
Inductively Computable Hierarchies and Inductive Algorithmic1

Complexity2

Mark Burgin13

1 University of California4

Received: 14 December 2015 Accepted: 4 January 2016 Published: 15 January 20165

6

Abstract7

Induction is a prevalent cognitive method in science, while inductive computations are popular8

in many fields of computer and network technology. The most advanced mathematical model9

of inductive computations and reasoning is an inductive Turing machine, which is natural10

extension of the most widespread model of computing devices and computations - Turing11

machine. In comparison with Turing machines, inductive Turing machines represent the next12

step in the development of computer science providing better models for contemporary13

computers and computer networks. In this paper (Section 3), we study relations between14

inductively computable sets, inductively recognizable sets, inductively decidable sets and15

inductively computable functions. In addition (Section 4), we apply the obtained results to16

algorithmic information theory demonstrating how inductive Turing machines allow obtaining17

more information for essentially decreasing complexity in comparison with Turing machines.18

19

Index terms— algorithmic information theory, inductive computation, turing machine, inductive turing20
machine, kolmogorov complexity, inductive computability, induc21

problems unmanageable by Turing machines providing means for decreasing complexity of computations22
and decision-making (Burgin, 2005). Consequently, in comparison with Turing machines and other recursive23
algorithms, inductive Turing machines represent the next step in the development of computer science as well as24
in the advancement of network and computational technology.25

In additi on, inductive Turing machines supply more adequate than recursive algorithms and automata models26
of computations, algorithms, networks, and information processing systems. As a result, inductive Turing27
machines have found diverse applications in algorithmic information theory and complexity studies (Burgin,28
2004;2010), software testing ; Burgin, Debnath and Lee, 2009), high performance computing (Burgin, 1999),29
machine learning ??Burgin and Klinger, 2004), software engineering (Burgin and Debnath, 2004;2005), computer30
networks (Burgin, 2006; ??urgin and Gupta, 2012) and evolutionary computations (Burgin and Eberbach,31
2009;2009a;. For instance, inductive Turing machines can perform all types of machine learning -TxtEx-learning,32
TxtFin-learning, TxtBClearning, and TxtEx*-learning, (Beros, 2013). While the traditional approach to machine33
learning models learning processes using functions, e.g., limit partial recursive functions ??Gold, 1967), inductive34
Turing machines are automata, which can compute values of the modeling functions and perform other useful35
operations while functions only describe such operations.36

Inductive Turing machines also provide efficient tools for algorithmic information theory, which is one of the37
indispensable areas in information theory and is based on complexity of algorithms and automata ??Chaitin,38
1977;Burgin, 2010). There are different kinds and types of complexity with a diversity of different complexity39
measures. One of the most popular and important of them is Kolmogorov, also called algorithmic, complexity,40
which has turned into an important and popular tool in many areas such as information theory, computer41
science, software development, probability theory, and statistics. Algorithmic complexity has found applications42
in medicine, biology, neurophysiology, physics, economics, hardware and software engineering. In biology,43
algorithmic complexity is used for estimation of44

1

Global Journals LATEX JournalKaleidoscope™
Artificial Intelligence formulated this projection for compatibility purposes from the original article published at Global Journals.
However, this technology is currently in beta. Therefore, kindly ignore odd layouts, missed formulae, text, tables, or figures.

2 II. SIMPLE INDUCTIVE TURING MACHINES AS A COMPUTATIONAL
MODEL

1 Introduction45

Author: University of California, Los Angeles 405 Hilgard Ave. e-mail: markburg@cs.ucla.edu However, with the46
discovery of super-recursive algorithms and exploration of unconventional computations, more powerful models47
than Turing machines came to the forefront of computer science (Burgin, 2005; Burgin and Dodig-Crnkovic,48
2012). One of the most natural extensions of conventional algorithmic models is inductive Turing machine, which49
is an innovative model of computations, algorithms and information processing systems more powerful than50
Turing machine. Inductive Turing machines can solve or a long time, Turing machines dominated theoretical51
computer science as researchers assumed that they were absolute and allencompassing models of computers52
and computations. Although Turing machines are functionally equivalent to many other models of computers53
and computations, such as partial recursive functions, cellular automata or random access machines (RAM),54
which are called recursive algorithms or recursive automata, computer scientists and mathematicians have been55
mostly using Turing machines for theoretical exploration of computational problems. F protein identification56
??Dewey, 1996; ??997). In physics, problems of quantum gravity are analyzed based on the algorithmic57
complexity of a given object. In particular, the algorithmic complexity of the Schwarzschild black hole is estimated58
??Dzhunushaliev, 1998; ??zhunushaliev and Singleton, 2001). Benci, et al (2002) apply algorithmic complexity to59
chaotic dynamics. Zurek elaborates a formulation of thermodynamics by inclusion of algorithmic complexity and60
randomness in the definition of physical entropy (Zurek, 1991). ??urzadyan (2003) uses Kolmogorov complexity61
as a descriptor of the Cosmic Microwave Background (CMB) radiation maps. Kreinovich, and Kunin (2004)62
apply Kolmogorov complexity to problems in classical mechanics, while Yurtsever (2000) employs Kolmogorov63
complexity in quantum mechanics. ??egmark (1996) discusses what can be the algorithmic complexity of the64
whole universe. The main problem with this discussion is that the author identifies physical universe with65
physical models of this universe. To get valid results on this issue, it is necessary to define algorithmic complexity66
for physical systems because conventional algorithmic complexity is defined only for such symbolic objects as67
words and texts (Li, and Vitanyi, 1997). Then it is necessary to show that there is a good correlation between68
algorithmic complexity of the universe and algorithmic complexity of its model used by ??egmark (1996).69

