an

object (word) x

with respect to an inductive Turing
machine M

is defined as

 min {

l(p); M(p) = x} when there is p

such

that

M(p) = x

ACM(x)

=

 undefined when there is no p

such that

M(p)

= x

Note that if M

is a Turing machine, then

algorithmic complexity

ACM(x)

with respect to M

coincides with Kolmogorov complexity CM(x) with
respect to M. If M

is a prefix Turing machine, then the

algorithmic complexity

ICM(x) is the

prefix Kolmogorov

complexity

KM(x).

However, as in the case of conventional
Kolmogorov complexity, we need an invariant
complexity of objects. This is achieved by using a
universal simple inductive Turing machine (Burgin, 2004;
2005).

Definition 4.2.

The inductive algorithmic complexity IC(x)
of an object (word) x

is defined as

 min {

l(p); U(p) = x} when there is p

such
that

U(p) = x

IC(x)

=

 undefined when there is no p

such that

U(p)
= x

where l(p) is the length of the word p and U is a
universal simple inductive Turing machine.

Note that inductive complexity is a special case
of generalized Kolmogorov complexity (Burgin, 1990),
which in turn, is a kind of axiomatic dual complexity
measures (Burgin, 2005).

The prefix inductive complexity IK(x) is optimal
in the class of prefix inductive complexities IKT(x).

Optimality is based on the relation ≼ defined for
functions f(n) and g(n), which take values in natural
numbers:

f(n) ≼ g(n) if there is a real number c such that f(n) ≤
g(n) + c for almost all n∈N

Let us consider a class H of functions that take
values in natural numbers. Then a function f(n) is called

optimal for H if f(n) ≼ g(n) for any function g(n) from H.
In the context of the axiomatic theory of dual
complexities, such a function f(n) is called additively
optimal for the class H.

Results from the axiomatic theory of dual
complexities (Burgin, 1990; 2010) imply the following
theorem.
Theorem 4.1. The function IC(x) is optimal in the class of
all prefix inductive complexities IKT(x) with respect to a
prefix simple inductive Turing machine T.

As there is a simple inductive Turing machine M
such that M(x) = x for all words x in the alphabet {1, 0},
we have the following result.
Proposition 4.1. IC(x) is a total function.

Let us assume for simplicity that inductive
Turing machines are working with words in some finite
alphabet and that all these words are well ordered, that
is, any set of words contains the least element. It is
possible to find such orderings, for example, in (Li and
Vitaniy, 1997).
Theorem 4.1. If h is an increasing inductively
computable function that is defined in an infinite
inductively computable set W and tends to infinity when
l(x) → ∞, then for infinitely many elements x from W, we
have h(x) > IC(x).

Proof. Let us consider an increasing inductively
computable function f that is defined in an infinite
inductively computable set W and tends to infinity when
l(x) → ∞. Then by Theorem X1, W contains an infinite
inductively decidable subset V. Because the set V is
infinite, the restriction h of the function f on the set V
tends to infinity when l(x) → ∞.

By Theorem 5.3.12 from (Burgin, 2005), for
infinitely many elements x from V, we have h(x) > IC(x).
As V is a subset of W, for infinitely many elements x from
W, we have h(x) > IC(x).
Theorem is proved.

Since the composition of two increasing
functions is an increasing function and the composition
of a recursive function and an inductively computable

Inductively Computable Hierarchies and Inductive Algorithmic Complexity
G
lo
ba

l
Jo

ur
na

l
of
 C

om
pu

te
r
Sc

ie
nc

e
an

d
Te

ch
no

lo
gy

 V

ol
um

e
X
V
I
Is
su

e
I
V
er
sio

n
I

42

Y
e
a
r

20
16

 (

)
H

© 2016 Global Journals Inc. (US)1

function is an inductively computable function, we have
the following result.
Corollary 4.1. If h(x) and g(x) are increasing functions,
h(x) is inductively computable and defined in an infinite
inductively computable set W, g(x) is a recursive
function, and they both tend to infinity when l(x) → ∞,
then for infinitely many elements x from W, we have
g(h(x)) > IC(x).
Corollary 4.2. The function IC(x) is not inductively
computable. Moreover, no inductively computable
function f(x) defined for an infinite inductively
computable set of numbers can coincide with IC(x) in
the whole of its domain of definition.

