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problems unmanageable by Turing machines providing 
means for decreasing complexity of computations and 
decision-making (Burgin, 2005). Consequently, in 
comparison with Turing machines and other recursive 
algorithms, inductive Turing machines represent the next 
step in the development of computer science as well as 
in the advancement of network and computational 
technology. 

In additi on, inductive Turing machines supply 
more adequate than recursive algorithms and automata 
models of computations, algorithms, networks, and 
information processing systems. As a result, inductive 
Turing machines have found diverse applications in 
algorithmic information theory and complexity studies 
(Burgin, 2004; 2010), software testing (Burgin and 
Debnath, 2009; Burgin, Debnath and Lee, 2009), high 
performance computing (Burgin, 1999), machine 
learning (Burgin and Klinger, 2004), software 
engineering (Burgin and Debnath, 2004; 2005), 
computer networks (Burgin, 2006; Burgin and Gupta, 
2012) and evolutionary computations (Burgin and 
Eberbach, 2009; 2009a; 2012). For instance, inductive 
Turing machines can perform all types of machine 
learning – TxtEx-learning, TxtFin-learning, TxtBC-
learning, and TxtEx*-learning, (Beros, 2013). While the 
traditional approach to machine learning models 
learning processes using functions, e.g., limit partial 
recursive functions (Gold, 1967), inductive Turing 
machines are automata, which can compute values of 
the modeling functions and perform other useful 
operations while functions only describe such 
operations.  

Inductive Turing machines also provide efficient 
tools for algorithmic information theory, which is one of 
the indispensable areas in information theory and is 
based on complexity of algorithms and automata 
(Chaitin, 1977; Burgin, 2010). There are different kinds 
and types of complexity with a diversity of different 
complexity measures. One of the most popular and 
important of them is Kolmogorov, also called 
algorithmic, complexity, which has turned into an 
important and popular tool in many areas such as 
information theory, computer science, software 
development, probability theory, and statistics. 
Algorithmic complexity has found applications in 
medicine, biology, neurophysiology, physics, 
economics, hardware and software engineering. In 
biology, algorithmic complexity is used for estimation of 
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I. Introduction
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However, with the discovery of super-recursive 
algorithms and exploration of unconventional 
computations, more powerful models than Turing 
machines came to the forefront of computer science 
(Burgin, 2005; Burgin and Dodig-Crnkovic, 2012). One 
of the most natural extensions of conventional 
algorithmic models is inductive Turing machine, which is 
an innovative model of computations, algorithms and 
information processing systems more powerful than 
Turing machine.  Inductive   Turing  machines  can  solve

or a long time, Turing machines dominated 
theoretical computer science as researchers 
assumed that they were absolute and all-

encompassing models of computers and computations. 
Although Turing machines are functionally equivalent to 
many other models of computers and computations, 
such as partial recursive functions, cellular automata or 
random access machines (RAM), which are called 
recursive algorithms or recursive automata, computer 
scientists and mathematicians have been mostly using 
Turing machines for theoretical exploration of 
computational problems.

F



 

 

protein identification (Dewey, 1996; 1997). In physics, 
problems of quantum gravity are analyzed based on the 
algorithmic complexity of a given object. In particular, 
the algorithmic complexity of the Schwarzschild black 
hole is estimated (Dzhunushaliev, 1998; Dzhunushaliev 
and Singleton, 2001). Benci, et al (2002) apply 
algorithmic complexity to chaotic dynamics. Zurek 
elaborates a formulation of thermodynamics by 
inclusion of algorithmic complexity and randomness in 
the definition of physical entropy (Zurek, 1991). 
Gurzadyan (2003) uses Kolmogorov complexity as a 
descriptor of the Cosmic Microwave Background (CMB) 
radiation maps. Kreinovich, and Kunin (2004) apply 
Kolmogorov complexity to problems in classical 
mechanics, while Yurtsever (2000) employs Kolmogorov 
complexity in quantum mechanics. Tegmark (1996) 
discusses what can be the algorithmic complexity of the 
whole universe. The main problem with this discussion 
is that the author identifies physical universe with 
physical models of this universe. To get valid results on 
this issue, it is necessary to define algorithmic 
complexity for physical systems because conventional 
algorithmic complexity is defined only for such symbolic 
objects as words and texts (Li, and Vitanyi, 1997). Then 
it is necessary to show that there is a good correlation 
between algorithmic complexity of the universe and 
algorithmic complexity of its model used by Tegmark 
(1996). 

In economics, a new approach to 
understanding of the complex behavior of financial 
markets using algorithmic complexity is developed 
(Mansilla, 2001). In neurophysiology, algorithmic 
complexity is used to measure characteristics of brain 
functions (Shaw, et al, 1999). Algorithmic complexity has 
been useful in the development of software metrics and 
other problems of software engineering (Burgin, and 
Debnath, 2003; Lewis, 2001). Crosby and Wallach 
(2003) use algorithmic complexity to study low-
bandwidth denial of service attacks that exploit 
algorithmic deficiencies in many common applications’ 
data structures. 

Thus, we see that Kolmogorov/algorithmic 
complexity is a frequent word in present days' scientific 
literature, in various fields and with diverse meanings, 
appearing in some contexts as a precise concept of 
algorithmic complexity, while being a vague idea of 
complexity in general in other texts. The reason for this 
is that people study and create more and more complex 
systems. 