In economics, a new approach to understanding of the complex behavior of financial markets using algorithmic70
complexity is developed ??Mansilla, 2001). In neurophysiology, algorithmic complexity is used to measure71
characteristics of brain functions ??Shaw, et al, 1999). Algorithmic complexity has been useful in the development72
of software metrics and other problems of software engineering (Burgin, and Debnath, 2003; ??ewis, 2001).73
??rosby and Wallach (2003) use algorithmic complexity to study lowbandwidth denial of service attacks that74
exploit algorithmic deficiencies in many common applications’ data structures.75

Thus, we see that Kolmogorov/algorithmic complexity is a frequent word in present days’ scientific literature,76
in various fields and with diverse meanings, appearing in some contexts as a precise concept of algorithmic77
complexity, while being a vague idea of complexity in general in other texts. The reason for this is that people78
study and create more and more complex systems.79

Algorithmic complexity in its classical form gives an estimate of how many bits of information we need80
to build or restore a given text by algorithms from a given class. This forms the foundation for algorithmic81
information theory ??Chaitin, 1977;Burgin, 2010). Conventional Kolmogorov, or recursive algorithmic complexity82
and its modifications, such as uniform complexity, prefix complexity, monotone complexity, process complexity,83
conditional Kolmogorov complexity, quantum Kolmogorov complexity, time-bounded Kolmogorov complexity,84
space-bounded Kolmogorov complexity, conditional resource-bounded Kolmogorov complexity, time-bounded85
prefix complexity, and resource-bounded Kolmogorov complexity, use conventional, i.e., recursive, algorithms,86
such as Turing machines. Inductive complexity studied in this paper is a special type of the generalized87
Kolmogorov complexity (Burgin, 1990), which is based on inductive Turing machines. It is possible to apply88
inductive algorithmic complexity in all cases where Kolmogorov complexity is used and even in such situations89
where Kolmogorov complexity is not defined. In particular, inductive algorithmic complexity has been used in90
the study of mathematical problem complexity (Calude, et al, 2012; Hertel, 2012; Burgin, et al, 2013), as well as91
for exploration of other problems (Burgin, 2010a).92

The goal of this work is to find properties of inductively computable and inductively decidable sets and93
functions applying these properties to inductive algorithmic complexity. This paper has the following structure.94
In Section 2, we give definitions of simple inductive Turing machines, which can compute much more than Turing95
machines. In Section 3, we study relations between inductively computable sets, inductively recognizable sets,96
inductively decidable sets, and inductively computable functions. In Section 4, we use the obtained relations to97
advance inductive algorithmic complexity and algorithmic information theory. Utilization of inductive algorithmic98
complexity makes these relations more exact as for infinitely many objects, inductive algorithmic complexity is99
essentially smaller than Kolmogorov complexity (Burgin, 2004). Section 5 contains conclusion and directions for100
further research.101

2 II. Simple Inductive Turing Machines as a Computational102

Model103

Here we consider only simple inductive Turing machines (Burgin, 2005) and for simplicity call them inductive104
Turing machines although there are other kinds of inductive Turing machines. A simple inductive Turing machine105

2

M works with words in some alphabet and has the same structure and functioning rules as a Turing machine with106
three heads and three linear tapes (registers) -the input tape (register), output tape (register) and working tape107
(register). Any inductive Turing machine of the first order is functionally equivalent to a simple inductive Turing108
machine. Inductive Turing machine of higher orders are more powerful than simple inductive Turing machines109
allowing computation of more functions and sets.110

The machine M works in the following fashion. At the beginning, an input word w is written in the input tape,111
which is a read-only tape. Then the machine M rewrites the word w from the input tape to the working tape and112
starts working with it. From time to time in this process, the machine M rewrites the word from the working113
tape to the output tape erasing what was before written in the output tape. In particular, when the machine M114
comes to a final state, it rewrites the word from the working tape to the output tape and stops without changing115
the state.116

The machine M gives the result when M halts in a final state, or when M never stops but at some step of the117
computation, the content of the output tape (register) stops changing. The computed result of M is the word118
that is written in the output tape of M. In all other cases, M does not give the result.119

This means that a simple inductive Turing machine can do what a Turing machine can do but in some cases,120
it produces its results without stopping. Namely, it is possible that in the sequence of computations after some121
step, the word (say, w) on the output tape (in the output register) is not changing, while the inductive Turing122
machine continues working. Then this word w is the final result of the inductive Turing machine. Note that if123
an inductive Turing machine gives the final result, it is produced after a finite number of steps, that is, in finite124
time, even when the machine does not stop. So contrary to confusing claims of some researchers, an inductive125
Turing machine does not need infinite time to produce a result.126

We assume that inductive Turing machines work with finite words in some alphabet ? or with natural numbers127
represented by such words. Consequently, inductive Turing machines compute sets X of finite words in ?, i.e.,128
X ? ?* where ?* is the set of all finite words in the alphabet ?, or sets of natural numbers Z ? N represented129
by words. As it is possible to code any alphabet by words in the alphabet {0, 1}, we can assume (when it is130
necessary) that this binary alphabet is used by all considered inductive Turing machines.131

If an inductive Turing machine M transforms words from ?* into words from ?*, then ?* is called the domain132
and codomain of M.133

If an inductive Turing machine M transforms numbers from N into numbers from N, then N is called the134
domain and codomain of M. The set of words (numbers) for which the machine M is defined (gives the result) is135
called the definability domain of M.136

The set of words (numbers) computed (generated) by the machine M is called the range of M. Informally, an137
inductively computable set consists of all final results of some inductive Turing machine M.138

