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Improved Image Denoising Filter using Low 
Rank & Total Variation 
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Abstract- Better diagnosis of disease is possible only with the 
better microscopic images. To do so images of the affected 
area are captured and then noise is removed to obtain 
accurate diagnosis. Many algorithms have been proposed till 
date. But they are capable of removing noise only in spatial 
domains so this paper tries to overcome that by combining 
low rank filter and regularization. If we only reduce noise in 
spatial or spectral domain, artefacts or distortions will be 
introduced in other domains. At the same time, this kind of 
methods will destroy the correlation in spatial or spectral 
domain. Spatial and spectral information should be 
considered jointly to remove the noise efficiently. Low rank 
algorithms are good as they encloses semantic information as 
well as poses strong identification capability. 
Keywords: filter, low rank, regularisation, noise, TEM 
image. 

I. Introduction 

he transmission electron microscope (TEM) is 
used to examine the structure, composition, and 
properties of specimens in submicron detail. Aside 

from using it to study general biological and medical 
materials, transmission electron microscopy has a 
significant impact on fields such as: materials science, 
geology, environmental science, among others.Various 
TEM image denoising algorithms have been proposed 
in the recent years [1][2][3][4]. At a maximum potential 
magnification of 1 nanometer, TEMs are the most 
powerful microscopes. TEMs produce high-resolution, 
two-dimensional images, allowing for a wide range of 
educational, science and industry applications. 

 
 

 
 

II. Literature Survey 

Low rank  approximation is good for recovering 
low dimensional structures in data.  It is  been  in  use  in 
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variety of applications in image and video processing. A 
new denoising algorithm based on iterative low-rank 
regularized collaborative filtering of image patches 
under a nonlocal framework. This collaborative filtering 
is formulated as recovery of low rank matrices from 
noisy data. Based on recent results from random matrix 
theory, an optimal singular value shrinkage operator is 
applied to efficiently solve this problem [8]. A sparse 
banded low pass filter is discussed which showed 
significant improvement in PSNR [9].  A combined 
denoising strategy, and adaptive dimensionality 
reduction approach of similar patch groups by parallel 
analysis was used which indicated appropriate results 
[10]. A image Deblurring using split bergman iterative 
algorithm was proposed characterizing both image local 
smoothness and non local self similarity [11]. 

III. algorithm 

It solves following optimization problem 

min_X || Y-X||_1 + lambda ||Dh*X||_1 + lamdba 

||Dv*X||_1 + mu ||X||_*       
              (3.1) 

Here in this equation, X is the Input TEM image, 
Y indicates the  Noisy image,  Dh & Dv are the horizontal 
and vertical finite difference operators, ||X||_*  means 
the  Nuclear norm of matrix X. We utilize split-Bregman 
technique to solve above problem. Before running the 
algorithm we set the mu(1), mu(2), mu(3) which 
corresponds to total variation term, low rank term and 
data fidelity term respectively. 

1. img=imread('ctem.jpg'); 

2. img=im2double(img); 

3.
 

[rows,cols,d]=size(img);
 

4.
 

sizex=[rows,cols];
 

5.
 

noisy = imnoise(img,'salt & pepper',0.02);
 

6.
 

psnrBefore=findPSNR(img,noisy,1);         
 

7.
 

y=reshape(noisy,rows*cols,d);  
 

8.
 

mu=[.2 .2 .5]; iter=10; 
 

9.
 

x=basicDenoising(y,sizex,mu,iter);
 

10.

 
psnrRec=findPSNR(img,x,1);         

 

11.

 

bands=[ 1 floor(d/2) d]; %these are the bands to be 
displayed

 

12.

 

img=myhisteq(img);rec=myhisteq(x);  
noisy=myhisteq(noisy);

 

13.