Algorithmic complexity in its classical form gives 
an estimate of how many bits of information we need to 
build or restore a given text by algorithms from a given 
class. This forms the foundation for algorithmic 
information theory (Chaitin, 1977; Burgin, 2010). 
Conventional Kolmogorov, or recursive algorithmic 
complexity and its modifications, such as uniform 
complexity, prefix complexity, monotone complexity, 

process complexity, conditional Kolmogorov complexity, 
quantum Kolmogorov complexity, time-bounded 
Kolmogorov complexity, space-bounded Kolmogorov 
complexity, conditional resource-bounded Kolmogorov 
complexity, time-bounded prefix complexity, and 
resource-bounded Kolmogorov complexity, use 
conventional, i.e., recursive, algorithms, such as Turing 
machines. Inductive complexity studied in this paper is a 
special type of the generalized Kolmogorov complexity 
(Burgin, 1990), which is based on inductive Turing 
machines. It is possible to apply inductive algorithmic 
complexity in all cases where Kolmogorov complexity is 
used and even in such situations where Kolmogorov 
complexity is not defined. In particular, inductive 
algorithmic complexity has been used in the study of 
mathematical problem complexity (Calude, et al, 2012; 
Hertel, 2012; Burgin, et al, 2013), as well as for 
exploration of other problems (Burgin, 2010a). 

The goal of this work is to find properties of 
inductively computable and inductively decidable sets 
and functions applying these properties to inductive 
algorithmic complexity. This paper has the following 
structure. In Section 2, we give definitions of simple 
inductive Turing machines, which can compute much 
more than Turing machines. In Section 3, we study 
relations between inductively computable sets, 
inductively recognizable sets, inductively decidable sets, 
and inductively computable functions. In Section 4, we 
use the obtained relations to advance inductive 
algorithmic complexity and algorithmic information 
theory. Utilization of inductive algorithmic complexity 
makes these relations more exact as for infinitely many 
objects, inductive algorithmic complexity is essentially 
smaller than Kolmogorov complexity (Burgin, 2004). 
Section 5 contains conclusion and directions for further 
research. 

II. Simple Inductive Turing Machines as 
a Computational Model 

Here we consider only simple inductive Turing 
machines (Burgin, 2005) and for simplicity call them 
inductive Turing machines although there are other 
kinds of inductive Turing machines. A simple inductive 
Turing machine M

 
works with words in some alphabet 

and has the same structure and functioning rules as a 
Turing machine

 
with three heads and three linear tapes 

(registers) –
 

the input tape (register), output tape 
(register) and working tape (register). Any inductive 
Turing machine of the first order is functionally 
equivalent to a simple inductive Turing machine. 
Inductive

 
Turing machine of higher orders are more 

powerful than simple inductive Turing machines allowing 
computation of more functions and sets.

 

The machine M
 
works in the following fashion. 

At the beginning, an input word w
 
is written in the input 

tape, which is
 
a read-only tape. Then the machine M
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rewrites the word w from the input tape to the working 
tape and starts working with it. From time to time in this 
process, the machine M rewrites the word from the 
working tape to the output tape erasing what was before 
written in the output tape. In particular, when the 
machine M comes to a final state, it rewrites the word 
from the working tape to the output tape and stops 
without changing the state. 

The machine M gives the result when M halts in 
a final state, or when M never stops but at some step of 
the computation, the content of the output tape 
(register) stops changing. The computed result of M is 
the word that is written in the output tape of M. In all 
other cases, M does not give the result. 

This means that a simple inductive Turing 
machine can do what a Turing machine can do but in 
some cases, it produces its results without stopping. 
Namely, it is possible that in the sequence of 
computations after some step, the word (say, w) on the 
output tape (in the output register) is not changing, while 
the inductive Turing machine continues working. Then 
this word w is the final result of the inductive Turing 
machine. Note that if an inductive Turing machine gives 
the final result, it is produced after a finite number of 
steps, that is, in finite time, even when the machine does 
not stop. So contrary to confusing claims of some 
researchers, an inductive Turing machine does not need 
infinite time to produce a result. 

We assume that inductive Turing machines 
work with finite words in some alphabet Σ or with natural 
numbers represented by such words. Consequently, 
inductive Turing machines compute sets X of finite 
words in Σ, i.e., X ⊆ Σ* where Σ* is the set of all finite 
words in the alphabet Σ, or sets of natural numbers Z ⊆ 
N represented by words. As it is possible to code any 
alphabet by words in the alphabet {0, 1}, we can 
assume (when it is necessary) that this binary alphabet 
is used by all considered inductive Turing machines. 

If an inductive Turing machine M transforms 
words from Σ* into words from Σ*, then Σ* is called the 
domain and codomain of M. 

If an inductive Turing machine M transforms 
numbers from N into numbers from N, then N is called 
the domain and codomain of M. 

The set of words (numbers) for which the 
machine M is defined (gives the result) is called the 
definability domain of M. 

The set of words (numbers) computed 
(generated) by the machine M

 
is called the range

 
of M.

 

III.
 

Inductively Computable and 
Inductively Decidable Sets

 

Definition 3.1.
 