3 III.139

4 Inductively Computable and Inductively Decidable Sets140

Sets ?* and N are simple examples of inductively computable sets.141
We remind that a recursively computable set, which is also called a recursively enumerable set, is the range of142

some Turing machine or of another recursive algorithm (Burgin, 2005).143
Inductively computable sets are closely related to inductively computable functions, which have the form f:144

?* ? ?* or g: N ? N. Definition 3.2. A functions f is called inductively computable if there is an inductive Turing145
machine M that computes X, i.e., given an arbitrary input x, the machine M computes the value f(x) when f is146
defined for x and does not give the result when f is undefined for x. The domain, codomain, definability domain147
and range of an inductively computable function coincides with the domain, codomain, definability domain and148
range, respectively, of the inductive Turing machine that computes this function.149

We remind that a recursively computable function, which is also called a partial recursive function, is a function150
computed by some Turing machine or of another recursive algorithm (Burgin, 2005).151

As it is possible to simulate any Turing machine by an inductive Turing machine (Burgin, 2005), we have the152
following result. Proposition 3.1. Any recursively computable function is inductively computable.Definition 3.3.153
a) A set X ? ?* or X ? N is called154

inductively recognizable, also called inductively semidecidable, if there is an inductive Turing machine M such155
that gives the result 1 for input x if and only if x belongs to X. b) A set X ? ?* or X ? N is called inductively156
corecognizable if there is an inductive Turing machine M such that gives the result 1 for input x if and only if x157
does not belong to X. Definition 3.4. A set X ? ?* or X ? N is called inductively decidable if there is an inductive158
Turing machine M such that gives the result 1 for any input x from X and gives the result 0 for any input z from159
?*\X (from N\X).160

Informally, a set X is inductively decidable if some inductive Turing machine M can indicate whether an161
arbitrary element belongs to X or does not belong. In other words, a set X is inductively decidable if its162
indication (characteristic) function is inductively computable.163

Lemma 3.1. A set X ? ?* or X ? N is inductively recognizable if and only if it is inductively computable.164
Proof. Sufficiency. Let us consider an inductively computable set X. By definition, there is an inductive Turing165

3

4 INDUCTIVELY COMPUTABLE AND INDUCTIVELY DECIDABLE SETS

machine M X the range of which is equal to X. It is possible to assume that the machine M X gives the result if166
and only if its output stabilizes.167

To show that X is inductively recognizable, we add a new component (subprogram) C to the machine M X168
, building the new inductive Turing machine N X . After each step of the machine M X (as a subprogram of169
the machine N X), the subprogram C checks if the two consecutive intermediate outputs of M X are equal or170
not. When they are equal, the machine N X gives the intermediate output 1and then the machine M X (as a171
subprogram of the machine N X) makes the next step.172

When the two consecutive intermediate outputs of M X are not equal, the machine N X gives the intermediate173
output 1, followed by the intermediate output 0 and then the machine M X (as a subprogram of the machine N174
X) makes the next step.175

This construction shows that the output of N X stabilizes if and only if the output of M X stabilizes. It means176
that the inductive Turing machine N X gives the result 1 for any input x from X and does not gives the result177
otherwise. Thus, the set X is inductively recognizable.178

Necessity. Let us consider an inductively recognizable set X. By definition, there is an inductive Turing machine179
K X that gives the result 1 for any input x from X and either does not give the result otherwise or gives the180
result 0. It is possible to assume that the machine K X gives the result if and only if its output stabilizes and all181
intermediate outputs of K X are equal either to 1 or to 0.182

To show that X is inductively computable, we transform the machine K X , building the new inductive Turing183
machine N X . At the beginning, K X stores the input x. Then when the machine K X gives the intermediate184
output 1, the machine N X gives the intermediate output x. When the machine K X gives the intermediate185
output 0 the first time, the machine N X gives the intermediate output w, which is not equal to x. When the186
machine K X gives the intermediate output 0 next time, the machine N X gives the intermediate output x. Next187
time, the machine K X gives the intermediate output 0, the machine N X gives the intermediate output w and188
so on. Thus, even if the machine K X obtains the result 0, the machine N X does not give the result.189

In such a way, the machine N X obtains the result if and only if the machine K X obtains the result. In190
addition, all results of N X belong to the set X and only to it because K X computes the indicating function of X.191
Thus, X is equal to the range of the function computed by N X and consequently, X is inductively computable.192
Lemma is proved. Lemma 3.2. The range of a total monotone inductively computable function is inductively193
decidable.194

Proof. Let us consider a total monotone inductively computable function f with the range X. Then there is an195
inductive Turing machine M that computes f. We build an inductive Turing machine K that gives 1 as its result196
for all inputs from X and gives 0 as its result for all inputs that does not belong to X. It means that K decides197
the set X.198

To achieve this goal, we include the machine M as a part (in the form of subroutine) of the machine K and199
define functioning of K in the following way. When K obtains a word x as the input x, the goal is to whether200
x belongs to the set X or does not belong. To do this, the machine K starts simulating the machine M for all201
inputs x 1 , x 2 , ? , x n that are less than x in a parallel mode. It means that each step is repeated for all inputs202
x 1 , x 2 , ? , x n , then the next step is also repeated for all inputs x 1 , x 2 , ? , x n , and so on. On each203
step, the machine K compares intermediate outputs of the machine M with the word x. When, at least, one of204
the intermediate outputs of the machine M for these inputs is equal to x, the machine K gives the intermediate205
output 1. When no intermediate outputs of the machine M for these inputs coincide with x, the machine K gives206
the intermediate output 0.207