As Kolmogorov complexity C(x) is inductively
computable (Burgin, 2005), Theorem X3 implies the
following result.
Theorem 4.2. For any increasing recursive function h(x)
that tends to infinity when l(x) → ∞ and any inductively
computable set W, there are infinitely many elements x
from W for which h(C(x)) > IC(x).
Corollary 4.3. In any inductively computable set W, there
are infinitely many elements x for which C(x) > IC(x).
Corollary 4.4. For any natural number a and in any
inductively computable set W, there are infinitely many
elements x for which lna(C(x)) > IC(x).
Corollary 4.5. In any inductively computable set W, there
are infinitely many elements x for which ln2(C(x)) > IC(x).
If ln2(C(x)) > IC(x), then C(x) > 2IC(x). At the same time,
for any natural number k, the inequality 2n > k⋅n is true
almost everywhere. This and Corollary X7 imply the
following result.
Corollary 4.6. For any natural number k and in any
inductively computable set W, there are infinitely many
elements x for which C(x) > k⋅IC(x).
Corollary 4.7. In any inductively computable set W, there
are infinitely many elements x for which C(x) > 2IC(x).
Corollary 4.8. For any natural number a and in any
inductively computable set W, there are infinitely many
elements x for which C(x) > aIC(x).

In addition, it is possible to apply obtained
results to inductive algorithmic complexity of inductively
computable functions, which are infinite objects but
have a finite representation when they are enumerated.

V. Conclusion

We have found some basic properties of
inductively computable, recognizable and decidable
sets, as well as of inductively computable functions for
computations, recognition and decision are performed
by simple inductive Turing machines. These results
show that inductive Turing machines form a natural
extension of Turing machines allowing essentially
increase power computations and decision-making.

We also applied the obtained results to
algorithmic information theory demonstrating how
inductive Turing machines allow obtaining more
information for essentially decreasing complexity in
comparison with Turing machines. The results obtained
in this paper extend and improve similar results from
(Burgin, 2004; 2005).

At the same time, simple inductive Turing
machines form only the first level of the constructive
hierarchy of inductive Turing machines (Burgin, 2005).
Thus, it would be interesting to study similar properties
arising in the higher levels of the constructive hierarchy.
Besides, it would be useful to consider these problems
in the axiomatic theory of algorithms (Burgin, 2010b).

References References References

1. Benci, V., Bonanno, C., Galatolo, S., Menconi, G.
and Virgilio, M. (2002) Dynamical systems and
computable information, Preprint in Physics cond-
mat/0210654, (electronic edition: http://arXiv.org)

2. Beros, A.A. Learning Theory in the Arithmetical
Hierarchy, Preprint in mathematics,”
math.LO/1302.7069, 2013 (electronic edition:
http://arXiv.org)

3. Burgin, M. S. (1990) Generalized Kolmogorov
Complexity and other Dual Complexity Measures,
Cybernetics and System Analysis, v. 26, No. 4, pp.
481-490

4. Burgin, M. Super-recursive Algorithms as a Tool for
High Performance Computing, in Proceedings of the
High Performance Computing Symposium, San
Diego, 1999, pp. 224-228

5. Burgin, M. Algorithmic Complexity of Recursive and
Inductive Algorithms, Theoretical Computer Science,
2004, 317(1/3), pp. 31-60

6. Burgin, M. Super-recursive Algorithms, Springer,
New York/ Heidelberg/ Berlin, 2005

7. Burgin, M. Algorithmic Control in Concurrent
Computations, in Proceedings of the 2006
International Conference on Foundations of
Computer Science, CSREA Press, Las Vegas, June,
2006, pp. 17-23

8. Burgin, M. Theory of Information: Fundamentality,
Diversity and Unification, World Scientific, New
York/London/Singapore, 2010

9. Burgin, M. (2010a) Algorithmic Complexity of
Computational Problems, International Journal of
Computing & Information Technology, v. 2, No. 1,
pp. 149-187