A set X

 
⊆

 
Σ* or X

 
⊆

 
N

 
is called inductively 

computable
 
if there is an inductive Turing machine M

 

with the range X.
 

Informally, an inductively computable set 
consists of all final results of some inductive Turing 
machine M. 

Sets Σ* and N are simple examples of 
inductively computable sets. 

We remind that a recursively computable set, 
which is also called a recursively enumerable set, is the 
range of some Turing machine or of another recursive 
algorithm (Burgin, 2005). 

Inductively computable sets are closely related 
to inductively computable functions, which have the 
form f: Σ* → Σ* or g: N → N. 
Definition 3.2. A functions f is called inductively 
computable if there is an inductive Turing machine M 
that computes X, i.e., given an arbitrary input x, the 
machine M computes the value f(x) when f is defined for 
x and does not give the result when f is undefined for x. 
The domain, codomain, definability domain and range 
of an inductively computable function coincides with the 
domain, codomain, definability domain and range, 
respectively, of the inductive Turing machine that 
computes this function. 

We remind that a recursively computable 
function, which is also called a partial recursive function, 
is a function computed by some Turing machine or of 
another recursive algorithm (Burgin, 2005). 

As it is possible to simulate any Turing machine 
by an inductive Turing machine (Burgin, 2005), we have 
the following result. 
Proposition 3.1. Any recursively computable function is 
inductively computable. 

Definition 3.3. a) A set X ⊆ Σ* or X ⊆ N is called 
inductively recognizable, also called inductively 
semidecidable, if there is an inductive Turing machine M 
such that gives the result 1 for input x if and only if x 
belongs to X. 
b) A set X ⊆ Σ* or X ⊆ N is called inductively 

corecognizable if there is an inductive Turing 
machine M such that gives the result 1 for input x if 
and only if x does not belong to X. 

Definition 3.4.  A set X ⊆ Σ* or X ⊆ N is called inductively 
decidable if there is an inductive Turing machine M such 
that gives the result 1 for any input x from X and gives 
the result 0 for any input z from Σ*\X (from N\X). 

Informally, a set X is inductively decidable if 
some inductive Turing machine M can indicate whether 
an arbitrary element belongs to X or does not belong. In 
other words, a set X is inductively decidable if its 
indication (characteristic) function is inductively 
computable. 

Lemma 3.1. A set X ⊆ Σ* or X ⊆ N is inductively 
recognizable if and only if it is inductively computable. 
Proof. Sufficiency. Let us consider an inductively 
computable set X. By definition, there is an inductive 
Turing machine MX the range of which is equal to X. It is 
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possible to assume that the machine MX gives the result 
if and only if its output stabilizes. 

To show that X is inductively recognizable, we 
add a new component (subprogram) C to the machine 
MX  , building the new inductive Turing machine NX . After 
each step of the machine MX (as a subprogram of the 
machine NX), the subprogram C checks if the two 
consecutive intermediate outputs of MX are equal or not. 
When they are equal, the machine NX gives the 
intermediate output 1and then the machine MX (as a 
subprogram of the machine NX) makes the next step. 

When the two consecutive intermediate outputs 
of MX are not equal, the machine NX gives the 
intermediate output 1, followed by the intermediate 
output 0 and then the machine MX (as a subprogram of 
the machine NX) makes the next step. 

This construction shows that the output of NX 
stabilizes if and only if the output of MX stabilizes. It 
means that the inductive Turing machine NX gives the 
result 1 for any input x from X and does not gives the 
result otherwise. Thus, the set X is inductively 
recognizable. 

Necessity. Let us consider an inductively 
recognizable set X. By definition, there is an inductive 
Turing machine KX that gives the result 1 for any input x 
from X and either does not give the result otherwise or 
gives the result 0. It is possible to assume that the 
machine KX gives the result if and only if its output 
stabilizes and all intermediate outputs of KX are equal 
either to 1 or to 0. 

To show that X is inductively computable, we 
transform the machine KX , building the new inductive 
Turing machine NX . At the beginning, KX  stores the input 
x. Then when the machine KX gives the intermediate 
output 1, the machine NX gives the intermediate output 
x. When the machine KX gives the intermediate output 0 
the first time, the machine NX gives the intermediate 
output w, which is not equal to x. When the machine KX 

gives the intermediate output 0 next time, the machine 
NX gives the intermediate output x. Next time, the 
machine KX gives the intermediate output 0, the machine 
NX gives the intermediate output w and so on. Thus, 
even if the machine KX obtains the result 0, the machine 
NX does not give the result. 

In such a way, the machine NX obtains the result 
if and only if the machine KX obtains the result. In 
addition, all results of NX belong to the set X and only to 
it because KX computes the indicating function of X. 
Thus, X is equal to the range of the function computed 
by NX and consequently, X is inductively computable. 
Lemma is proved. 

Lemma 3.2. The range of a total monotone inductively 
computable function is inductively decidable. 

Proof. Let us consider a total monotone 
inductively computable function f with the range X. Then 
there is an inductive Turing machine M that computes f. 

We build an inductive Turing machine K that gives 1 as 
its result for all inputs from X and gives 0 as its result for 
all inputs that does not belong to X. It means that K 
decides the set X. 