As the inductive Turing machine M computes a total function, all intermediate outputs start repeating at208
some step of the machine M computation. That is why the word x belong to X if on this step, it coincides with209
one of the outputs. By construction, the machine K continues to repeat the output 1 forever. If the word x does210
not coincide with any of the outputs of the machine M, then the word x does not belong to X because x can be211
the value of f only for arguments x 1 , x 2 , ? , x n , x as f is a monotone function.212

In such a way, the machine K decides whether an arbitrary word belongs to X or does not belong. Lemma is213
proved.214

These lemmas allow us to prove existence of definite relations between inductively computable sets and215
inductively decidable sets. Theorem 3.1. Any infinite inductively computable set contains an infinite inductively216
decidable subset.217

Proof. Let us consider an inductively computable set X. By Lemma 3.1, the set X is inductively recognizable.218
It means that there is an inductive Turing machine K X that gives the result 1 for any input x from X and either219
does not give the result otherwise or gives the result 0. It is possible to assume that the machine K X gives the220
result if and only if its output stabilizes and all intermediate outputs of K X are equal either to 1 or to 0 (Burgin,221
2005).222

As we know, there is the natural order in the set N and the lexicographical order in the set ?* (cf., for example,223
(Burgin, 2005)). It means that the domain of any inductive Turing machine is the ordered sequence { x 1 , x 2 ,224
x 3 , ? , x n , ?} where x k < x k + 1 for all = 1, 2, 3, ? .225

To find an inductively decidable subset in the set X, we extend the alphabet ? by adding a new symbol The226
machine M processes information in cycles organized in the following way.227

Cycle 1*1: When the machine M gets the word x 1 as its input, it gives x 1 to the machine K X , which starts228

4

processing it. At the same time, the counter C counts the number of steps made by K X . When the machine229
K X gives the intermediate output 1, the machine M gives the intermediate output x 1 , which is stored in the230
memory of M. When the machine K X gives the intermediate output 0, the machine M gives the intermediate231
output #, the machine K X stops processing x 1 , the number n 1 of steps made by K X is stored in the memory232
of M and the generator G generates the word x 2 .233

Cycle 1*2: Then the machine M gives x 2 to the machine K X , which starts processing it. At the same time,234
the counter C counts the number of steps made by K X . When the machine K X makes less than n 1 steps, the235
machine M always gives the intermediate output x 2 .236

After n 1 steps, when the machine K X gives the intermediate output 1, the machine M gives the intermediate237
output x 2 . When the machine K X gives the intermediate output 0, the machine M gives the intermediate238
output #, the machine K X stops processing x 2 , the number n 2 of steps made by K X is stored in the memory239
of M and the machine K X starts once more processing the word x 1 . At the same time, the counter C counts240
the number of steps made by K X .241

Cycle 1*3: When the machine K X makes less than n 2 steps, the machine M always gives the intermediate242
output x 1 . After n 2 steps, when the machine K X gives the intermediate output 1, the machine M gives the243
intermediate output x 1 . When the machine K X gives the intermediate output 0, the machine M gives the244
intermediate output #, the machine K X stops processing x 1 , the number n 3 of steps made by K X is stored245
in the memory of M and the machine K X starts once more processing the word x 2 . At the same time, the246
counter C counts the number of steps made by K X .247

Cycle 1*4: When the machine K X makes less than n 3 steps, the machine M always gives the intermediate248
output x 2 . After n 2 steps, when the machine K X gives the intermediate output 1, the machine M gives the249
intermediate output x 2 . When the machine K X gives the intermediate output 0, the machine M gives the250
intermediate output #, the machine K X stops processing x 2 , the number n 4 of steps made by K X is stored251
in the memory of M and the generator G generates the word x 3 .252

Cycle 1*5: Then the machine M gives x 3 to the machine K X , which starts processing it. At the same time,253
the counter C counts the number of steps made by K X . When the machine K X makes less than n 4 steps,254
the machine M always gives the intermediate output x 3 . After n 4 steps, when the machine K X gives the255
intermediate output 1, the machine M gives the intermediate output x 3 . When the machine K X gives the256
intermediate output 0, the machine M gives the intermediate output #, the machine K X stops processing x 3257
, the number n 5 of steps made by K X is stored in the memory of M and the machine K X starts once more258
processing the word x 1 . At the same time, the counter C counts the number of steps made by K X .259

This process continues until it stabilizes, which happens because the definability domain of the machine K X260
is not empty.261

In such a way, the machine M makes the machine K X to process more and more elements x n , making more262
and more steps with each of them as its input. As the definability domain of the machine K X is not empty, at263
some step m 1 , the machine K X continues forever repeating 1 as its output for an input x k . By construction,264
the machine M continues forever repeating x k as its output for an input x 1 . It means M(x 1) = x k . Note265
that x 1 ? x k and x k may be not the least element in the definability domain X of the machine K X .266

Given the word x 2 as its input, the machine M performs similar cycles as before but with pairs of words (x i267
, x j).268

Cycle 2*1: Thus, at the beginning when the machine M gets the word x 2 as its input, it gives x 2 and the word269
x 3 generated by G to the machine K X , which starts processing both words in a parallel mode. At the same270
time, the counter C counts the number of steps made by K X . When the machine K X gives the intermediate271
output 1 for both inputs, the machine M gives the intermediate output x 3 , which is stored in the memory of M.272
When the machine K X gives the intermediate output 0 for the input x 2 before it gives the intermediate output273
0 for the input x 3 , the machine M gives the intermediate output #, the machine K X stops processing the pair274
(x 2 , x 3), the number n 1 of steps made by K X is stored in the memory of M, the generator G generates the275
word x 4 and the machine M goes to the cycle 2*2.276