10. Burgin, M. Measuring Power of Algorithms,
Computer Programs, and Information Automata,
Nova Science Publishers, New York, 2010b

11. Burgin, M., Calude, C.S., Calude, E. (2011)
Inductive Complexity Measures for Mathematical
Problems, International Journal of Foundations of
Computer Science, v. 24, No. 4, 2013, pp. 487-500

Inductively Computable Hierarchies and Inductive Algorithmic Complexity

© 2016 Global Journals Inc. (US)

G
lo
ba

l
Jo

ur
na

l
of
 C

om
pu

te
r
Sc

ie
nc

e
an

d
Te

ch
no

lo
gy

 V

ol
um

e
X
V
I
Is
su

e
I
V
er
sio

n
I

43

Y
e
a
r

20
16

 (

)
H

12. Burgin, M. and Debnath, N.C. (2003) Complexity of
Algorithms and Software Metrics, in Proceedings of
the ISCA 18th International Conference “Computers
and their Applications”, International Society for
Computers and their Applications, Honolulu, Hawaii,
pp. 259-262

13. Burgin, M. and N. Debnath, Measuring Software
Maintenance, in Proceedings of the ISCA 19th
International Conference “Computers and their
Applications”, ISCA, Seattle, Washington, 2004, 118-
121p.

14. Burgin, M. and N. Debnath, Complexity Measures
for Software Engineering, Journal for Computational
Methods in Science and Engineering, 2005, v. 5,
Supplement 1, 127-143p.

15. Burgin, M. and Debnath, N. Super-Recursive
Algorithms in Testing Distributed Systems, in
Proceedings of the ISCA 24th International
Conference “Computers and their Applications”
(CATA-2009), ISCA, New Orleans, Louisiana, USA,
April, 2009, 209-214 p.

16. Burgin, M., Debnath, N. and Lee, H. K. Measuring
Testing as a Distributed Component of the Software
Life Cycle, Journal for Computational Methods in
Science and Engineering, 2009, 9(1/2), Supplement
2, 211-223p.

17. Burgin, M. and Dodig-Crnkovic, G. From the Closed
Universe to an Open World, in Proceedings of
Symposium on Natural Computing/Unconventional
Computing and its Philosophical Significance,
AISB/IACAP World Congress 2012, Birmingham,
UK, July 2-6, 2012, pp. 106-110

18. Burgin, M. and E. Eberbach, Universality for Turing
Machines, Inductive Turing Machines and
Evolutionary Algorithms, Fundamenta Informaticae,
v. 91, No. 1, 2009, 53-77

19. Burgin, M. and E. Eberbach, On Foundations of
Evolutionary Computation: An Evolutionary
Automata Approach, in Handbook of Research on
Artificial Immune Systems and Natural Computing:
Applying Complex Adaptive Technologies (Hongwei
Mo, Ed.), IGI Global, Hershey, Pennsylvania, 2009a,
342-360

20. Burgin, M. and Eberbach, E. Evolutionary Automata:
Expressiveness and Convergence of Evolutionary
Computation, Computer Journal, v. 55, No. 9, 2012,
pp. 1023-1029

21. Burgin, M. and Gupta, B. Second-level Algorithms,
Superrecursivity, and Recovery Problem in
Distributed Systems, Theory of Computing Systems,
v. 50, No. 4, pp. 694-705, 2012

22. Burgin, M. and Klinger, A. Experience, Generations,
and Limits in Machine Learning, Theoretical
Computer Science, v. 317, No. 1/3, pp. 71-91, 2004

23. Calude, C.S., Calude, E. and Queen, M.S. (2012)
Inductive Complexity of P versus NP Problem,
Unconventional Computation and Natural

Computation, Lecture Notes in Computer Science,
v. 7445, pp. 2-9

24. Chaitin, G.J. (1977) Algorithmic information theory,
IBM Journal of Research and Development, v.21,
No. 4, pp. 350-359

25. Crosby, S. A. and Wallach, D. S. (2003) Denial of
Service via Algorithmic Complexity Attacks,
Technical Report TR-03-416, Department of
Computer Science, Rice University