To achieve this goal, we include the machine M 
as a part (in the form of subroutine) of the machine K 
and define functioning of K in the following way. When K 
obtains a word x as the input x, the goal is to whether x 
belongs to the set X or does not belong. To do this, the 
machine K starts simulating the machine M for all inputs 
x1 , x2 ,  … , xn that are less than x in a parallel mode. It 
means that each step is repeated for all inputs x1 , x2 ,  
… , xn , then the next step is also repeated for all inputs 
x1 , x2 ,  … , xn , and so on. On each step, the machine K 
compares intermediate outputs of the machine M with 
the word x. When, at least, one of the intermediate 
outputs of the machine M for these inputs is equal to x, 
the machine K gives the intermediate output 1. When no 
intermediate outputs of the machine M for these inputs 
coincide with x, the machine K gives the intermediate 
output 0.  

As the inductive Turing machine M computes a 
total function, all intermediate outputs start repeating at 
some step of the machine M computation. That is why 
the word x belong to X if on this step, it coincides with 
one of the outputs. By construction, the machine K 
continues to repeat the output 1 forever. If the word x 
does not coincide with any of the outputs of the 
machine M, then the word x does not belong to X 
because x can be the value of f only for arguments x1 , x2 
,  … , xn , x as f is a monotone function. 

In such a way, the machine K decides whether 
an arbitrary word belongs to X or does not belong. 
Lemma is proved. 

These lemmas allow us to prove existence of 
definite relations between inductively computable sets 
and inductively decidable sets. 
Theorem 3.1. Any infinite inductively computable set 
contains an infinite inductively decidable subset. 

Proof. Let us consider an inductively 
computable set X. By Lemma 3.1, the set X is inductively 
recognizable. It means that there is an inductive Turing 
machine KX that gives the result 1 for any input x from X 
and either does not give the result otherwise or gives the 
result 0. It is possible to assume that the machine KX 
gives the result if and only if its output stabilizes and all 
intermediate outputs of KX are equal either to 1 or to 0 
(Burgin, 2005). 

As we know, there is the natural order in the set 
N and the lexicographical order in the set Σ* (cf., for 
example, (Burgin, 2005)). It means that the domain of 
any inductive Turing machine is the ordered sequence { 
x1 , x2 ,  x3 ,  … , xn , …} where xk < xk + 1 for all = 1, 2, 3, 
… .   

To find an inductively decidable subset in the 
set X, we extend the alphabet Σ by adding a new symbol 
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# and build a new inductive Turing machine M, output of 
which can include this new symbol #. The machine M 
contains the machine KX as a component (subroutine), a 
component (subroutine) G, which generates words x1 , 
x2 ,  x3 ,  … , xn , … one after another, and a counter C as 
another component (subroutine) C. 

The machine M processes information in cycles 
organized in the following way. 

Cycle 1*1: When the machine M gets the word 
x1 as its input, it gives x1 to the machine KX , which starts 
processing it. At the same time, the counter C counts 
the number of steps made by KX . When the machine KX 
gives the intermediate output 1, the machine M gives the 
intermediate output x1 , which is stored in the memory of 
M. When the machine KX gives the intermediate output 
0, the machine M gives the intermediate output #, the 
machine KX stops processing x1 , the number n1 of steps 
made by KX is stored in the memory of M and the 
generator G generates the word x2 . 

Cycle 1*2: Then the machine M gives x2 to the 
machine KX , which starts processing it. At the same 
time, the counter C counts the number of steps made by 
KX . When the machine KX makes less than n1 steps, the 
machine M always gives the intermediate output x2 . 
After n1 steps, when the machine KX gives the 
intermediate output 1, the machine M gives the 
intermediate output x2 . When the machine KX gives the 
intermediate output 0, the machine M gives the 
intermediate output #, the machine KX stops processing 
x2 , the number n2 of steps made by KX is stored in the 
memory of M and the machine KX  starts once more 
processing the word x1 . At the same time, the counter C 
counts the number of steps made by KX . 

Cycle 1*3: When the machine KX makes less 
than n2 steps, the machine M always gives the 
intermediate output x1 . After n2 steps, when the machine 
KX gives the intermediate output 1, the machine M gives 
the intermediate output x1 . When the machine KX gives 
the intermediate output 0, the machine M gives the 
intermediate output #, the machine KX stops processing 
x1 , the number n3 of steps made by KX is stored in the 
memory of M and the machine KX  starts once more 
processing the word x2 . At the same time, the counter C 
counts the number of steps made by KX . 

Cycle 1*4: When the machine KX makes less 
than n3 steps, the machine M always gives the 
intermediate output x2 . After n2 steps, when the machine 
KX gives the intermediate output 1, the machine M gives 
the intermediate output x2 . When the machine KX gives 
the intermediate output 0, the machine M gives the 
intermediate output #, the machine KX stops processing 
x2 , the number n4 of steps made by KX is stored in the 
memory of M and the generator G generates the word 
x3. 

Cycle 1*5: Then the machine M gives x3 to the 
machine KX , which starts processing it. At the same 
time, the counter C counts the number of steps made by 

KX . When the machine KX makes less than n4 steps, the 
machine M always gives the intermediate output x3 . 
After n4 steps, when the machine KX gives the 
intermediate output 1, the machine M gives the 
intermediate output x3 . When the machine KX gives the 
intermediate output 0, the machine M gives the 
intermediate output #, the machine KX stops processing 
x3 , the number n5 of steps made by KX is stored in the 
memory of M and the machine KX  starts once more 
processing the word x1 . At the same time, the counter C 
counts the number of steps made by KX . 