When the machine K X gives the intermediate output 0 for the input x 3 at the same time or before it gives277
the intermediate output 0 for the input x 2 , the machine M gives the intermediate output #, the machine K X278
stops processing the pair (x 2 , x 3), the number n 2 of steps made by K X is stored in the memory of M, the279
generator G generates the word x 4 and the machine M goes to the cycle 2*3.280

Cycle 2*2: Then the machine M gives the pair (x 3 , x 4) to the machine K X , which starts processing it in281
a parallel mode. At the same time, the counter C counts the number of steps made by K X . When the machine282
K X makes less than n 1 steps, the machine M always gives the intermediate output x 4 . After n 1 steps, when283
the Year 2016 () H machine K X gives the intermediate output 1 for both inputs, the machine M gives the284
intermediate output x 4 . When the machine K X gives the intermediate output 0 for the input x 3 before it285
gives the intermediate output 0 for the input x 4 , the machine M gives the intermediate output #, the machine286
K X stops processing the pair (x 3 , x 4), the number n 3 of steps made by K X is stored in the memory of M287
and the machine M goes to the cycle 2*4. When the machine K X gives the intermediate output 0 for the input288
x 4 at the same time or before it gives the intermediate output 0 for the input x 3 , the machine M gives the289
intermediate output #, the machine K X stops processing the pair (x 2 , x 3), the number n 2 of steps made by290

5

5 TAKING A BINARY RELATION R ? ?* × ?*, IT IS POSSIBLE TO
CONSIDER TWO PROJECTIONS OF THIS RELATION:

K X is stored in the memory of M, the generator G generates the word x 4 and the machine M goes to the cycle291
2*5.292

Cycle 2*3: Then the machine M gives the pair (x 2 , x 4) to the machine K X , which starts processing it in293
a parallel mode. At the same time, the counter C counts the number of steps made by K X . When the machine294
K X makes less than n 2 steps, the machine M always gives the intermediate output x 4 . After n 1 steps, when295
the machine K X gives the intermediate output 1 for both inputs, the machine M gives the intermediate output296
x 4 . When the machine K X the intermediate output 0 for the input x 2 before it gives the intermediate output297
0 for the input x 4 , the machine M gives the intermediate output #, the machine K X stops processing the pair298
(x 2 , x 4), the number n 2 of steps made by K X is stored in the memory of M and the machine M goes to the299
cycle 2*6. When the machine K X gives the intermediate output 0 for the input x 4 at the same time or before it300
gives the intermediate output 0 for the input x 3 , the machine M gives the intermediate output #, the machine301
K X stops processing the pair (x 2 , x 3), the number n 2 of steps made by K X is stored in the memory of M,302
the generator G generates the word x 4 and the machine M goes to the cycle 2*7 and so on.303

This process continues until it stabilizes, which happens because the definability domain of the machine K X304
is infinite.305

In such a way, the machine M makes the machine K X to process more and more pairs (x i , x j) functioning306
in a parallel mode and making more and more steps with each pair as its inputs. As in the case of the input x307
1 , the machine M, at first, finds the word x k for which the machine K X continues forever repeating 1 as its308
output and then locates a word x n > x k for which the machine K X also continues forever repeating 1 as its309
output. The machine M can do this because the definability domain of the machine K X is infinite. When the310
machine M finds this word x n , it continues forever repeating x n as its output for an input x 2 . It means M(x311
2) = x n and x n > x k . Note that x 2 ? x n and x n may be not the least element in the definability domain312
X of the machine K X that is larger than x k .313

Given the word x 2 as its input, the machine M performs similar cycles as before but with triples of words (x314
i , x t , x j) as inputs to the machine K X , which processes them in a parallel mode. In this case, the machine315
M, at first, finds the word x k for which the machine K X continues forever repeating 1 as its output and then316
locates a word x n > x k for which the machine K X also continues forever repeating 1 as its output. After this,317
the machine M finds the word x p > x n for which the machine K X continues forever repeating 1 as its output.318
The machine M can do this because the definability domain of the machine K X is infinite. When the machine319
M finds this word x p , it continues forever repeating x p as its output for an input x 3 . It means M(x 3) = x320
p and x p > x n > x k . Note that x 3 ? x p and x p may be not the least element in the definability domain X321
of the machine K X that is larger than x n .322

In such a way, the machine M finds results for any input x i computing a total monotone function. By Lemma323
2, the range Z of this function is inductive decidable and by construction, it is infinite. Theorem is proved.324

This result allows us to find additional properties of inductive algorithmic complexity (cf. Section 4).325
Let us consider the set R M = {(x, t); given the input x, an inductive Turing machine M gives the result in326

not more than t steps}, i.e., R M consists of all pairs (x, t), in which x is a word from {0, 1}* and t is a natural327
number. Lemma 3.3. The set R M is inductively decidable.328

Proof. We build an inductive Turing machine K that gives 1 as its result for all inputs from R M and gives 0329
as its result for all inputs that does not belong to R M . It means that K decides the set R M .330

To achieve this goal, we include the machine M as a part (in the form of subroutine) of the machine K and331
define functioning of K in the following way. When K obtains a word (x, t) as the input x, it starts simulating332
the machine M for the input x. When the step number n is made the machine K gives the intermediate output333
1. Then the machine K makes one more step simulating the machine M for the input x and compares the new334
intermediate output of the machine M with its previous result. When these outputs coincide, the machine K335
gives the intermediate output 1. Otherwise the machine K gives the final output 0 and stops.336