26. Dewey, T .G. (1996) The Algorithmic Complexity of a
Protein, Phys. Rev. E 54, R39-R41

27. Dewey, T .G. (1997) Algorithmic Complexity and
Thermodynamics of Sequence: Structure
Relationships in Proteins, Phys. Rev. E 56, pp. 4545-
4552

28. Dzhunushaliev, V. D. (1998) Kolmogorov's
algorithmic complexity and its probability
interpretation in quantum gravity, in Classical and
Quantum Gravity, v. 15, pp. 603-612

29. Dzhunushaliev, V. D. and Singleton, D. (2001)
Algorithmic Complexity in Cosmology and Quantum
Gravity, Preprint in Physics gr-qc/0108038
(electronic edition: http://arXiv.org)

30. Gurzadyan, V. G. (2003) Kolmogorov Complexity,
Cosmic Background Radiation and Irreversibility, in
Proceedings of XXII Solvay Conference on Physics,
World Scientific, pp.204-218

31. Gold, E.M. Language Identification in the Limit,
Information and Control, 1967, 10, pp. 447-474

32. Hertel, J. (2012) Inductive Complexity of
Goodstein’s Theorem, Unconventional Computation
and Natural Computation, Lecture Notes in
Computer Science, v. 7445, pp. 141-151

33. Kraft, L.G. (1949) A device for quantizing, grouping
and coding amplitude modulated pulses, Master’s
thesis, Dept of Electrical Engineering, MIT,
Cambridge, Mass.

34. Kreinovich, V. and Kunin, I. A.(2004) Application of
Kolmogorov Complexity to Advanced Problems in
Mechanics, University of Texas at El Paso,
Computer Science Department Reports, UTEP-CS-
04-14

35. Lewis, J.P. (2001) Limits to Software Estimation,
Software Engineering Notes, v. 26, pp. 54-59

36. Li, M. and Vitanyi, P. An Introduction to Kolmogorov
Complexity and its Applications, Springer-Verlag,
New York, 1997

37. Mansilla, R. (2001) Algorithmic Complexity in Real
Financial Markets, Preprint in Physics cond-
mat/0104472 (electronic edition: http://arXiv.org)

38. Shaw, F.Z., Chen, R.F., Tsao, H.W. and Yen, C.T.
(1999) Algorithmic complexity as an index of cortical
function in awake and pentobarbital-anesthetized
rats, J. Neurosci. Methods, 93(2) 101-110

39. Tegmark, M. (1996) Does the Universe in Fact
Contain almost no Information? Found. Phys. Lett.,
v. 9 pp. 25-42

Inductively Computable Hierarchies and Inductive Algorithmic Complexity
G
lo
ba

l
Jo

ur
na

l
of
 C

om
pu

te
r
Sc

ie
nc

e
an

d
Te

ch
no

lo
gy

 V

ol
um

e
X
V
I
Is
su

e
I
V
er
sio

n
I

44

Y
e
a
r

20
16

 (

)
H

© 2016 Global Journals Inc. (US)1

40. Yurtsever, U. (2000) Quantum Mechanics and
Algorithmic Randomness, Complexity, v. 6, No.1,
pp.27–34

41. Zurek, W. H. (1991) Algorithmic information content,
Church-Turing thesis, physical entropy, and
Maxwell's demon, in Information dynamics (Irsee,
1990), NATO Adv. Sci. Inst. Ser. B Phys., 256,
Plenum, New York, pp. 245-259

Inductively Computable Hierarchies and Inductive Algorithmic Complexity

© 2016 Global Journals Inc. (US)

G
lo
ba

l
Jo

ur
na

l
of
 C

om
pu

te
r
Sc

ie
nc

e
an

d
Te

ch
no

lo
gy

 V

ol
um

e
X
V
I
Is
su

e
I
V
er
sio

n
I

45

Y
e
a
r

20
16

 (

)
H

Global Journals Inc. (US)

Guidelines Handbook 2016

www.GlobalJournals.org

	Inductively Computable Hierarchies and Inductive Algorithmic Complexity
	Author
	Keywords
	I. Introduction
	II. Simple Inductive Turing Machines asa Computational Model
	III. Inductively Computable and Inductively Decidable Sets
	IV. Inductive Algorithmic Complexity
	References References References