This process continues until it stabilizes, which 
happens because the definability domain of the 
machine KX is not empty. 

In such a way, the machine M makes the 
machine KX to process more and more elements xn , 
making more and more steps with each of them as its 
input. As the definability domain of the machine KX is not 
empty, at some step m1, the machine KX continues 
forever repeating 1 as its output for an input xk . By 
construction, the machine M continues forever repeating 
xk as its output for an input x1 . It means M(x1) = xk . Note 
that x1≤ xk and xk may be not the least element in the 
definability domain X of the machine KX . 

Given the word x2 as its input, the machine M 
performs similar cycles as before but with pairs of words 
(xi , xj). 

Cycle 2*1: Thus, at the beginning when the 
machine M gets the word x2 as its input, it gives x2 and 
the word x3 generated by G to the machine KX , which 
starts processing both words in a parallel mode. At the 
same time, the counter C counts the number of steps 
made by KX. When the machine KX gives the 
intermediate output 1 for both inputs, the machine M 
gives the intermediate output x3 , which is stored in the 
memory of M. When the machine KX gives the 
intermediate output 0 for the input x2 before it gives the 
intermediate output 0 for the input x3 , the machine M 
gives the intermediate output #, the machine KX stops 
processing the pair (x2 , x3), the number n1 of steps 
made by KX is stored in the memory of M, the generator 
G generates the word x4 and the machine M goes to the 
cycle 2*2. 

When the machine KX gives the intermediate 
output 0 for the input x3 at the same time or before it 
gives the intermediate output 0 for the input x2 , the 
machine M gives the intermediate output #, the 
machine KX stops processing the pair (x2 , x3), the 
number n2 of steps made by KX is stored in the memory 
of M, the generator G generates the word x4 and the 
machine M goes to the cycle 2*3. 

Cycle 2*2: Then the machine M gives the pair 
(x3 , x4) to the machine KX , which starts processing it in a 
parallel mode. At the same time, the counter C counts 
the number of steps made by KX . When the machine KX 
makes less than n1 steps, the machine M always gives 
the intermediate output x4. After n1 steps, when the 
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machine KX gives the intermediate output 1 for both 
inputs, the machine M gives the intermediate output x4 . 
When the machine KX gives the intermediate output 0 for 
the input x3 before it gives the intermediate output 0 for 
the input x4 ,  the machine M gives the intermediate 
output #, the machine KX stops processing the pair (x3 , 
x4), the number n3 of steps made by KX is stored in the 
memory of M and the machine M goes to the cycle 2*4. 
When the machine KX gives the intermediate output 0 for 
the input x4 at the same time or before it gives the 
intermediate output 0 for the input x3 , the machine M 
gives the intermediate output #, the machine KX stops 
processing the pair (x2 , x3), the number n2 of steps 
made by KX is stored in the memory of M, the generator 
G generates the word x4 and the machine M goes to the 
cycle 2*5. 

Cycle 2*3: Then the machine M gives the pair 
(x2 , x4) to the machine KX , which starts processing it in a 
parallel mode. At the same time, the counter C counts 
the number of steps made by KX . When the machine KX 
makes less than n2 steps, the machine M always gives 
the intermediate output x4 . After n1 steps, when the 
machine KX gives the intermediate output 1 for both 
inputs, the machine M gives the intermediate output x4 . 
When the machine KX gives the intermediate output 0 for 
the input x2 before it gives the intermediate output 0 for 
the input x4 ,  the machine M gives the intermediate 
output #, the machine KX stops processing the pair (x2 , 
x4), the number n2 of steps made by KX is stored in the 
memory of M and the machine M goes to the cycle 2*6. 
When the machine KX gives the intermediate output 0 for 
the input x4 at the same time or before it gives the 
intermediate output 0 for the input x3 , the machine M 
gives the intermediate output #, the machine KX stops 
processing the pair (x2 , x3), the number n2 of steps 
made by KX is stored in the memory of M, the generator 
G generates the word x4 and the machine M goes to the 
cycle 2*7 and so on. 

This process continues until it stabilizes, which 
happens because the definability domain of the 
machine KX is infinite. 

In such a way, the machine M makes the 
machine KX to process more and more pairs (xi , xj) 
functioning in a parallel mode and making more and 
more steps with each pair as its inputs. As in the case of 
the input x1, the machine M, at first, finds the word xk for 
which the machine KX continues forever repeating 1 as 
its output and then locates a word xn 

 > xk for which the 
machine KX also continues forever repeating 1 as its 
output. The machine M can do this because the 
definability domain of the machine KX is infinite. When 
the machine M finds this word xn , it continues forever 
repeating xn

 as its output for an input x2 . It means M(x2) 
= xn

 and xn 
 > xk . Note that x2≤

 xn and xn may be not the 
least element in the definability domain X of the machine 
KX that is larger than xk .