After each intermediate output 1, the machine K makes one more step simulating the machine M for the input337
x and compares the new intermediate output of the machine M with its previous result. When these outputs338
coincide, the machine K gives the intermediate output 1. As the result, the inductive Turing machine K gives339
1 when the outputs of M start repeating from the step t and gives 0 as its result otherwise. In such a way, the340
machine K decides whether an arbitrary word (x, t) belongs to R M or does not belong. Now we find additional341
relations between inductively computable sets and inductively decidable sets.342

5 Taking a binary relation R ? ?* × ?*, it is possible to consider343

two projections of this relation:344

The left projection Pr l R ={ x; ?y ((x, y) ? R)} The right projection Pr r R ={ y; ?x ((x, y) ? R)} Theorem345
3.2. A set X is inductively computable if and only if it is the left projection of an inductively decidable binary346
relation.347

Proof. Necessity. Let us consider an inductively computable set X. By definition, there is an inductive Turing348
machine M, which computes X.349

Let us consider the set R M = {(x, t); given the input x, an inductive Turing machine M gives the result350
not more than in t steps}, i.e., R M consists of all pairs (x, t), in which x is a word from {0, 1}* and t is a351

6

natural number. By Lemma 3.3, the set R M is inductively decidable and Pr l R M = X because an element x352
is computed by M if and only if there is a number t such that given the input x, an inductive Turing machine M353
gives the result not more than in t steps.354

Note thatX = Pr lr R o M where R o M = {(t, x); {(x, t) ? R M } and thus, R o355
M is inductively decidable Sufficiency. Let us consider an inductively decidable binary relation R ? ?* × ?*356

and its left projection Pr l R ={ x; ?y ((x, y) ? R)}, which we denote by X. By definition, there is an inductive357
Turing machine K R that gives the result 1 for any input (x, y) from R and gives the result 0 for any input (z,358
u) that does not belong to R.359

To show that the set X is inductively computable, we extend the alphabet ? by adding the new symbol #360
and build a new inductive Turing machine M, which computes X. The machine M contains the machine K R361
as a component (subroutine), a component (subroutine) G, which generates all words x 1 , x 2 , x 3 , ? , x n362
, ? in the alphabet ? one after another, and a counter C as another component (subroutine) C. The machine363
M processes information in cycles organized in the following way. Cycle 1: When the machine M gets a word w364
as its input, the generator G produces the word x 1 and the machine M gives the pair (w, x 1) to the machine365
K R , which starts processing it. At the same time, the counter C counts the number of steps made by K R .366
When the machine K X gives the intermediate output 1, the machine M gives the intermediate output w, which367
is stored in the memory of M. When the machine K X gives the intermediate output 0, the machine M gives the368
intermediate output #, the machine K X stops processing the pair (w, x 1), the number n 1 of steps made by369
K R is stored in the memory of M and the generator G generates the word x 2 .370

Cycle 2: Then the machine M gives the pair (w, x 2) to the machine K R , which starts processing it. At371
the same time, the counter C counts the number of steps made by K R . When the machine K R makes less372
than n 1 steps, the machine M always gives the intermediate output w . After n 1 steps, when the machine K R373
gives the intermediate output 1, the machine M gives the intermediate output w. When the machine K R gives374
the intermediate output 0, the machine M gives the intermediate output #, the machine K R stops processing375
the pair (w, x 2), the number n 2 of steps made by K R is stored in the memory of M and the machine K R376
starts once more processing the pair (w, x 1). At the same time, the counter C counts the number of steps377
made by K R . Cycle 3: When the machine K R makes less than n 2 steps, the machine M always gives the378
intermediate output w . After n 2 steps, when the machine K R gives the intermediate output 1, the machine379
M gives the intermediate output w . When the machine K R gives the intermediate output 0, the machine M380
gives the intermediate output #, the machine K R stops processing the pair (w, x 1), the number n 3 of steps381
made by K R is stored in the memory of M and the machine K R starts once more processing the pair (w, x382
2). At the same time, the counter C counts the number of steps made by K R . Cycle 4: When the machine383
K R makes less than n 3 steps, the machine M always gives the intermediate output w . After n 2 steps, when384
the machine K R gives the intermediate output 1, the machine M gives the intermediate output w . When the385
machine K R gives the intermediate output 0, the machine M gives the intermediate output #, the machine K386
R stops processing the pair (w, x 2) , the number n 4 of steps made by K R is stored in the memory of M and387
the generator G generates the word x 3 . Cycle 5: Then the machine M gives pair (w, x 3) to the machine K R388
, which starts processing it. At the same time, the counter C counts the number of steps made by K R . When389
the machine K R makes less than n 4 steps, the machine M always gives the intermediate output w . After n 4390
steps, when the machine K R gives the intermediate output 1, the machine M gives the intermediate output w391
. When the machine K R gives the intermediate output 0, the machine M gives the intermediate output #, the392
machine K R stops processing the pair (w, x 3), the number n 5 of steps made by K R is stored in the memory393
of M and the machine K R starts once more processing the pair (w, x 1) and this process continues, while the394
counter C counts the number of steps made by K R .395

This process stabilizes if and only if the machine K R stabilizes processing a pair (w, x) for some x. If it396
happens, the machine M computes the word w. In this case, w ? X. Otherwise, w does not belong to the range of397
M. In this case, w also does not belong to X. As w is an arbitrary word, it means that the machine M computes398
the set X.399