 

subplot(131); imshow(img(:,:,bands)); title('Original 
Image');

 

T 
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All the algorithms remove the noise in only in 
spatial domain which in turn deteriorate correlation in 
spectral domain. Highly correlated images set have the 
nature of low rank; they can be recovered efficiently from 
measurement with noise or outliers by using the 
restriction of low rank [5][6][7]. While sparse coding and 
dictionary learning a error was introduced which can be
reduced by imposing a low rank algorithm. To make the 
problem solvable total variation, i.e regularization will be 
used.

http://www.ammrf.org.au/myscope/tem/background/practical/#term�
http://www.ammrf.org.au/myscope/tem/background/practical/#term�


 

 

14. subplot(132); imshow(noisy(:,:,bands)); title('Noisy 
Image'); 

15. subplot(133); imshow(rec(:,:,bands)); 
title('Reconstructed Image'); 

function x = basicDenoising(y,sizex,mu,maxiter) 
1. mu1=mu(1) ; mu2=mu(2); mu3=mu(3) ;  
2. [~,d]=size(y);rows=sizex(1);cols=sizex(2); 
3. B1=zeros(rows*cols,d); B2=B1; B3=B1; B4=B1; 
4. [Dh,Dv]=TVR(rows,cols);          
5. x=zeros(rows*cols,d); 
6. for i=1:maxiter 
P=Sfth(Dh*x+B1,1/mu1);      
      Q=Sfth(Dv*x+B2,1/mu1);  
     R=Nnth(x+B3,1/mu2); 
      S=Sfth(y-x+B4,1/mu3);          

       bigY=Dh'*(mu1*(P-
B1))+Dv'*(mu1*(Q-B2))+mu2*(R-B3)+mu3*(y-S+B4);  

      for j=1:d 

          [x(:,j),~]=lsqr(@find,bigY(:,j),1e-
6,5,[],[],x(:,j));         
      end 
     B1=B1+Dh*x-P; 
      B2=B2+Dv*x-Q; 
      B3=B3+x-R; 
      B4=B4+y-S-x; 
      if rem(i,2)==0     
              fprintf(' %d iteration done of %d 
\n',i, maxiter); 
         end 
        
end 
7. x=reshape(x,rows,cols,d); 
end 
 function y = find(x,str) 
1. tt= mu1*(Dh'*(Dh*x))+ mu1*(Dv'*(Dv*x))+ mu2*x 

+ mu3*x; 
2. switch str 
case 'transp' 
y = tt; 
             case 'notransp' 
                 y = tt; 
        end 
end 
function X= Sfth(B,lambda) 
1. X=sign(B).*max(0,abs(B)-(lambda/2)); 
end 
function X=Nnth(X,lambda) 
1. if isnan(lambda) 
      lambda=0; 
end 
2. [u,s,v]= svd(X,0); 
3. s1=Sfth(diag(s),lambda); 
4. X=u*diag(s1)*v'; 
end 

 function [Dh, Dv]=TVR(m,n) 
1. Dh = spdiags([-ones(n,1) ones(n,1)],[0 1],n,n); 
2. Dh(n,:) = 0; 
3. Dh = kron(Dh,speye(m)); 
4. Dv = spdiags([-ones(m,1) ones(m,1)],[0 1],m,m); 
5. Dv(m,:) = 0; 
6. Dv = kron(speye(n),Dv); 
end 

IV. Results 

The algorithm is implemented in MATLAB. A 
nanoscopic TEM is taken and salt & pepper noise is 
added. Then the filter is applied to denoise the image. 
Peak Signal to noise ratio is evaluated before and after 
applying the filter. One sample result is indicated below. 
PSNR before denoising : 14.92 
PSNR after denoising : 27.87 

 

Figure 4.1 :  Results before and after applying the Filter 

V. Conclusion 

By introducing ideal regularization term and 
performing low rank matrix recovery we are able to 
denoise image successfully without losing structural 
information. The peak signal to noise ratio obtained is 
significantly  much higher and quite significant. 
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