 

Given the word x2 as its input, the machine M 
performs similar cycles as before but with triples of 
words (xi , xt , xj) as inputs to the machine KX , which 
processes them in a parallel mode. In this case, the 
machine M, at first, finds the word xk for which the 
machine KX continues forever repeating 1 as its output 
and then locates a word xn  > xk for which the machine 
KX also continues forever repeating 1 as its output. After 
this, the machine M finds the word xp  > xn for which the 
machine KX continues forever repeating 1 as its output. 
The machine M can do this because the definability 
domain of the machine KX is infinite. When the machine 
M finds this word xp , it continues forever repeating xp as 
its output for an input x3 . It means M(x3) = xp and xp > xn  
> xk . Note that x3≤ xp and xp may be not the least 
element in the definability domain X of the machine KX 

that is larger than xn . 
In such a way, the machine M finds results for 

any input xi computing a total monotone function. By 
Lemma 2, the range Z of this function is inductive 
decidable and by construction, it is infinite. 
Theorem is proved. 

This result allows us to find additional properties 
of inductive algorithmic complexity (cf. Section 4). 

Let us consider the set RM = {(x, t); given the 
input x, an inductive Turing machine M gives the result in 
not more than t steps}, i.e., RM consists of all pairs (x, t), 
in which x is a word from {0, 1}* and t is a natural 
number. 
Lemma 3.3. The set RM is inductively decidable. 

Proof. We build an inductive Turing machine K 
that gives 1 as its result for all inputs from RM and gives 
0 as its result for all inputs that does not belong to RM . It 
means that K decides the set RM  . 

To achieve this goal, we include the machine M 
as a part (in the form of subroutine) of the machine K 
and define functioning of K in the following way. When K 
obtains a word (x, t) as the input x, it starts simulating 
the machine M for the input x. When the step number n 
is made the machine K gives the intermediate output 1. 
Then the machine K makes one more step simulating 
the machine M for the input x and compares the new 
intermediate output of the machine M with its previous 
result. When these outputs coincide, the machine K 
gives the intermediate output 1. Otherwise the machine 
K gives the final output 0 and stops.  

After each intermediate output 1, the machine K 
makes one more step simulating the machine M for the 
input x and compares the new intermediate output of the 
machine M with its previous result. When these outputs 
coincide, the machine K gives the intermediate output 1. 
As the result, the inductive Turing machine K gives 1 
when the outputs of M start repeating from the step t 
and gives 0 as its result otherwise. In such a way, the 
machine K decides whether an arbitrary word (x, t) 
belongs to RM or does not belong. 
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Lemma is proved. 
Now we find additional relations between 

inductively computable sets and inductively decidable 
sets. 

Taking a binary relation R ⊆ Σ* × Σ*, it is possible to 
consider two projections of this relation: 
The left projection Prl R ={ x; ∃y ( (x, y) ∈ R )} 

The right projection Prr R ={ y; ∃x ( (x, y) ∈ R )} 

Theorem 3.2. A set X is inductively computable if and 
only if it is the left projection of an inductively decidable 
binary relation. 

Proof. Necessity. Let us consider an inductively 
computable set X. By definition, there is an inductive 
Turing machine M, which computes X.  

Let us consider the set RM
 = {(x, t); given the 

input x, an inductive Turing machine M gives the result 
not more than in t steps}, i.e., RM

 consists of all pairs (x, 
t), in which x is a word from {0, 1}* and t is a natural 
number. By Lemma 3.3, the set RM

 is inductively 
decidable and Prl  RM

 = X because an element x is 
computed by M if and only if there is a number t such 
that given the input x, an inductive Turing machine M 

gives the result not more than in t steps. 

Note that X = Prlr Ro
M
  where Ro

M
 = {(t, x); {(x, t) 

∈ RM
 } and thus, Ro

M
 is inductively decidable 

Sufficiency. Let us consider an inductively 
decidable binary relation R ⊆ Σ* × Σ* and its left 
projection Prl R ={ x; ∃y ( (x, y) ∈ R )}, which we denote 
by X. By definition, there is an inductive Turing machine 
KR

 that gives the result 1 for any input (x, y) from R and 
gives the result 0 for any input (z, u) that does not 
belong to R. 

To show that the set X
 

is inductively 
computable, we extend the alphabet Σ

 
by adding the 

new symbol # and build a new inductive Turing 
machine M, which computes X. The machine M

 
contains 

the machine KR
 

as a component (subroutine), a 
component (subroutine) G, which generates all words x1

 

, x2
 
,  x3

 
,  … ,

 
xn , … in the alphabet Σ

 
one after another, 

and a counter C as another component (subroutine) C.
 

The machine M
 

processes information in cycles 
organized in the following way.

 

Cycle 1:
 
When the machine M

 
gets a word w

 
as its input, 

the generator G
 
produces the word x1 and the machine 

M
 
gives the pair (w, x1 ) to the machine KR , which starts 

processing it. At the same time, the counter C
 
counts 

the number of steps made by KR . When the machine KX
 

gives the intermediate output 1, the machine M
 
gives the 

intermediate output w, which is stored in the memory of 
M. When the machine KX

 
gives the intermediate output 

0, the machine M
 
gives the intermediate output #, the 

machine KX
 

stops processing the pair (w, x1 ), the 
number n1

 
of steps made by KR

 
is stored in the memory 

of M
 
and the generator G

 
generates the word x2 .