6 IV. Inductive Algorithmic Complexity400

Here we study inductive algorithmic complexity for finite objects such as natural numbers or words in a finite401
alphabet. Usually, it is the binary alphabet {0, 1}. Note that if M is a Turing machine, then algorithmic402
complexity AC M (x) with respect to M coincides with Kolmogorov complexity C M (x) with respect to M. If M403
is a prefix Turing machine, then the algorithmic complexity IC M (x) is the prefix Kolmogorov complexity K M404
(x).405

However, as in the case of conventional Kolmogorov complexity, we need an invariant complexity of objects.406
This is achieved by using a universal simple inductive Turing machine (Burgin, 2004;2005). Note that inductive407
complexity is a special case of generalized Kolmogorov complexity (Burgin, 1990), which in turn, is a kind of408
axiomatic dual complexity measures (Burgin, 2005).409

The prefix inductive complexity IK(x) is optimal in the class of prefix inductive complexities IK T (x).410
Optimality is based on the relation ? defined for functions f(n) and g(n), which take values in natural411

numbers:f(n) ? g(n) if there is a real number c such that f(n) ? g(n) + c for almost all n?N412
Let us consider a class H of functions that take values in natural numbers. Then a function f(n) is called optimal413

7

7 CONCLUSION

for H if f(n) ? g(n) for any function g(n) from H. In the context of the axiomatic theory of dual complexities,414
such a function f(n) is called additively optimal for the class H.415

Results from the axiomatic theory of dual complexities (Burgin, 1990;2010) imply the following theorem.416
Theorem 4.1. The function IC(x) is optimal in the class of all prefix inductive complexities IK T (x) with respect417
to a prefix simple inductive Turing machine T.418

As there is a simple inductive Turing machine M such that M(x) = x for all words x in the alphabet {1, 0},419
we have the following result. Proposition 4.1. IC(x) is a total function.420

Let us assume for simplicity that inductive Turing machines are working with words in some finite alphabet421
and that all these words are well ordered, that is, any set of words contains the least element. It is possible422
to find such orderings, for example, in (Li and Vitaniy, 1997). Theorem 4.1. If h is an increasing inductively423
computable function that is defined in an infinite inductively computable set W and tends to infinity when l(x)424
? ?, then for infinitely many elements x from W, we have h(x) > IC(x).425

Proof. Let us consider an increasing inductively computable function f that is defined in an infinite inductively426
computable set W and tends to infinity when l(x) ? ?. Then by Theorem X1, W contains an infinite inductively427
decidable subset V. Because the set V is infinite, the restriction h of the function f on the set V tends to infinity428
when l(x) ? ?.429

By Theorem 5.3.12 from (Burgin, 2005), for infinitely many elements x from V, we have h(x) > IC(x). As V430
is a subset of W, for infinitely many elements x from W, we have h(x) > IC(x). Theorem is proved.431

Since the composition of two increasing functions is an increasing function and the composition of a recursive432
function and an inductively computable function is an inductively computable function, we have the following433
result. Corollary 4.1. If h(x) and g(x) are increasing functions, h(x) is inductively computable and defined in an434
infinite inductively computable set W, g(x) is a recursive function, and they both tend to infinity when l(x) ? ?,435
then for infinitely many elements x from W, we have g(h(x)) > IC(x). Corollary 4.2. The function IC(x) is not436
inductively computable. Moreover, no inductively computable function f(x) defined for an infinite inductively437
computable set of numbers can coincide with IC(x) in the whole of its domain of definition.438

As Kolmogorov complexity C(x) is inductively computable (Burgin, 2005), Theorem X3 implies the following439
result. Theorem 4.2. For any increasing recursive function h(x) that tends to infinity when l(x) ? ? and any440
inductively computable set W, there are infinitely many elements x from W for which h(C(x)) > IC(x). Corollary441
4.3. In any inductively computable set W, there are infinitely many elements x for which C(x) > IC(x). Corollary442
4.4. For any natural number a and in any inductively computable set W, there are infinitely many elements x443
for which ln a (C(x)) > IC(x). Corollary 4.5. In any inductively computable set W, there are infinitely many444
elements x for which ln 2 (C(x)) > IC(x). If ln 2 (C(x)) > IC(x), then C(x) > 2 IC(x) . At the same time, for445
any natural number k, the inequality 2 n > k?n is true almost everywhere. This and Corollary X7 imply the446
following result. Corollary 4.6. For any natural number k and in any inductively computable set W, there are447
infinitely many elements x for which C(x) > k?IC(x). Corollary 4.7. In any inductively computable set W, there448
are infinitely many elements x for which C(x) > 2 IC(x) . Corollary 4.8. For any natural number a and in any449
inductively computable set W, there are infinitely many elements x for which C(x) > a IC(x) .450

In addition, it is possible to apply obtained results to inductive algorithmic complexity of inductively451
computable functions, which are infinite objects but have a finite representation when they are enumerated.452

V.453

7 Conclusion454

We have found some basic properties of inductively computable, recognizable and decidable sets, as well as of455
inductively computable functions for computations, recognition and decision are performed by simple inductive456
Turing machines. These results show that inductive Turing machines form a natural extension of Turing machines457
allowing essentially increase power computations and decision-making.458

We also applied the obtained results to algorithmic information theory demonstrating how inductive Turing459
machines allow obtaining more information for essentially decreasing complexity in comparison with Turing460
machines. The results obtained in this paper extend and improve similar results from (Burgin, 2004;2005).461

At the same time, simple inductive Turing machines form only the first level of the constructive hierarchy462
of inductive Turing machines (Burgin, 2005). Thus, it would be interesting to study similar properties arising463
in the higher levels of the constructive hierarchy. Besides, it would be useful to consider these problems in the464
axiomatic theory of algorithms (Burgin, 2010b). 1 2465

1© 2016 Global Journals Inc. (US)
2()H

8

31

Figure 1: Definition 3 . 1 .