 

Cycle 2: Then the machine M gives the pair (w, x2 ) to the 
machine KR , which starts processing it. At the same 
time, the counter C counts the number of steps made by 
KR . When the machine KR makes less than n1 steps, the 
machine M always gives the intermediate output w . 
After n1 steps, when the machine KR gives the 
intermediate output 1, the machine M gives the 
intermediate output w. When the machine KR gives the 
intermediate output 0, the machine M gives the 
intermediate output #, the machine KR stops processing 
the pair (w, x2 ), the number n2 of steps made by KR is 
stored in the memory of M and the machine KR starts 
once more processing the pair (w, x1 ). At the same time, 
the counter C counts the number of steps made by KR . 
Cycle 3: When the machine KR makes less than n2 steps, 
the machine M always gives the intermediate output w . 
After n2 steps, when the machine KR gives the 
intermediate output 1, the machine M gives the 
intermediate output w . When the machine KR gives the 
intermediate output 0, the machine M gives the 
intermediate output #, the machine KR stops processing 
the pair (w, x1 ), the number n3 of steps made by KR is 
stored in the memory of M and the machine KR starts 
once more processing the pair (w, x2 ). At the same time, 
the counter C counts the number of steps made by KR . 
Cycle 4: When the machine KR makes less than n3 steps, 
the machine M always gives the intermediate output w . 
After n2 steps, when the machine KR gives the 
intermediate output 1, the machine M gives the 
intermediate output w . When the machine KR gives the 
intermediate output 0, the machine M gives the 
intermediate output #, the machine KR stops processing 
the pair (w, x2 ) , the number n4 of steps made by KR is 
stored in the memory of M and the generator G 
generates the word x3 . 
Cycle 5: Then the machine M gives pair (w, x3 ) to the 
machine KR , which starts processing it. At the same 
time, the counter C counts the number of steps made by 
KR . When the machine KR makes less than n4 steps, the 
machine M always gives the intermediate output w . 
After n4 steps, when the machine KR gives the 
intermediate output 1, the machine M gives the 
intermediate output w . When the machine KR gives the 
intermediate output 0, the machine M gives the 
intermediate output #, the machine KR stops processing 
the pair (w, x3 ), the number n5 of steps made by KR is 
stored in the memory of M and the machine KR starts 
once more processing the pair (w, x1 ) and this process 
continues, while the counter C counts the number of 
steps made by KR . 

This process stabilizes if and only if the machine 
KR stabilizes processing a pair (w, x) for some x. If it 
happens, the machine M computes the word w. In this 
case, w ∈ X. Otherwise, w does not belong to the range 
of M. In this case, w also does not belong to X. As w is 
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an arbitrary word, it means that the machine M 
computes the set X. 
Theorem is proved. 
Corollary 3.1. A set X is inductively recognizable if and 
only if it is the left projection of an inductively decidable 
binary relation. 

If R is a binary relation, then Ro = {(y, x); (x, y) ∈ 
R} is the involution of R, also called the inverse of R. 
Definitions imply the following results. 

Lemma 3.4. Prl R = Prr Ro and Prr R =Prl Ro. 

Lemma 3.5. A relation R is inductively computable 
(inductively decidable) if and only if the relation Ro is 
inductively computable (inductively decidable). 

Theorem 3.2 and Lemma 3.5 and 3.4 give us 
the following results. 

Corollary 3.2. A set X is inductively computable if and 
only if it is the right projection of an inductively decidable 
binary relation. 

Corollary 3.3. A set X is inductively recognizable if and 
only if it is the right projection of an inductively decidable 
binary relation. 

IV.
 Inductive

 Algorithmic Complexity
 

Here we study inductive algorithmic complexity 
for finite objects such as natural numbers or words in a 
finite alphabet. Usually, it is the binary alphabet {0, 1}. 

 

Definition 4.1.
 
The algorithmic complexity

 
ICM(x) of an 

object (word) x
 

with respect to an inductive Turing 
machine M

 
is defined as

 

                    min {
 
l(p);  M(p) = x} when there is p

 
such 

that
 
M(p) = x

 

ACM(x)
 
=       

 

                    undefined when there is no p
 
such that

 
M(p) 

= x
 

 

Note that if M
 

is a Turing machine, then
 

algorithmic complexity
 

ACM(x)
 

with respect to M
 

coincides with Kolmogorov complexity CM(x) with 
respect to M. If M

 
is a prefix Turing machine, then the

 

algorithmic complexity
 
ICM(x) is the

 
prefix Kolmogorov 

complexity
 
KM(x). 

 

However, as in the case of conventional 
Kolmogorov complexity, we need an invariant 
complexity of objects. This is achieved by using a 
universal simple inductive Turing machine (Burgin, 2004; 
2005).

 

Definition 4.2.

 

The inductive algorithmic complexity IC(x) 
of an object (word) x

 

is defined as

 

                    min {

 

l(p);  U(p) = x} when there is p

 

such 
that

 

U(p) = x

 

IC(x)

 

= 

 

                    undefined when there is no p

 

such that

 

U(p) 
= x

 
 

where l(p) is the length of the word p and U is a 
universal simple inductive Turing machine. 

Note that inductive complexity is a special case 
of generalized Kolmogorov complexity (Burgin, 1990), 
which in turn, is a kind of axiomatic dual complexity 
measures (Burgin, 2005). 

The prefix inductive complexity IK(x) is optimal 
in the class of prefix inductive complexities IKT(x). 

Optimality is based on the relation ≼ defined for 
functions f(n) and  g(n), which take values in natural 
numbers: 

f(n) ≼ g(n) if there is a real number c such that f(n) ≤  
g(n) + c for almost all n∈N 

Let us consider a class H of functions that take 
values in natural numbers. Then a function f(n) is called 

optimal for H if f(n) ≼ g(n) for any function g(n) from H. 
In the context of the axiomatic theory of dual 
complexities, such a function f(n) is called additively 
optimal for the class H. 

Results from the axiomatic theory of dual 
complexities (Burgin, 1990; 2010) imply the following 
theorem. 
Theorem 4.1. The function IC(x) is optimal in the class of 
all prefix inductive complexities IKT(x) with respect to a 
prefix simple inductive Turing machine T. 

As there is a simple inductive Turing machine M 
such that M(x) = x for all words x in the alphabet {1, 0}, 
we have the following result. 
Proposition 4.1. IC(x) is a total function. 

Let us assume for simplicity that inductive 
Turing machines are working with words in some finite 
alphabet and that all these words are well ordered, that 
is, any set of words contains the least element. It is 
possible to find such orderings, for example, in (Li and 
Vitaniy, 1997). 
Theorem 4.1. If h is an increasing inductively 
computable function that is defined in an infinite 
inductively computable set W and tends to infinity when 
l(x) → ∞, then for infinitely many elements x from W, we 
have h(x) > IC(x). 

Proof. Let us consider an increasing inductively 
computable function f that is defined in an infinite 
inductively computable set W and tends to infinity when 
l(x) → ∞. Then by Theorem X1, W contains an infinite 
inductively decidable subset V. Because the set V is 
infinite, the restriction h of the function f on the set V 
tends to infinity when l(x) → ∞. 

By Theorem 5.3.12 from (Burgin, 2005), for 
infinitely many elements x from V, we have h(x) > IC(x). 
As V is a subset of W, for infinitely many elements x from 
W, we have h(x) > IC(x). 
Theorem is proved. 

Since the composition of two increasing 
functions is an increasing function and the composition 
of a recursive function and an inductively computable 
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function is an inductively computable function, we have 
the following result. 
Corollary 4.1. If h(x) and g(x) are increasing functions, 
h(x) is inductively computable and defined in an infinite 
inductively computable set W, g(x) is a recursive 
function, and they both tend to infinity when l(x) → ∞, 
then for infinitely many elements x from W, we have 
g(h(x)) > IC(x). 
Corollary 4.2. The function IC(x) is not inductively 
computable. Moreover, no inductively computable 
function f(x) defined for an infinite inductively 
computable set of numbers can coincide with IC(x) in 
the whole of its domain of definition. 

As Kolmogorov complexity C(x) is inductively 
computable (Burgin, 2005), Theorem X3 implies the 
following result. 
Theorem 4.2. For any increasing recursive function h(x) 
that tends to infinity when l(x) → ∞ and any inductively 
computable set W, there are infinitely many elements x 
from W for which h(C(x)) > IC(x). 
Corollary 4.3.  In any inductively computable set W, there 
are infinitely many elements x for which C(x) > IC(x). 
Corollary 4.4. For any natural number a and in any 
inductively computable set W, there are infinitely many 
elements x for which lna(C(x)) > IC(x). 
Corollary 4.5.  In any inductively computable set W, there 
are infinitely many elements x for which ln2(C(x)) > IC(x). 
If ln2(C(x)) > IC(x), then C(x) > 2IC(x). At the same time, 
for any natural number k, the inequality 2n > k⋅n is true 
almost everywhere. This and Corollary X7 imply the 
following result. 
Corollary 4.6. For any natural number k and in any 
inductively computable set W, there are infinitely many 
elements x for which C(x) > k⋅IC(x). 
Corollary 4.7. In any inductively computable set W, there 
are infinitely many elements x for which C(x) > 2IC(x). 
Corollary 4.8. For any natural number a and in any 
inductively computable set W, there are infinitely many 
elements x for which C(x) > aIC(x). 

In addition, it is possible to apply obtained 
results to inductive algorithmic complexity of inductively 
computable functions, which are infinite objects but 
have a finite representation when they are enumerated. 

V. Conclusion 

We have found some basic properties of 
inductively computable, recognizable and decidable 
sets, as well as of inductively computable functions for 
computations, recognition and decision are performed 
by simple inductive Turing machines. These results 
show that inductive Turing machines form a natural 
extension of Turing machines allowing essentially 
increase power computations and decision-making. 

We also applied the obtained results to 
algorithmic information theory demonstrating how 
inductive Turing machines allow obtaining more 
information for essentially decreasing complexity in 
comparison with Turing machines. The results obtained 
in this paper extend and improve similar results from 
(Burgin, 2004; 2005). 

At the same time, simple inductive Turing 
machines form only the first level of the constructive 
hierarchy of inductive Turing machines (Burgin, 2005). 
Thus, it would be interesting to study similar properties 
arising in the higher levels of the constructive hierarchy. 
Besides, it would be useful to consider these problems 
in the axiomatic theory of algorithms (Burgin, 2010b). 
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