Figure 2:

9

7 CONCLUSION

10

[Burgin and Debnath ()] , M Burgin , N Debnath . Journal for Computational Methods in Science and466
Engineering 2005. 1 (5) p. . (Supplement)467

[Burgin ()] ‘Algorithmic Complexity of Computational Problems’. M Burgin . International Journal of Computing468
& Information Technology 2010a. (2) p. .469

[Burgin ()] ‘Algorithmic Complexity of Recursive and Inductive Algorithms’. M Burgin . Theoretical Computer470
Science 2004. (1/3) p. .471

[Burgin (2006)] ‘Algorithmic Control in Concurrent Computations’. M Burgin . Proceedings of the 2006472
International Conference on Foundations of Computer Science, (the 2006 International Conference on473
Foundations of Computer ScienceLas Vegas) June, 2006. CSREA Press. p. .474

[Zurek ()] ‘Algorithmic information content, Church-Turing thesis, physical entropy, and Maxwell’s demon, in475
Information dynamics’. W H Zurek . Adv. Sci. Inst. Ser. B Phys 1991. 1990. Plenum. 256 p. .476

[Burgin and Debnath ()] ‘Complexity of Algorithms and Software Metrics’. M Burgin , N C Debnath . Proceedings477
of the ISCA 18 th International Conference ”Computers and their Applications, (the ISCA 18 th International478
Conference ”Computers and their ApplicationsHonolulu, Hawaii) 2003. p. . (International Society for479
Computers and their Applications)480

[Benci et al. ()] Dynamical systems and computable information, V Benci , C Bonanno , S Galatolo , G Menconi481
, M Virgilio . http://arXiv.org 2002. (Preprint in Physics condmat/0210654. electronic edition)482

[Burgin and Eberbach ()] ‘Evolutionary Automata: Expressiveness and Convergence of Evolutionary Computa-483
tion’. M Burgin , E Eberbach . Computer Journal, v 2012. 55 (9) p. .484

[Burgin and Dodig-Crnkovic (2012)] ‘From the Closed Universe to an Open World’. M Burgin , G Dodig-485
Crnkovic . Proceedings of Symposium on Natural Computing/Unconventional Computing and its Philosophical486
Significance, AISB/IACAP World Congress, (Symposium on Natural Computing/Unconventional Computing487
and its Philosophical Significance, AISB/IACAP World CongressBirmingham, UK) 2012. July 2-6, 2012. p. .488

[Burgin ()] Generalized Kolmogorov Complexity and other Dual Complexity Measures, Cybernetics and System489
Analysis, M S Burgin . 1990. 26 p. .490

[Burgin et al. ()] ‘Inductive Complexity Measures for Mathematical Problems’. M Burgin , C S Calude , E Calude491
. International Journal of Foundations of Computer Science, v 2011. 2013. 24 (4) p. .492

[Beros ()] Learning Theory in the Arithmetical Hierarchy, Preprint in mathematics, A A Beros . math.LO/1302.493
http://arXiv.org 2013. 7069. (electronic edition)494

[Burgin ()] Measuring Power of Algorithms, Computer Programs, and Information Automata, M Burgin . 2010b.495
New York: Nova Science Publishers.496

[Burgin and Debnath ()] ‘Measuring Software Maintenance’. M Burgin , N Debnath . Proceedings of the ISCA497
19 th International Conference ”Computers and their Applications, (the ISCA 19 th International Conference498
”Computers and their ApplicationsISCA, Seattle, Washington) 2004. p. .499

[Burgin et al. ()] ‘Measuring Testing as a Distributed Component of the Software Life Cycle’. M Burgin , N500
Debnath , H K Lee . Journal for Computational Methods in Science and Engineering 2009. 9 (1) p. .501

[Burgin and Eberbach ()] ‘On Foundations of Evolutionary Computation: An Evolutionary Automata Ap-502
proach’. M Burgin , E Eberbach . Handbook of Research on Artificial Immune Systems and Natural Computing:503
Applying Complex Adaptive Technologies (Hongwei Mo, (Hershey, Pennsylvania) 2009a. IGI Global. p. .504

[Yurtsever ()] ‘Quantum Mechanics and Algorithmic Randomness’. U Yurtsever . Complexity, v 2000. 6 (1) p. .505

[Burgin and Gupta] Second-level Algorithms, Superrecursivity, and Recovery Problem in, M Burgin , B Gupta .506

[Burgin ()] Super-recursive Algorithms, M Burgin . 2005. New York/ Heidelberg/ Berlin: Springer.507

[Burgin ()] ‘Super-recursive Algorithms as a Tool for High Performance Computing’. M Burgin . Proceedings508
of the High Performance Computing Symposium, (the High Performance Computing SymposiumSan Diego)509
1999. p. .510

[Burgin and Debnath (2009)] ‘Super-Recursive Algorithms in Testing Distributed Systems’. M Burgin , N511
Debnath . Proceedings of the ISCA 24 th International Conference ”Computers and their Applications, (the512
ISCA 24 th International Conference ”Computers and their ApplicationsNew Orleans, Louisiana, USA) April,513
2009. p. . (ISCA)514

[Burgin ()] Theory of Information: Fundamentality, Diversity and Unification, M Burgin . 2010. New515
York/London/Singapore: World Scientific.516

[Burgin and Eberbach ()] Universality for Turing Machines, Inductive Turing Machines and Evolutionary517
Algorithms, Fundamenta Informaticae, M Burgin , E Eberbach . 2009. 91 p. .518

11

http://arXiv.org
http://arXiv.org

